toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Fromin, N.; Porte, B.; Lensi, R.; Hamelin, J.; Domenach, A.-M.; Buatois, B.; Roggy, J.-C. url  openurl
  Title Spatial variability of the functional stability of microbial respiration process: A microcosm study using tropical forest soil Type Journal Article
  Year 2012 Publication Journal of Soils and Sediments Abbreviated Journal J. Soils Sed.  
  Volume 12 Issue 7 Pages 1030-1039  
  Keywords (down) Disturbance; Diversity-stability relationship; Microbial diversity; Substrate-induced respiration  
  Abstract Purpose: Understanding the ability of ecosystem processes to resist to and to recover from disturbances is critical to sustainable land use. However, the spatial variability of the stability has rarely been addressed. Here, we investigated the functional stability of a soil microbial process for 24 soils collected from adjacent locations from a 0. 3 ha tropical rainforest plot in Paracou, French Guiana. Materials and methods: The 24 locations were characterized regarding soil chemical and biological (microbial diversity) parameters and forest structure. The corresponding soils were submitted to an experimental transient heat disturbance during a microcosm experiment. The response of the respiration process was followed using substrate-induced respiration (SIR). Results and discussion: The response of soil SIR to heat disturbance varied widely between samples. The variability of the SIR response increased just after the disturbance, and a global rather homogeneous decrease in SIR rates was observed 15 and 30 days after. The stability of SIR in response to heat disturbance could not be related to either the genetic or the metabolic diversity of the microbial community. The initial level of SIR before the disturbance was the soil variable that best correlated with the impact of the disturbance: the soil locations with the highest initial SIR rates were the most affected 15 and 30 days after the heat disturbance. Conclusions: Such a heterogeneous response suggests that the response of soil processes to a disturbance will be difficult to assess from only local-scale analyses and highlights the need for spatial explicitness in understanding biogeochemical processes. © 2012 Springer-Verlag.  
  Address UMR EcoFoG, BP 709, 97387 Kourou, French Guiana  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 14390108 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 30 July 2012; Source: Scopus; doi: 10.1007/s11368-012-0528-7; Language of Original Document: English; Correspondence Address: Fromin, N.; CEFE, CNRS UMR 5175, 1919 Route de Mende, 34293 Montpellier cedex 5, France; email: nathalie.fromin@cefe.cnrs.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 415  
Permanent link to this record
 

 
Author Rivalland, C.; Madhkour, S.; Salvin, P.; Robert, F. url  openurl
  Title Electrochemical and microbial monitoring of multi-generational electroactive biofilms formed from mangrove sediment Type Journal Article
  Year 2015 Publication Bioelectrochemistry Abbreviated Journal Bioelectrochemistry  
  Volume 106 Issue Pages 125-132  
  Keywords (down) Dissimilarity; High-throughput sequencing; Mes; Microbial diversity; Syntrophism  
  Abstract Electroactive biofilms were formed from French Guiana mangrove sediments for the analysis of bacterial communities' composition. The electrochemical monitoring of three biofilm generations revealed that the bacterial selection occurring at the anode, supposedly leading microbial electrochemical systems (MESs) to be more efficient, was not the only parameter to be taken into account so as to get the best electrical performance (maximum current density). Indeed, first biofilm generations produced a stable current density reaching about 18A/m2 while second and third generations produced current densities of about 10A/m2. MES bacterial consortia were characterized thanks to molecular biology techniques: DGGE and MiSeq® sequencing (Illumina®). High-throughput sequencing data statistical analysis confirmed preliminary DGGE data analysis, showing strong similarities between electroactive biofilms of second and third generations, but also revealing both selection and stabilization of the biofilms. © 2015 Elsevier B.V.  
  Address Laboratoire des Matériaux et Molécules en Milieu Amazonien, UAG-UMR EcoFoG, 2091 route de Baduel, Campus TrouBiran, Cayenne, Guyane Française, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 11 September 2015 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 622  
Permanent link to this record
 

 
Author Leroy, C.; Carrias, J.-F.; Céréghino, R.; Corbara, B. url  doi
openurl 
  Title The contribution of microorganisms and metazoans to mineral nutrition in bromeliads Type Journal Article
  Year 2016 Publication Journal of Plant Ecology Abbreviated Journal Journal of Plant Ecology  
  Volume 9 Issue 3 Pages 241-255  
  Keywords (down) digestive mutualism; insect-assisted nutrients; leaf δ15N; multiple N sources; myrmecotrophy  
  Abstract Aims One critical challenge for plants is to maintain an adequate nutrient supply under fluctuating environmental conditions. This is particularly true for epiphytic species that have limited or no access to the pedosphere and often live in harsh climates. Bromeliads have evolved key innovations such as epiphytism, water-absorbing leaf trichomes, tank habit and Crassulacean acid metabolism (CAM) photosynthesis that enable them to survive under various environmental conditions. Bromeliads encompass diverse ecological types that live on different substrates (they can be terrestrial, epilithic or epiphytic) and vary in their ability to retain water (they can be tank-forming or tankless) and photosynthetic pathway (i.e. C3 or CAM). In this review, we outline the nutritional modes and specializations that enable bromeliads to thrive in a wide range of nutrient-poor (mostly nitrogen-depleted) environments. Important Findings Bromeliads have evolved a great diversity of morphologies and functional adaptations leading to the existence of numerous nutritional modes. Focusing on species that have absorptive foliar trichomes, we review evidence that bromeliads have evolved multi-faceted nutritional strategies to respond to fluctuations in the supply of natural nitrogen (N). These plants have developed mutualistic associations with many different and functionally diverse terrestrial and aquatic microorganisms and metazoans that contribute substantially to their mineral nutrition and, thus, their fitness and survival. Bacterial and fungal microbiota-assisted N provisioning, protocarnivory, digestive mutualisms and myrmecotrophic pathways are the main strategies used by bromeliads to acquire nitrogen. The combination of different nutritional pathways in bromeliads represents an important adaptation enabling them to exploit nutrient-poor habitats. Nonetheless, as has been shown for several other vascular plants, multiple partners are involved in nutrient acquisition indicating that there have been convergent adaptations to nutrient scarcity. Finally, we point out some gaps in the current knowledge of bromeliad nutrition that offer fascinating research opportunities. © The Author 2015. Published by Oxford University Press on behalf of the Institute of Botany, Chinese Academy of Sciences and the Botanical Society of China.  
  Address CNRS, EcoLab, 118 Route de Narbonne, Toulouse, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 28 June 2016 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 683  
Permanent link to this record
 

 
Author Bourguignon, T.; Sobotnik, J.; Lepoint, G.; Martin, J.M.; Hardy, O.J.; Dejean, A.; Roisin, Y. openurl 
  Title Feeding ecology and phylogenetic structure of a complex neotropical termite assemblage, revealed by nitrogen stable isotope ratios Type Journal Article
  Year 2011 Publication Ecological Entomology Abbreviated Journal Ecol. Entomol.  
  Volume 36 Issue 2 Pages 261-269  
  Keywords (down) Diet diversity; feeding groups; Isoptera; phylogenetic autocorrelation  
  Abstract 2. Nitrogen stable isotopes (hereafter delta 15N) were used to place termites from French Guiana rainforests along a wood-soil decomposition gradient, to test (i) whether feeding group assignation based on morphological characters was accurate and actually represented diet specialisation thresholds, and (ii) to what extent the dietary specialization of species is explained by phylogeny (phylogenetic autocorrelation). 3. delta 15N values vary over a range of 13 parts per thousand, suggesting that diet diversification contributes to the high species diversity in French Guiana. delta 15N values span a similar interval in all Termitidae subfamilies. Ranges of different subfamilies broadly overlap, although each of them diversified preferentially on one side of the wood-soil decomposition gradient. Congeneric species share similar feeding habits, whereas distant species tend to feed on distinct substrates. 4. Feeding groups did not completely match stable isotope data: there was no discontinuity between Groups III and IV, and no correlation between anatomical criteria used to distinguish these groups and delta 15N values. Nor was there any consistent difference in delta 15N values between wood feeders of the families Rhinotermitidae (Group I) and Termitidae (Group II). We also suggest that species feeding outside the wood-soil gradient should be distinguished for their peculiar feeding requirements.  
  Address [Sobotnik, Jan] Acad Sci Czech Republic, Inst Organ Chem & Biochem, Res Team Infochem, CR-16610 Prague 6, Czech Republic, Email: sobotnik@uochb.cas.cz  
  Corporate Author Thesis  
  Publisher Wiley-Blackwell Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0307-6946 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000288456300016 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 302  
Permanent link to this record
 

 
Author Houadria, M.; Blüthgen, N.; Salas-Lopez, A.; Schmitt, M.-I.; Arndt, J.; Schneider, E.; Orivel, J.; Menzel, F. url  openurl
  Title The relation between circadian asynchrony, functional redundancy, and trophic performance in tropical ant communities Type Journal Article
  Year 2016 Publication Ecology Abbreviated Journal Ecology  
  Volume 97 Issue 1 Pages 225-235  
  Keywords (down) Diel turnover; Ecosystem functioning; Functional diversity; Multifunctional redundancy; Sampling effect; Temporal partitioning; Tropical rain forests  
  Abstract The diversity-stability relationship has been under intense scrutiny for the past decades, and temporal asynchrony is recognized as an important aspect of ecosystem stability. In contrast to relatively well- studied interannual and seasonal asynchrony, few studies investigate the role of circadian cycles for ecosystem stability. Here, we studied multifunctional redundancy of diurnal and nocturnal ant communities in four tropical rain forest sites. We analyzed how it was influenced by species richness, functional performance, and circadian asynchrony. In two neotropical sites, species richness and functional redundancy were lower at night. In contrast, these parameters did not differ in the two paleotropical sites we studied. Circadian asynchrony between species was pronounced in the neotropical sites, and increased circadian functional redundancy. In general, species richness positively affected functional redundancy, but the effect size depended on the temporal and spatial breadth of the species with highest functional performance. Our analysis shows that high levels of trophic performance were only reached through the presence of such high- performing species, but not by even contributions of multiple, less- efficient species. Thus, these species can increase current functional performance, but reduce overall functional redundancy. Our study highlights that diurnal and nocturnal ecosystem properties of the very same habitat can markedly differ in terms of species richness and functional redundancy. Consequently, like the need to study multiple ecosystem functions, multiple periods of the circadian cycle need to be assessed in order to fully understand the diversity- stability relationship in an ecosystem. © 2016 by the Ecological Society of America.  
  Address CNRS, UMR Ecologie des Forêts de Guyane, BP 709, Kourou Cedex, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 17 February 2016 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 664  
Permanent link to this record
 

 
Author Latouche-Halle, C.; Ramboer, A.; Bandou, E.; Caron, H.; Kremer, A. openurl 
  Title Long-distance pollen flow and tolerance to selfing in a neotropical tree species Type Journal Article
  Year 2004 Publication Molecular Ecology Abbreviated Journal Mol. Ecol.  
  Volume 13 Issue 5 Pages 1055-1064  
  Keywords (down) Dicorynia guianensis; microsatellites; outcrossing rate; pollen flow; reproductive success; tropical tree  
  Abstract Outcrossing rates, pollen dispersal and male mating success were assessed in Dicorynia guianensis Amshoff, a neotropical tree endemic to the Guiana shield. All adult trees within a continuous area of 40 ha (n = 157) were mapped, and were genotyped with six microsatellite loci. In addition, progenies were genotyped from 22 mature trees. At the population level, the species was mostly outcrossing (t(m) = 0.89) but there was marked variation among individuals. One tree exhibited mixed mating, confirming earlier results obtained with isozymes that D. guianensis can tolerate selfing. A Bayesian extension of the fractional paternity method was used for paternity analysis, and was compared with the neighbourhood method used widely for forest trees. Both methods indicated that pollen dispersal was only weakly related to distance between trees within the study area, and that the majority (62%) of pollen came from outside the study stand. Using maximum likelihood, male potential population size was estimated to be 1119, corresponding to a neighbourhood size of 560 hectares. Male mating success was, however, related to the diameter of the stem and to flowering intensity assessed visually. The mating behaviour of D. guianensis is a combination of long-distance pollen flow and occasional selfing. The species can still reproduce when it is extremely rare, either by selfing or by dispersing pollen at long distances. These results, together with the observation that male mating success was correlated with the size of the trees, could be implemented in management procedures aiming at regenerating the species.  
  Address INRA, UMR Ecol Forets Guyane, F-97387 Kourou, France, Email: caron@pierroton.mra.fr  
  Corporate Author Thesis  
  Publisher BLACKWELL PUBLISHING LTD Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-1083 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000221016300007 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 237  
Permanent link to this record
 

 
Author Roggy, J.C.; Nicolini, E.; Imbert, P.; Caraglio, Y.; Bosc, A.; Heuret, P. openurl 
  Title Links between tree structure and functional leaf traits in the tropical forest tree Dicorynia guianensis Amshoff (Caesalpiniaceae) Type Journal Article
  Year 2005 Publication Annals of Forest Science Abbreviated Journal Ann. For. Sci.  
  Volume 62 Issue 6 Pages 553-564  
  Keywords (down) Dicorynia guianensis; leaf structure; functional leaf traits; plasticity; tree structure  
  Abstract This study looked at the interactive effects of tree architectural stage of development (ASD) and light availability on different plant traits (growth parameters, leaf morpho-anatomy and photosynthetic capacities) in the tropical species Dicorynia guianensis. A qualitative architectural analysis was used to categorize tree individuals sampled along a natural light gradient. The results show that some traits could have an ASD-dependence at the whole plant and leaf level without control of light. The changes observed relate to vigour thresholds the plant has to reach to shift from one ASD to another (i.e., the number of nodes and the internodes length per Growth Unit). Light conditions do not modify these thresholds but may modify the time they are crossed. Tree height was found strongly modulated by light conditions; hence, at a similar height, individuals may belong to different ASD. At the functional level, a decrease in N-m, and A(maxm) was observed with increasing light availability, while N-a increased and A(maxa) remained unaffected. An ASD effect was also observed on Amaxa and LMA but not on Amaxm. These results demonstrated a weak ability of photosynthetic plasticity in response to light conditions, and that variations of leaf photosynthetic variables according to ASD can be explained by modifications in leaf nitrogen and LMA. Questions on the reliability of a height-based sampling strategy for evaluating the phenotypic plasticity of trees in relation to light conditions are raised.  
  Address INRA, Ecol Forets Guyane, ENGREF, UMR CIRAD, F-97387 Kourou, Guyane Francais, France, Email: roggy.j@cirad.fr  
  Corporate Author Thesis  
  Publisher EDP SCIENCES S A Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1286-4560 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000232084400009 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 229  
Permanent link to this record
 

 
Author Vanbellingen, Q.P.; Fu, T.; Bich, C.; Amusant, N.; Stien, D.; Della-Negra, S.; Touboul, D.; Brunelle, A. doi  openurl
  Title Mapping Dicorynia guianensis Amsh. wood constituents by submicron resolution cluster-TOF-SIMS imaging Type Journal Article
  Year 2016 Publication Journal of Mass Spectrometry Abbreviated Journal Journal of Mass Spectrometry  
  Volume 51 Issue 6 Pages 412-423  
  Keywords (down) Dicorynia guianensis; heartwood formation; mass spectrometry imaging; Tof-Sims; tropical wood; tryptamine  
  Abstract The preparation of tropical wood surface sections for time-of-flight secondary ion mass spectrometry imaging is described, and the use of delayed extraction of secondary ions and its interest for the analysis of vegetal surface are shown. The method has been applied to the study by time-of-flight secondary ion mass spectrometry imaging with a resolution of less than one micron of a tropical wood species, Dicorynia guianensis, which is one of the most exploited wood in French Guiana for its durable heartwood. The heartwood of this species exhibits an economical importance, but its production is not controlled in forestry. Results show an increase of tryptamine from the transition zone and a concomitant decrease of inorganic ions and starch fragment ions. These experiments lead to a better understanding of the heartwood formation and the origin of the natural durability of D. guianensis. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.  
  Address Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 28 June 2016 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 684  
Permanent link to this record
 

 
Author Lehnebach, R.; Morel, H.; Bossu, J.; Le Moguédec, G.; Amusant, N.; Beauchene, J.; Nicolini, E. url  doi
openurl 
  Title Heartwood/sapwood profile and the tradeoff between trunk and crown increment in a natural forest: the case study of a tropical tree (Dicorynia guianensis Amsh., Fabaceae) Type Journal Article
  Year 2017 Publication Trees – Structure and Function Abbreviated Journal Trees – Structure and Function  
  Volume 31 Issue 1 Pages 199-214  
  Keywords (down) Dicorynia guianensis; Growth allocation; Heartwood; Ontogeny; Sapwood; Tropical tree  
  Abstract Key message: Sapwood area and the radial growth rate of the trunk follow the same pattern at breast height, with an initial increase and subsequent constant value, resulting from the increasing growth allocation toward the crown rather than tree decline. Heartwood area and heartwood volume in the trunk increase more rapidly after this shift occurs. Abstract: Sapwood (SW) and heartwood (HW) are two functionally distinct classifications of wood in perennial stems for which quantities can vary greatly in tropical trees. Numerous positive correlations have been found between the radial growth rate (RGR) and SW quantity; however, variations in the SW/HW quantities have not been studied in light of the ontogenetic variation of RGR. Wood core sampling, intensive measurements of tree structure (number of branches, stem volumes), and radial growth monitoring were performed on an abundant and highly exploited tree species in French Guiana (Dicorynia guianensis) to investigate the relationship between RGR, SW/HW quantity, tree structure, and their variations on the course of a tree’s ontogeny. SW area and RGR followed the same pattern of variation throughout tree development, both increasing first and reaching a steady state after 50 cm DBH (diameter at breast height). After this value, we observed a strong increase in both the HW area and HW volume increment, concomitant with a more rapid increase in crown volume. The stabilization of RGR for trees with DBH > 50 cm was related not to a tree’s decline but rather to an increasing wood allocation to the crown, confirming that RGR at breast height is a poor indicator of whole-tree growth for bigger individuals. We also confirmed that HW formation is an ontogenetic process managing SW quantity that is continuously and increasingly produced within the crown as the tree grows. This study highlights the effect of growth-mediated ontogenetic changes on the localization of water and carbohydrate storage within a tree, resulting from SW and HW dynamics throughout tree ontogeny. © 2016, Springer-Verlag Berlin Heidelberg.  
  Address CIRAD, UMR EcoFoG, BP701, Kourou Cedex, French Guiana  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 19 February 2017 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 733  
Permanent link to this record
 

 
Author Latouche-Hallé, C.; Ramboer, A.; Bandou, E.; Caron, H.; Kremer, A. url  openurl
  Title Nuclear and chloroplast genetic structure indicate fine-scale spatial dynamics in a neotropical tree population Type Journal Article
  Year 2003 Publication Heredity Abbreviated Journal Heredity  
  Volume 91 Issue 2 Pages 181-190  
  Keywords (down) Dicorynia guianensis; Gene flow; Genetic differentiation; Microsatellites; Spatial analysis; Tropical tree; gene flow; genetic structure; population genetics; spatial analysis; tree; tropical forest; Cell Nucleus; Chloroplasts; Cohort Studies; DNA, Plant; French Guiana; Genetic Markers; Pollen; Population Dynamics; Seeds; Trees; Variation (Genetics); French Guiana; Dicorynia guianensis; Embryophyta  
  Abstract Dicorynia guianensis is a canopy tree, endemic to the tropical rain forest of French Guiana. We compared generational and spatial genetic structure for maternally and biparentally inherited markers in two cohorts (adult and seedling) in order to infer processes shaping the distribution of genetic diversity. The study was conducted on a 40 ha study plot located at Paracou near Kourou, where 172 adults trees and 375 saplings were sampled. Aggregation of trees was therefore suggested at different distances, ranging from 100 to 400 m. There was a strong link between demographic and genetic spatial structures at small distances (less than 100 m) that is likely to be the consequence of restricted seed dispersal. Genetic differentiation was more pronounced between spatial aggregates than between cohorts. Despite the spatial differentiation, the species was able to maintain high levels of diversity for maternal genomes, suggesting rapid turnover of aggregates. Spatial autocorrelation was larger for chloroplast than nuclear markers indicating a strong asymmetry between pollen and seed flow. Fixation indices indicated a lower heterozygote deficiency for the adults, maybe because of gradual elimination of selfed trees. Genetic relatedness at lower distances was higher in adult trees than in saplings, as a result of generation overlapping in the adult cohort. Overall, our results confirm earlier biological knowledge about the dispersion mechanisms of the species, and lead to an enhanced role of spatial processes in the dynamics of genetic diversity of D. guianensis.  
  Address INRA Lab. Genet. Arbres Forestiers, BP45, 33611 Gazinet Cedex, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018067x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Cited By (since 1996): 34; Export Date: 22 October 2011; Source: Scopus; Coden: Hdtya; doi: 10.1038/sj.hdy.6800296; PubMed ID: 12886285; Language of Original Document: English; Correspondence Address: Caron, H.; INRA Lab. Genet. Arbres Forestiers, BP45, 33611 Gazinet Cedex, France; email: caron@pierroton.inra.fr; Chemicals/CAS: DNA, Plant; Genetic Markers Approved no  
  Call Number EcoFoG @ webmaster @ Serial 358  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: