toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Courtois, E.A.; Baraloto, C.; Timothy Paine, C.E.; Petronelli, P.; Blandinieres, P.-A.; Stien, D.; Houel, E.; Bessiere, J.-M.; Chave, J. doi  openurl
  Title Differences in volatile terpene composition between the bark and leaves of tropical tree species Type Journal Article
  Year 2012 Publication Phytochemistry Abbreviated Journal Phytochemistry  
  Volume 82 Issue Pages 81-88  
  Keywords French Guiana; Herbivory; Optimal defense theory; Secondary metabolites; Wood  
  Abstract Volatile terpenes are among the most diverse class of defensive compounds in plants, and they are implicated in both direct and indirect defense against herbivores. In terpenes, both the quantity and the diversity of compounds appear to increase the efficiency of defense as a diverse blend of compounds provides a more efficient protection against a broader range of herbivores and limits the chances that an enemy evolves resistance. Theory predicts that plant defensive compounds should be allocated differentially among tissues according to the value of the tissue, its cost of construction and the herbivore pressure on it. We collected volatile terpenes from bark and leaves of 178 individual tree belonging to 55 angiosperm species in French Guiana and compare the kind, amount, and diversity of compounds in these tissues. We hypothesized that in woody plants, the outermost part of the trunk should hold a more diverse blend of volatile terpenes. Additionally, as herbivore communities associated with the leaves is different to the one associated with the bark, we also hypothesized that terpene blends should be distinct in the bark vs. the leaves of a given species. We found that the mixture of volatile terpenes released by bark is different and more diverse than that released by leaves, both in monoterpenes and sesquiterpenes. This supports our hypothesis and further suggests that the emission of terpenes by the bark should be more important for trunk defense than previously thought.  
  Address Station d'Écologie Expérimentale du CNRS Moulis, USR 2936, 2 route du CNRS, 09200 Moulis, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00319422 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 4 September 2012; Source: Scopus; Coden: Pytca; doi: 10.1016/j.phytochem.2012.07.003; Language of Original Document: English; Correspondence Address: Courtois, E.A.; Station d'Écologie Expérimentale du CNRS Moulis, USR 2936, 2 route du CNRS, 09200 Moulis, France; email: courtoiselodie@gmail.com Approved no  
  Call Number EcoFoG @ webmaster @ Serial 425  
Permanent link to this record
 

 
Author Ferry, B.; Bontemps, J.-D.; Blanc, L.; Baraloto, C. url  openurl
  Title Is climate a stronger driver of tree growth than disturbance? A comment on Toledo et al. (2011) Type Journal Article
  Year 2012 Publication Journal of Ecology Abbreviated Journal J. Ecol.  
  Volume 100 Issue 5 Pages 1065-1068  
  Keywords Basal area change; Bolivia; Climate; Disturbance; Logging; Plant-climate interactions; Tree growth; Tropical forest  
  Abstract 1.A recent article published by Toledo (2011b) investigates the effects of spatial variations in climate and soil, and of logging disturbance, on tree and forest growth in Bolivia. It concludes that climate is the strongest driver of tree and forest growth and that climate change may therefore have large consequences for forest productivity and carbon sequestration. However, serious methodological and conceptual discrepancies have been found that challenge these conclusions. 2.Because of an errant coding of 'time after logging' in the regression analysis, and because floristic changes induced by logging could not be incorporated into the analysis, the effect of logging on the average diameter growth is likely to have been strongly underestimated. 3.Basal area growth was improperly calculated as basal area change, and it displayed surprisingly high values, even among unlogged plots. We hypothesize that either these plots may be actually located in secondary forests recovering from past logging, or measurement biases may have hampered the data set. 4.Regardless of climate-growth relationships established across these plots, any inference concerning the potential effects of climate change on forest growth would require a specific quantitative assessment. 5.Synthesis. It is critical to re-assess the relative weight of climate and logging disturbance as driving factors of tree and forest growth, and to find an explanation for the very high basal area increment reported among the unlogged plots. We provide specific recommendations for further analyses of this and similar data sets. © 2012 British Ecological Society.  
  Address INRA, UMR Ecologie des Forêts de Guyane, 97379 Kourou, French Guiana  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00220477 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Cited By (since 1996): 1; Export Date: 4 September 2012; Source: Scopus; Coden: Jecoa; doi: 10.1111/j.1365-2745.2011.01895.x; Language of Original Document: English; Correspondence Address: Ferry, B.; AgroParisTech, ENGREF-Nancy, UMR 1092, F-54000 Nancy, France; email: bruno.ferry@engref.agroparistech.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 426  
Permanent link to this record
 

 
Author Fromin, N.; Saby, N.P.A.; Lensi, R.; Brunet, D.; Porte, B.; Domenach, A.-M.; Roggy, J.-C. url  doi
openurl 
  Title Spatial variability of soil microbial functioning in a tropical rainforest of French Guiana using nested sampling Type Journal Article
  Year 2013 Publication Geoderma Abbreviated Journal  
  Volume 197-198 Issue Pages 98-107  
  Keywords Denitrification; Respiration; Scale dependent process; Soil microbial processes; Soil organic matter; Tree influence potential  
  Abstract Understanding the pattern in spatial distribution of soil microbial processes is critical to understand the environmental factors that regulate them as well as to scale up these processes to ecosystem. Soil samples from a 1. ha tropical rainforest plot (Paracou, French Guiana) were analyzed according a nested sampling approach using different separation distances ranging from 0.4 to 40. m. The variability of substrate induced respiration (SIR) and of denitrification enzyme activity (DEA) was characterized in relation to various soil properties (total C and N contents, NIRS related index of soil organic matter quality, SOMQ, and index of tree influence potential, IP). The variability of SIR and DEA was higher than that of environmental properties. The patterns of accumulated variance as a function of distance varied among the soil properties. The variability of SIR and DEA mainly occurred at small (1. m) scale (and at the 10-40. m-scales for SIR), probably reflecting the quality of litter input that results of the influence of local assemblage of different tree species, though changes in the soil N and C contents. Indeed, total soil C and N contents explained the microbial properties at every scale. Coefficients of codispersion showed that neither SOMQ nor IP did correlate with SIR and DEA, and confirmed that total C and N contents explained microbial properties in a scale dependent and complex manner. Such spatial dependency underlines the importance of soil heterogeneity in this tropical forest with implications for sampling strategies when studying the microbial processes and their response to disturbances. © 2012 Elsevier B.V.  
  Address UMR EcoFoG, BP 709, 97387 Kourou, GUF, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 13 February 2013; Source: Scopus Approved no  
  Call Number EcoFoG @ webmaster @ Serial 466  
Permanent link to this record
 

 
Author Laurans, M.; Martin, O.; Nicolini, E.; Vincent, G. url  openurl
  Title Functional traits and their plasticity predict tropical trees regeneration niche even among species with intermediate light requirements Type Journal Article
  Year 2012 Publication Journal of Ecology Abbreviated Journal J. Ecol.  
  Volume 100 Issue 6 Pages 1440-1452  
  Keywords Canopy disturbance; Determinants of plant community diversity and structure; Growth rate; Irradiance; Leaf life span; Leaf mass per area; Niche differentiation; Phenotypic plasticity; Shade tolerance; Tropical moist forest  
  Abstract Niche differentiation is a key issue in the current debate on community assembly mechanisms. In highly diverse moist tropical forests, tree species sensitivity to canopy openness is thought to be a major axis in niche differentiation. In the past, the syndrome of traits driving the demographic trade-off involved in the niche-based theory of coexistence has always been established among species situated at the two extremities of the shade-tolerance gradient, even though most tropical tree species have intermediate light requirements. In addition, trait plasticity has seldom been linked to tropical tree species distribution along environmental gradients. This article examines covariations between leaf traits, whole-plant traits and niche parameters among 14 tree species with intermediate light requirements in French Guiana and across a range of canopy openness. Each functional trait measured under field conditions was characterized by a median value and a degree of plasticity expressed under contrasting light regimes. Niche differentiation was characterized in terms of spatial light gradient. We first examined covariations between functional traits then explored to what degree the median value and plasticity in functional traits could predict light niche characteristics at the sapling stage and the ontogenetic change in light availability estimated by adult stature. Leaf mass per area (LMA) was positively correlated with leaf life span (LLS); species with higher LMA and higher LLS displayed lower diameter growth rates (GRs) and lower responsiveness to canopy gap at both whole-plant and population levels. This proved that the relationships previously established over a broader range of species held true within the narrow range of the light requirements covered. Height GR plasticity accounted for 49% of the variation in light niche optimum. LMA plasticity, unlike LLS plasticity, was significantly correlated with light niche breadth and adult stature. Synthesis. This study demonstrates the relevance of considering the phenotypic plasticity in functional traits in community ecology, particularly for quantifying breadth of species distribution over environmental gradients. Our findings did not support Hubbell's hypothesis of functional equivalence and suggest that even a rather subtle variation in forest canopy disturbance promotes the coexistence of tropical tree species. © 2012 The Authors. Journal of Ecology © 2012 British Ecological Society.  
  Address UMR AMAP, IRD, TA A-51/PS2, Bd de la Lironde, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00220477 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 7 November 2012; Source: Scopus; Coden: Jecoa; doi: 10.1111/j.1365-2745.2012.02007.x; Language of Original Document: English; Correspondence Address: Laurans, M.; UMR, AMAP, CIRAD TA A-51/PS1, Bd de la Lironde, 34398 Montpellier Cedex 5, France; email: laurans@cirad.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 445  
Permanent link to this record
 

 
Author Dejean, A.; Delabie, J.H.; Corbara, B.; Azémar, F.; Groc, S.; Orivel, J.; Leponce, M. pdf  url
openurl 
  Title The ecology and feeding habits of the arboreal trap-jawed ant Daceton armigerum Type Journal Article
  Year 2012 Publication PloS one Abbreviated Journal PLoS ONE  
  Volume 7 Issue 5 Pages e37683  
  Keywords animal; ant; article; ecology; feeding behavior; Hemiptera; physiology; predation; Animals; Ants; Ecology; Feeding Behavior; Hemiptera; Predatory Behavior  
  Abstract Here we show that Daceton armigerum, an arboreal myrmicine ant whose workers are equipped with hypertrophied trap-jaw mandibles, is characterized by a set of unexpected biological traits including colony size, aggressiveness, trophobiosis and hunting behavior. The size of one colony has been evaluated at ca. 952,000 individuals. Intra- and interspecific aggressiveness were tested and an equiprobable null model used to show how D. armigerum colonies react vis-à-vis other arboreal ant species with large colonies; it happens that D. armigerum can share trees with certain of these species. As they hunt by sight, workers occupy their hunting areas only during the daytime, but stay on chemical trails between nests at night so that the center of their home range is occupied 24 hours a day. Workers tend different Hemiptera taxa (i.e., Coccidae, Pseudococcidae, Membracidae and Aethalionidae). Through group-hunting, short-range recruitment and spread-eagling prey, workers can capture a wide range of prey (up to 94.12 times the mean weight of foraging workers).  
  Address Écologie des Forêts de Guyane, Campus Agronomique, Kourou, France.  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 19326203 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 2 November 2012; Source: Scopus; doi: 10.1371/journal.pone.0037683; PubMed ID: 22737205; Language of Original Document: English; Correspondence Address: Dejean, A.email: alain.dejean@wanadoo.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 443  
Permanent link to this record
 

 
Author Fortunel, C.; Fine, P.V.A.; Baraloto, C. url  openurl
  Title Leaf, stem and root tissue strategies across 758 Neotropical tree species Type Journal Article
  Year 2012 Publication Functional Ecology Abbreviated Journal Funct. Ecol.  
  Volume 26 Issue 5 Pages 1153-1161  
  Keywords French Guiana; Functional trade-offs; Leaf economics; Peru; Plant traits; Tropical forest; Wood economics  
  Abstract 1. Trade-offs among functional traits reveal major plant strategies that can give insight into species distributions and ecosystem processes. However, current identification of plant strategies lacks the integration of root structural traits together with leaf and stem traits. 2. We examined correlations among 14 traits representing leaf, stem and woody root tissues. Traits were measured on 1084 individuals representing 758 Neotropical tree species, across 13 sites representative of the environmental variation encompassed by three widespread habitats (seasonally flooded, clay terra firme and white-sand forests) at opposite ends of Amazonia (French Guiana and Peru). 3. Woody root traits were closely aligned with stem traits, but not with leaf traits. Altogether leaf, stem and woody root traits delineated two orthogonal axes of functional trade-offs: a first axis defined by leaf traits, corresponding to a 'leaf economics spectrum', and a second axis defined by covarying stem and woody root traits, corresponding to a 'wood economics spectrum'. These axes remained consistent when accounting for species evolutionary history with phylogenetically independent contrasts. 4. Despite the strong species turnover across sites, the covariation among root and stem structural traits as well as their orthogonality to leaf traits were strongly consistent across habitats and regions. 5. We conclude that root structural traits mirrored stem traits rather than leaf traits in Neotropical trees. Leaf and wood traits define an integrated whole-plant strategy in lowland South American forests that may contribute to a more complete understanding of plant responses to global changes in both correlative and modelling approaches. We suggest further meta-analyses in expanded environmental and geographic zones to determine the generality of this pattern. © 2012 The Authors. Functional Ecology © 2012 British Ecological Society.  
  Address Department of Biology, University of Florida, Gainesville, FL, 32611, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 02698463 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 10 October 2012; Source: Scopus; Coden: Fecoe; doi: 10.1111/j.1365-2435.2012.02020.x; Language of Original Document: English; Correspondence Address: Fortunel, C.; INRA, UMR Ecologie des Forêts de Guyane, BP 709, 97387 Kourou Cedex, France; email: claire.fortunel@ecofog.gf Approved no  
  Call Number EcoFoG @ webmaster @ Serial 440  
Permanent link to this record
 

 
Author Niamké, F.B.; Amusant, N.; Stien, D.; Chaix, G.; Lozano, Y.; Kadio, A.A.; Lemenager, N.; Goh, D.; Adima, A.A.; Kati-Coulibaly, S.; Jay-Allemand, C. url  openurl
  Title 4',5'-Dihydroxy-epiisocatalponol, a new naphthoquinone from Tectona grandis L. f. heartwood, and fungicidal activity Type Journal Article
  Year 2012 Publication International Biodeterioration and Biodegradation Abbreviated Journal Int. Biodeterior. Biodegrad.  
  Volume 74 Issue Pages 93-98  
  Keywords 4',5'-Dihydroxy-epiisocatalponol; Decay resistance; Fungicidal; Heartwood; Naphthoquinone; Tectona grandis  
  Abstract A new naphthoquinone derivative was isolated from the heartwood of the teak stem. The chemical structure of this new compound, 4',5'-dihydroxy-epiisocatalponol, was determined using 1-D and 2-D nuclear magnetic resonance experiments, vibrational circular dichroism, HRMS, and optical rotation. We showed that this new naphthoquinone derivative plays a key role in the variability of decay resistance in teak wood. A high negative correlation was found between its concentration and the mass losses of the wood samples after exposure to the brown rot Antrodia sp., the fungus that is the most virulent against teak (R = -0.9; ρ < 0.0001). In-vitro bioassays allowed us to demonstrate that 4',5'-dihydroxy-epiisocatalponol acted as a fungicide against Trametes versicolor (white rot) at 58 mg ml -1 (0.22 mM). Overall, our results demonstrated that the concentration of 4',5'-dihydroxy-epiisocatalponol could be used as a new tool to evaluate teak wood durability. © 2012 Elsevier Ltd.  
  Address Laboratoire de Biochimie et de Physiologie Végétales, UMR 47 DIADE – Equipe Rhizogenèse, Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 09648305 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 27 September 2012; Source: Scopus; Coden: Ibbie; doi: 10.1016/j.ibiod.2012.03.010; Language of Original Document: English; Correspondence Address: Amusant, N.; CIRAD, Department Environments and societies, UMR Ecology forests of French Guiana, BP 732, 97310 Kourou cedex, French Guiana; email: nadine.amusant@cirad.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 435  
Permanent link to this record
 

 
Author Nicolini, E.; Beauchene, J.; De La Vallee, B.L.; Ruelle, J.; Mangenet, T.; Heuret, P. url  openurl
  Title Dating branch growth units in a tropical tree using morphological and anatomical markers: The case of Parkia velutina Benoist (Mimosoïdeae) Type Journal Article
  Year 2012 Publication Annals of Forest Science Abbreviated Journal Ann. Forest Sci.  
  Volume 69 Issue 5 Pages 543-555  
  Keywords Crown development; Deciduousness; Dendrochronology; French Guiana; Growth ring; Phenology; Tree architecture; Wood anatomy  
  Abstract • Context In tropical areas, studies based on the retrospective analysis of tree development have focused principally on growth ring research. The interpretation of primary growth markers is overlooked although it opens perspectives to provide long time-series on tree-crown development. • Aims This study focused on Parkia velutina, an emergent tree of neotropical rain forests. Our objectives were (1) to characterize the phenological cycle of this species, and (2) to identify temporally interpretable morphological and anatomical markers. • Methods We collected dominant branches in 14 adult trees and identified growth markers that limit longitudinal and radial increments. We coupled this approach with a 2-year phenological survey of 20 trees. • Results Leaf shedding, growth unit elongation and growth ring formation define the phenological cycle. At tree scale, this cycle is synchronous and affects all axes. At population scale, trees can be desynchronized. This cycle is annual despite some slight variability. Successive growth units and growth rings are easily identifiable. • Conclusion Dating a branch by counting the number of growth units or growth rings is possible in many years with a reasonable error. Nevertheless, estimating their precise month of formation in order to study climatic influences remains difficult. © INRA/Springer-Verlag France 2012.  
  Address INRA, UMR AMAP, TA A-51/PS2, Montpellier 34398, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 12864560 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 27 September 2012; Source: Scopus; Coden: Afosf; doi: 10.1007/s13595-011-0172-1; Language of Original Document: English; Correspondence Address: Nicolini, E.; Unité Mixte de Recherche CIRAD-CNRS-INRA-IRD-Université Montpellier 2, BotAnique et BioinforMatique de l'Architecture des Plantes (AMAP), BP 701, Kourou 97387, French Guiana; email: eric-andre.nicolini@cirad.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 436  
Permanent link to this record
 

 
Author De Weirdt, M.; Verbeeck, H.; Maignan, F.; Peylin, P.; Poulter, B.; Bonal, D.; Ciais, P.; Steppe, K. url  openurl
  Title Seasonal leaf dynamics for tropical evergreen forests in a process-based global ecosystem model Type Journal Article
  Year 2012 Publication Geoscientific Model Development Abbreviated Journal Geoscientific Model Dev.  
  Volume 5 Issue 5 Pages 1091-1108  
  Keywords  
  Abstract The influence of seasonal phenology on canopy photosynthesis in tropical evergreen forests remains poorly understood, and its representation in global ecosystem models is highly simplified, typically with no seasonal variation of canopy leaf properties taken into account. Including seasonal variation in leaf age and photosynthetic capacity could improve the correspondence of global vegetation model outputs with the wet-dry season CO2 patterns measured at flux tower sites in these forests. We introduced a leaf litterfall dynamics scheme in the global terrestrial ecosystem model ORCHIDEE based on seasonal variations in net primary production (NPP), resulting in higher leaf turnover in periods of high productivity. The modifications in the leaf litterfall scheme induce seasonal variation in leaf age distribution and photosynthetic capacity. We evaluated the results of the modification against seasonal patterns of three long-term in-situ leaf litterfall datasets of evergreen tropical forests in Panama, French Guiana and Brazil. In addition, we evaluated the impact of the model improvements on simulated latent heat (LE) and gross primary productivity (GPP) fluxes for the flux tower sites Guyaflux (French Guiana) and TapajÃ3s (km 67, Brazil). The results show that the introduced seasonal leaf litterfall corresponds well with field inventory leaf litter data and times with its seasonality. Although the simulated litterfall improved substantially by the model modifications, the impact on the modelled fluxes remained limited. The seasonal pattern of GPP improved clearly for the Guyaflux site, but no significant improvement was obtained for the TapajÃ3s site. The seasonal pattern of the modelled latent heat fluxes was hardly changed and remained consistent with the observed fluxes. We conclude that we introduced a realistic and generic litterfall dynamics scheme, but that other processes need to be improved in the model to achieve better simulations of GPP seasonal patterns for tropical evergreen forests. © Author(s) 2012. CC Attribution 3.0 License.  
  Address INRA Nancy, UMR INRA-UHP1137 Ecologie et Ecophysiologie Forestière, 54280 Champenoux, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1991959x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 4 October 2012; Source: Scopus; doi: 10.5194/gmd-5-1091-2012; Language of Original Document: English; Correspondence Address: De Weirdt, M.; Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; email: marjolein.deweirdt@ugent.be Approved no  
  Call Number EcoFoG @ webmaster @ Serial 437  
Permanent link to this record
 

 
Author Lamarre, G.P.A.; Molto, Q.; Fine, P.V.A.; Baraloto, C. pdf  url
openurl 
  Title A comparison of two common flight interception traps to survey tropical arthropods Type Journal Article
  Year 2012 Publication ZooKeys Abbreviated Journal ZooKeys  
  Volume 216 Issue Pages 43-55  
  Keywords Flight interception trap; French Guiana; Malaise trap; Performance; Sampling strategies; Tropical forest; Windowpane trap  
  Abstract Tropical forests are predicted to harbor most of the insect diversity on earth, but few studies have been conducted to characterize insect communities in tropical forests. One major limitation is the lack of consensus on methods for insect collection. Deciding which insect trap to use is an important consideration for ecologists and entomologists, yet to date few study has presented a quantitative comparison of the results generated by standardized methods in tropical insect communities. Here, we investigate the relative performance of two flight interception traps, the windowpane trap, and the more widely used malaise trap, across a broad gradient of lowland forest types in French Guiana. The windowpane trap consistently collected significantly more Coleoptera and Blattaria than the malaise trap, which proved most effective for Diptera, Hymenoptera, and Hemiptera. Orthoptera and Lepidoptera were not well represented using either trap, suggesting the need for additional methods such as bait traps and light traps. Our results of contrasting trap performance among insect orders underscore the need for complementary trapping strategies using multiple methods for community surveys in tropical forests.  
  Address Department of Biology, University of Florida, Gainesville, FL 32611, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 13132989 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 4 October 2012; Source: Scopus; doi: 10.3897/zookeys.216.3332; Language of Original Document: English; Correspondence Address: Lamarre, G. P. A.; UniversitéAntilles-Guyane, UMR Ecologie des Forèts de Guyane, Campus agronomique de Kourou. Avenue de France, 97310 Kourou, French Guiana; email: Greg.Lamarre@ecofog.gf Approved no  
  Call Number EcoFoG @ webmaster @ Serial 438  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: