toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Touchard, A.; Dauvois, M.; Arguel, M.-J.; Petitclerc, F.; Leblanc, M.; Dejean, A.; Orivel, J.; Nicholson, G.M.; Escoubas, P. url  openurl
  Title Elucidation of the unexplored biodiversity of ant venom peptidomes via MALDI-TOF mass spectrometry and its application for chemotaxonomy Type Journal Article
  Year 2014 Publication Journal of Proteomics Abbreviated Journal J. Proteomics  
  Volume 105 Issue Pages 217-231  
  Keywords Ant venom; Chemotaxonomy; Maldi-Tof Ms; Peptide; Peptidome; Ponerinae; ant venom; cytochrome c oxidase; ant; article; biodiversity; chemotaxonomy; correlational study; DNA sequence; French Guiana; Hymenoptera; matrix assisted laser desorption ionization time of flight mass spectrometry; mitochondrial gene; nonhuman; Odontomachus biumbonatus; Odontomachus haematodus; Odontomachus hastatus; Odontomachus mayi; Odontomachus scalptus; Pachcondyla apicalis; Pachcondyla arhuaca; Pachcondyla commutata; Pachcondyla constricta; Pachcondyla crassinola; Pachcondyla goeldii; Pachcondyla inversa; Pachcondyla marginata; Pachcondyla procidua; Pachcondyla stigma; Pachcondyla verenae; Pachcondyla villosa; peptidomics; phylogeny; priority journal; Animalia; Formicidae; Hymenoptera; Odontomachus; Pachycondyla; Pachycondyla apicalis; Pachycondyla stigma; Ponerinae  
  Abstract The rise of integrative taxonomy, a multi-criteria approach used in characterizing species, fosters the development of new tools facilitating species delimitation. Mass spectrometric (MS) analysis of venom peptides from venomous animals has previously been demonstrated to be a valid method for identifying species. Here we aimed to develop a rapid chemotaxonomic tool for identifying ants based on venom peptide mass fingerprinting. The study focused on the biodiversity of ponerine ants (Hymenoptera: Formicidae: Ponerinae) in French Guiana. Initial experiments optimized the use of automated matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to determine variations in the mass profiles of ant venoms using several MALDI matrices and additives. Data were then analyzed via a hierarchical cluster analysis to classify the venoms of 17 ant species. In addition, phylogenetic relationships were assessed and were highly correlated with methods using DNA sequencing of the mitochondrial gene cytochrome c oxidase subunit 1. By combining a molecular genetics approach with this chemotaxonomic approach, we were able to improve the accuracy of the taxonomic findings to reveal cryptic ant species within species complexes. This chemotaxonomic tool can therefore contribute to more rapid species identification and more accurate taxonomies. Biological significance: This is the first extensive study concerning the peptide analysis of the venom of both Pachycondyla and Odontomachus ants. We studied the venoms of 17 ant species from French Guiana that permitted us to fine-tune the venom analysis of ponerine ants via MALDI-TOF mass spectrometry. We explored the peptidomes of crude ant venom and demonstrated that venom peptides can be used in the identification of ant species. In addition, the application of this novel chemotaxonomic method combined with a parallel genetic approach using COI sequencing permitted us to reveal the presence of cryptic ants within both the Pachycondyla apicalis and Pachycondyla stigma species complexes. This adds a new dimension to the search for means of exploiting the enormous biodiversity of venomous ants as a source for novel therapeutic drugs or biopesticides. This article is part of a Special Issue entitled: Proteomics of non-model organisms. © 2014 Elsevier B.V.  
  Address Neurotoxin Research Group, School of Medical and Molecular Biosciences, University of Technology, Sydney, NSW, Australia  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 18767737 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Cited By (since 1996):1; Export Date: 30 July 2014; Correspondence Address: Touchard, A.; UMR-EcoFoG, Campus Agronomique, BP 316, 97379 Kourou Cedex, France; email: axel.touchard@ecofog.gf; Chemicals/CAS: cytochrome c oxidase, 72841-18-0, 9001-16-5 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 555  
Permanent link to this record
 

 
Author Wagner, F.; Rossi, V.; Baraloto, C.; Bonal, D.; Stahl, C.; Herault, B. pdf  url
openurl 
  Title Are commonly measured functional traits involved in tropical tree responses to climate? Type Journal Article
  Year 2014 Publication International Journal of Ecology Abbreviated Journal Int. J. Ecol.  
  Volume 2014 Issue 389409 Pages  
  Keywords  
  Abstract Climate models predict significant rainfall reduction in Amazonia, reducing water availability for trees. We present how functional traits modulate the tree growth response to climate. We used data from 3 years of bimestrial growth measurements for 204 trees of 53 species in the forest of Paracou, French Guiana. We integrated climate variables from an eddy covariance tower and functional trait values describing life history, leaf, and stem economics. Our results indicated that the measured functional traits are to some extent linked to the response of trees to climate but they are poor predictors of the tree climate-induced growth variation. Tree growth was affected by water availability for most of the species with different species growth strategies in drought conditions. These strategies were linked to some functional traits, especially maximum height and wood density. These results suggest that (i) trees seem adapted to the dry season at Paracou but they show different growth responses to drought, (ii) drought response is linked to growth strategy and is partly explained by functional traits, and (iii) the limited part of the variation of tree growth explained by functional traits may be a strong limiting factor for the prediction of tree growth response to climate. © 2014 Fabien Wagner et al.  
  Address CIRAD, UMR Systèmes d'Elevage en Milieux Méditerranéens et Tropicaux, 97379 Kourou, France  
  Corporate Author Thesis  
  Publisher Hindawi Publishing Corporation Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 16879716 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 30 July 2014; Correspondence Address: Wagner, F.; Remote Sensing Division, National Institute for Space Research (INPE), 12227-010 São José dos Campos, SP, Brazil; email: wagner.h.fabien@gmail.com Approved no  
  Call Number EcoFoG @ webmaster @ Serial 556  
Permanent link to this record
 

 
Author Hénaut, Y.; Corbara, B.; Pélozuelo, L.; Azémar, F.; Céréghino, R.; Herault, B.; Dejean, A. pdf  url
doi  openurl
  Title A tank bromeliad favors spider presence in a neotropical inundated forest Type Journal Article
  Year 2014 Publication PLoS ONE Abbreviated Journal PLoS ONE  
  Volume 9 Issue 12 Pages e114592  
  Keywords  
  Abstract Tank bromeliads are good models for understanding how climate change may affect biotic associations. We studied the relationships between spiders, the epiphytic tank bromeliad, Aechmea bracteata, and its associated ants in an inundated forest in Quintana Roo, Mexico, during a drought period while, exceptionally, this forest was dry and then during the flooding that followed. We compared spider abundance and diversity between “Aechmea-areas” and “control areas” of the same surface area. We recorded six spider families: the Dipluridae, Ctenidae, Salticidae, Araneidae, Tetragnathidae and Linyphiidae among which the funnel-web tarantula, Ischnothele caudata, the only Dipluridae noted, was the most abundant. During the drought period, the spiders were more numerous in the Aechmea areas than in the control areas, but they were not obligatorily associated with the Aechmea.
During the subsequent flooding, the spiders were concentrated in the A. bracteata patches, particularly those sheltering an ant colony. Also, a kind of specificity existed between certain spider taxa and ant species, but varied between the drought period and subsequent flooding. We conclude that climatic events modulate the relationship between A. bracteata patches and their associated fauna. Tank bromeliads, previously considered only for their ecological importance in supplying food and water during drought, may also be considered refuges for spiders during flooding. More generally, tank bromeliads have an important role in preserving non-specialized fauna in inundated forests.
 
  Address Ecologie des Forêts de Guyane, Campus AgronomiqueKourou, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 23 December 2014 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 573  
Permanent link to this record
 

 
Author Turcotte, M.M.; Thomsen, C.J.M.; Broadhead, G.T.; Fine, P.V.A.; Godfrey, R.M.; Lamarre, G.P.A.; Meyer, S.T.; Richards, L.A.; Johnson, M.T.J. doi  openurl
  Title Percentage leaf herbivory across vascular plant species Type Journal Article
  Year 2014 Publication Ecology Abbreviated Journal Ecology  
  Volume 95 Issue 3 Pages 788-788  
  Keywords  
  Abstract Herbivory is viewed as a major driver of plant evolution and the most important energy pathway from plants to higher trophic levels. Therefore, understanding patterns of herbivory on plants remains a key focus in evolution and ecology. The evolutionary impacts of leaf herbivory include altering plant fitness, local adaptation, the evolution of defenses, and the diversification of plants as well as natural enemies. Leaf herbivory also impacts ecological processes such as plant productivity, community composition, and ecosystem nutrient cycling. Understanding the impact of herbivory on these ecological and evolutionary processes requires species-specific, as opposed to community-level, measures of herbivory. In addition, species-specific data enables the use of modern comparative methods to account for phylogenetic non-independence. Although hundreds of studies have measured natural rates of leaf consumption, we are unaware of any accessible compilation of these data. We created such a data set to provide the raw data needed to test general hypotheses relating to plant?herbivore interactions and to test the influence of biotic and abiotic factors on herbivory rates across large spatial scales. A large repository will make this endeavor more efficient and robust. In total, we compiled 2641 population-level measures for either annual or daily rates of leaf herbivory across 1145 species of vascular plants collected from 189 studies. All damage measures represent natural occurrences of herbivory that span numerous angiosperm, gymnosperm, and fern species. To enable researchers to explore the causes of variation in herbivory and how these might interact, we added information about the study sites including: geolocation, climate classification, habitat descriptions (e.g., seashore, grassland, forest, agricultural fields), and plant trait information concerning growth form and duration (e.g., annual vs. perennial). We also included extensive details of the methodology used to measure leaf damage, including seasons and months of sampling, age of leaves, and the method used to estimate percentage area missing. We anticipate that these data will make it possible to test important hypotheses in the plant?herbivore literature, including the plant apparency hypothesis, the latitudinal-herbivory defense hypothesis, the resource availability hypothesis, and the macroevolutionary escalation of defense hypothesis.  
  Address  
  Corporate Author Thesis  
  Publisher Ecological Society of America Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0012-9658 ISBN Medium  
  Area Expedition Conference  
  Notes doi: 10.1890/13-1741.1 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 575  
Permanent link to this record
 

 
Author Dejean, A.; Azémar, F.; Roux, O. url  openurl
  Title An invasive ant species able to counterattack marabunta raids Type Journal Article
  Year 2014 Publication Comptes Rendus Biologies Abbreviated Journal C. R. Biol.  
  Volume 337 Issue 7-8 Pages 475-479  
  Keywords Antipredation; Army ants; Colony mate recognition; Eciton; Pheidole; aggression; ant; article; bioassay; Eciton burchellii; Eciton hamatum; emulsion; insect society; mass fragmentography; Neotropics; nonhuman; Pheidole megacephala  
  Abstract In the Neotropics where it was introduced, the invasive ant Pheidole megacephala counterattacked raids by the army ants Eciton burchellii or E. hamatum. The Eciton workers that returned to their bivouac were attacked and spread-eagled and most of them killed by their outgoing colony mates. Little by little the zone where returning and outgoing Eciton workers encountered one another moved away from the Pheidole nest which was no longer attacked, so that most of the colony was spared. Using a water-based technique rounded out by bioassays, we show that Pheidole compounds were transferred onto the Eciton cuticle during the counterattacks, so that outgoing workers do not recognize returning colony mates, likely perceived as potential prey. Because P. megacephala is an introduced African species, this kind of protection, which cannot be the result of coevolutive processes, corresponds to a kind of by-product due to its aggressiveness during colony defence. © 2014 Académie des sciences.  
  Address IRD, MIVEGEC (IRD 224 CNRS 5290-UM1-UM2) Équipe BEES, 911, avenue Agropolis, 34394 Montpellier cedex 5, France  
  Corporate Author Thesis  
  Publisher Elsevier Masson SAS Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 17683238 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 1 September 2014; Coden: Crboc; Correspondence Address: Dejean, A.; CNRS UMR 8172, Écologie des Forêts de Guyane, BP 316, 97379 Kourou cedex, France; email: alain.dejean@wanadoo.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 557  
Permanent link to this record
 

 
Author Leguet, A.; Gibernau, M.; Shintu, L.; Caldarelli, S.; Moja, S.; Baudino, S.; Caissard, J.-C. url  openurl
  Title Evidence for early intracellular accumulation of volatile compounds during spadix development in Arum italicum L. and preliminary data on some tropical Aroids Type Journal Article
  Year 2014 Publication Naturwissenschaften Abbreviated Journal Naturwissenschaften  
  Volume 101 Issue 8 Pages 623-635  
  Keywords Araceae; Cytochemistry; Gas chromatography; Nuclear magnetic resonance; Volatile compounds  
  Abstract Staining and histochemistry of volatile organic compounds (VOCs) were performed at different inflorescence developmental stages on nine aroid species; one temperate, Arum italicum and eight tropical from the genera Caladium, Dieffenbachia and Philodendron. Moreover, a qualitative and quantitative analysis of VOCs constituting the scent of A. italicum, depending on the stage of development of inflorescences was also conducted. In all nine species, vesicles were observed in the conical cells of either the appendix or the stamens (thecae) and the staminodes. VOCs were localised in intracellular vesicles from the early stages of inflorescence development until their release during receptivity of gynoecium. This localisation was observed by the increase of both number and diameter of the vesicles during 1 week before receptivity. Afterwards, vesicles were fewer and smaller but rarely absent. In A. italicum, staining and gas chromatography analyses confirmed that the vesicles contained terpenes. The quantitatively most important ones were the sesquiterpenes, but monoterpenes were not negligible. Indeed, the quantities of terpenes matched the vesicles' size evolution during 1 week. Furthermore, VOCs from different biosynthetic pathways (sesquiterpenes and alkanes) were at their maximum quantity 2 days before gynoecium receptivity (sesquiterpenes and alkanes) or during receptivity (isobutylamine, monoterpenes, skatole and p-cresol). VOCs seemed to be emitted during gynoecium receptivity and/or during thermogenesis, and FADs are accumulated after thermogenesis in the spadix. These complex dynamics of the different VOCs could indicate specialisation of some VOCs and cell machinery to attract pollinators on the one hand and to repulse/protect against phytophagous organisms and pathogens after pollination on the other hand. © 2014 Springer-Verlag Berlin Heidelberg.  
  Address CNRS, UMR-6134 SPE, 20000 Ajaccio, France  
  Corporate Author Thesis  
  Publisher Springer Verlag Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00281042 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 1 September 2014; Coden: Natwa; Correspondence Address: Gibernau, M.; CNRS, UMR-6134 SPE, 20000 Ajaccio, France; email: gibernau@univ-corse.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 558  
Permanent link to this record
 

 
Author Malé, P.-J.G.; Bardon, L.; Besnard, G.; Coissac, E.; Delsuc, F.; Engel, J.; Lhuillier, E.; Scotti-Saintagne, C.; Tinaut, A.; Chave, J. url  openurl
  Title Genome skimming by shotgun sequencing helps resolve the phylogeny of a pantropical tree family Type Journal Article
  Year 2014 Publication Molecular Ecology Resources Abbreviated Journal Mol. Ecol. Resour.  
  Volume 14 Issue 5 Pages 966-975  
  Keywords Next-generation sequencing; Organellar genome; Phylogenomics; Tropical trees  
  Abstract Whole genome sequencing is helping generate robust phylogenetic hypotheses for a range of taxonomic groups that were previously recalcitrant to classical molecular phylogenetic approaches. As a case study, we performed a shallow shotgun sequencing of eight species in the tropical tree family Chrysobalanaceae to retrieve large fragments of high-copy number DNA regions and test the potential of these regions for phylogeny reconstruction. We were able to assemble the nuclear ribosomal cluster (nrDNA), the complete plastid genome (ptDNA) and a large fraction of the mitochondrial genome (mtDNA) with approximately 1000×, 450× and 120× sequencing depth respectively. The phylogenetic tree obtained with ptDNA resolved five of the seven internal nodes. In contrast, the tree obtained with mtDNA and nrDNA data were largely unresolved. This study demonstrates that genome skimming is a cost-effective approach and shows potential in plant molecular systematics within Chrysobalanaceae and other under-studied groups. © 2014 John Wiley & Sons Ltd.  
  Address GeT-PlaGe, Genotoul, INRA Auzeville, Castanet-Tolosan, F-31326, France  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Ltd Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 17550998 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 1 September 2014; Correspondence Address: Malé, P.-J.G.; UMR 5174 Laboratoire Évolution and Diversité Biologique, CNRS, Université Paul Sabatier, ENFA, 118 route de Narbonne, Toulouse, F-31062, France; email: pjg.male@gmail.com Approved no  
  Call Number EcoFoG @ webmaster @ Serial 559  
Permanent link to this record
 

 
Author Carrias, J.-F.; Céréghino, R.; Brouard, O.; Pélozuelo, L.; Dejean, A.; Couté, A.; Corbara, B.; Leroy, C. url  openurl
  Title Two coexisting tank bromeliads host distinct algal communities on a tropical inselberg Type Journal Article
  Year 2014 Publication Plant Biology Abbreviated Journal Plant Biol.  
  Volume 16 Issue 5 Pages 997-1004  
  Keywords Algae; Bromeliaceae; Inselberg; Neotropics; Phytotelmata; Aechmea; algae; Bromeliaceae; Bumilleriopsis; Catopsis berteroniana; Chlorella (unclassified Chlorophyceae); Chlorella (unclassified Trebouxiophyceae); Chlorella sp.; Cyanobacteria; Eukaryota; Invertebrata; Protozoa  
  Abstract The tank bromeliads Aechmea aquilega (Salisb.) and Catopsis berteroniana (Schultes f.) coexist on a sun-exposed Neotropical inselberg in French Guiana, where they permit conspicuous freshwater pools to form that differ in size, complexity and detritus content. We sampled the algal communities (both eukaryotic and cyanobacterial taxa, including colourless forms) inhabiting either A. aquilega (n = 31) or C. berteroniana (n = 30) and examined differences in community composition and biomass patterns in relation to several biotic and abiotic variables. Chlorella sp. and Bumilleriopsis sp. were the most common taxa and dominated the algal biomass in A. aquilega and C. berteroniana, respectively. Using a redundancy analysis, we found that water volume, habitat complexity and the density of phagotrophic protozoa and collector-gatherer invertebrates were the main factors explaining the distribution of the algal taxa among the samples. Hierarchical clustering procedures based on abundance and presence/absence data clearly segregated the samples according to bromeliad species, revealing that the algal communities in the smaller bromeliad species were not a subset of the communities found in the larger bromeliad species. We conclude that, even though two coexisting tank bromeliad populations create adjacent aquatic habitats, each population hosts a distinct algal community. Hence, bromeliad diversity is thought to promote the local diversity of freshwater algae in the Neotropics. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.  
  Address IRD, UMR AMAP (botAnique et bioinforMatique de l'Architecture des Plantes), Montpellier, France  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Ltd Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 14388677 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 2 September 2014; Coden: Pbiof; Correspondence Address: Carrias, J.-F.; Clermont Université, Université Blaise Pascal, BP 10448, F-63000 Clermont-Ferrand, France; email: j-francois.carrias@univ-bpclermont.fr; Funding Details: LQ13C020005, NSFC, National Natural Science Foundation of China Approved no  
  Call Number EcoFoG @ webmaster @ Serial 560  
Permanent link to this record
 

 
Author Petit, M.; Céréghino, R.; Carrias, J.-F.; Corbara, B.; Dezerald, O.; Petitclerc, F.; Dejean, A.; Leroy, C. doi  openurl
  Title Are ontogenetic shifts in foliar structure and resource acquisition spatially conditioned in tank-bromeliads? Type Journal Article
  Year 2014 Publication Botanical Journal of the Linnean Society Abbreviated Journal Bot J Linn Soc  
  Volume 175 Issue 2 Pages 299-312  
  Keywords Aechmea mertensii; Camponotus femoratus; French Guiana; leaf traits; mutualistic ants; natural stable isotopes; ontogeny; Pachycondyla goeldii; phenotypic plasticity; plant morphology  
  Abstract The phenotypic plasticity of plants has been explored as a function of either ontogeny (apparent plasticity) or environment (adaptive plasticity), although few studies have analyzed these factors together. In the present study, we take advantage of the dispersal of Aechmea mertensii bromeliads by Camponotus femoratus or Pachycondyla goeldii ants in shaded and sunny environments, respectively, to quantify ontogenetic changes in morphological, foliar, and functional traits, and to analyze ontogenetic and ant species effects on 14 traits. Most of the morphological (plant height, number of leaves), foliar (leaf thickness, leaf mass area, total water content, trichome density), and functional (leaf δ13C) traits differed as a function of ontogeny. Conversely, only leaf δ15N showed an adaptive phenotypic plasticity. On the other hand, plant width, tank width, longest leaf length, stomatal density, and leaf C concentration showed an adaptation to local environment with ontogeny. The exception was leaf N concentration, which showed no trend at all. Aechmea mertensii did not show an abrupt morphological modification such as in heteroblastic bromeliads, although it was characterized by strong, size-related functional modifications for CO2 acquisition. The adaptive phenotypic variation found between the two ant species indicates the spatially conditioned plasticity of A. mertensii in the context of insect-assisted dispersal. However, ant-mediated effects on phenotypic plasticity in A. mertensii are not obvious because ant species and light environment are confounding variables. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 175, 299–312.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1095-8339 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 564  
Permanent link to this record
 

 
Author Lachenaud, P.; Rossi, V.; Thevenin, J.-M.; Doaré, F. url  openurl
  Title The “Guiana” genetic group: A new source of resistance to cacao (Theobroma cacao L.) black pod rot caused by Phytophthora capsici Type Journal Article
  Year 2015 Publication Crop Protection Abbreviated Journal Crop Prot.  
  Volume 67 Issue Pages 91-95  
  Keywords Black pod; Cocoa; French guiana; Phytophthora capsici; Resistance; Phytophthora capsici; Theobroma cacao  
  Abstract Black pod rot, caused by Stramenopiles of the genus Phytophthora, leads to serious production losses in all cocoa growing zones. In order to reduce the impact of these pests, preference is given to genetic control using resistant varieties, and sources of resistance are actively being sought, particularly in wild cacao trees. Surveys were undertaken in the natural cacao tree populations of south-eastern French Guiana between 1985 and 1995 and an abundant amount of plant material belonging to a particular genetic group, the “Guiana” group, was collected. A great deal of work has shown the merits of this genetic group as a source of resistance to Phytophthora palmivora and megakarya. We describe here the results of a global study to assess the resistance of the 186 clones in the “Guiana” group “core collection” to a Guianese strain of Phytophthora capsici (strain Reg 2-6). This study, which used an efficient methodology (fifteen series of tests on leaf discs and a statistical test adapted to the ordinal nature of the basic data), showed that the “Guiana” genetic group is a major source of resistance to P.capsici. Strain Reg 2-6 proves to be particularly virulent, as the Scavina 6 control, an international reference for resistance to Phytophthora, is not resistant to it. However, 24 clones of the “Guiana” group are, and 92 have proved to be more resistant than Scavina 6, thereby showing the interest of the group in genetically controlling P.capsici.Thus, of the clones in the Guiana group that are more resistant to P.capsici than Scavina 6, some, which are also resistant to P.palmivora and/or Phytophthora megakarya, and also displaying some other notable qualities, could be incorporated into cocoa genetic improvement programmes in countries where P.capsici is rife on cacao trees.  
  Address CIRAD, UPR BSEF, BP 2572Yaoundé, Cameroon  
  Corporate Author Thesis  
  Publisher Elsevier Ltd Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 02612194 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 12 November 2014; Coden: Crptd; Correspondence Address: Lachenaud, P.; CIRAD, UPR 106, BP 701, France Approved no  
  Call Number EcoFoG @ webmaster @ Serial 565  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: