toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Yamamoto, H.; Almeras, T. doi  openurl
  Title A mathematical verification of the reinforced-matrix hypothesis using the Mori-Tanaka theory Type Journal Article
  Year 2007 Publication Journal of Wood Science Abbreviated Journal J. Wood Sci.  
  Volume 53 Issue 6 Pages 505-509  
  Keywords (up) Engineering  
  Abstract This article presents a theoretical verification of the reinforced-matrix hypothesis derived from tensor equations, σ W = σ f + σ m and ε W = ε f = ε m (Wood Sci Technol 32:171–182, 1998; Wood Sci Technol 33:311–325, 1999; J Biomech Eng 124:432–440, 2002), using classical Mori-Tanaka theory on the micromechanics of fiber-reinforced materials (Acta Metall 21:571–574, 1973; Micromechanics — dislcation and inclusions (in Japanese), pp 141–147, 1976). The Mori-Tanaka theory was applied to a small fragment of the cell wall undergoing changes in its physical state, such as those arising from sorption of moisture, maturation of wall components, or action of an external force, to obtain ⟨σ A⟩D = ϕ·⟨σ F⟩I + (1−ϕ)·⟨σ M⟩D−I. When the constitutive equation of each constituent material was applied to the equation ⟨σ A⟩D = ϕ·⟨σ F⟩I + (1−ϕ)·⟨σ M⟩D−I, the equations σ W = σ f + σ m and ε W = ε f = ε m were derived to lend support to the concept that two main phases, the reinforcing cellulose microfibril and the lignin-hemicellulose matrix, coexist in the same domain. The constitutive equations for the cell wall fragment were obtained without recourse to additional parameters such as Eshelby’s tensor S and Hill’s averaged concentration tensors AF and AM. In our previous articles, the coexistence of two main phases and σ W = σ f + σ m and ε W = ε f =ε m had been taken as our starting point to formulate the behavior of wood fiber with multilayered cell walls. The present article provides a rational explanation for both concepts.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Japan Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-0211 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 215  
Permanent link to this record
 

 
Author Hartke, J.; Sprenger, P.P.; Sahm, J.; Winterberg, H.; Orivel, J.; Baur, H.; Beuerle, T.; Schmitt, T.; Feldmeyer, B.; Menzel, F. pdf  url
doi  openurl
  Title Cuticular hydrocarbons as potential mediators of cryptic species divergence in a mutualistic ant association Type Journal Article
  Year 2019 Publication Ecology and Evolution Abbreviated Journal  
  Volume 9 Issue 16 Pages 9160-9176  
  Keywords (up) environmental association; integrative taxonomy; niche differentiation; population structure; sexual selection; speciation  
  Abstract Upon advances in sequencing techniques, more and more morphologically identical organisms are identified as cryptic species. Often, mutualistic interactions are proposed as drivers of diversification. Species of the neotropical parabiotic ant association between Crematogaster levior and Camponotus femoratus are known for highly diverse cuticular hydrocarbon (CHC) profiles, which in insects serve as desiccation barrier but also as communication cues. In the present study, we investigated the association of the ants’ CHC profiles with genotypes and morphological traits, and discovered cryptic species pairs in both genera. To assess putative niche differentiation between the cryptic species, we conducted an environmental association study that included various climate variables, canopy cover, and mutualistic plant species. Although mostly sympatric, the two Camponotus species seem to prefer different climate niches. However in the two Crematogaster species, we could not detect any differences in niche preference. The strong differentiation in the CHC profiles may thus suggest a possible role during speciation itself either by inducing assortative mating or by reinforcing sexual selection after the speciation event. We did not detect any further niche differences in the environmental parameters tested. Thus, it remains open how the cryptic species avoid competitive exclusion, with scope for further investigations. © 2019 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.  
  Address Department of Evolutionary Animal Ecology, University of Bayreuth, Bayreuth, Germany  
  Corporate Author Thesis  
  Publisher John Wiley and Sons Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20457758 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 2 September 2019; Correspondence Address: Hartke, J.; Senckenberg Biodiversity and Climate Research CentreGermany; email: Juliane.Hartke@senckenberg.de; Funding details: Leibniz-Gemeinschaft; Funding details: Agence Nationale de la Recherche, Not Available; Funding details: Deutsche Forschungsgemeinschaft, DFG, ME 3842/5‐1; Funding text 1: We thank Philippe Cerdan and Aurelie Dourdain for research permissions in the Hydreco Lab Petit Saut and the Paracou Research Station, respectively. Similarly, we thank Patrick Châtelet, Philippe Gaucher, and Dorothée Deslignes for permission to sample in the Les Nouragues Reserve. Further on, we thank Heike Stypa for supporting us in preparing the chemical samples. We thank Aidin Niamir for his helpful advice regarding climate data analysis. Financial support for this study was provided by the German Science Foundation (DFG) as a grant to Barbara Feldmeyer (FE 1333/7‐1), Thomas Schmitt (SCHM 2645/7‐1), and Florian Menzel (ME 3842/5‐1) and a grant managed by the French Agence Nationale de la Recherche (CEBA, ref. ANR‐10‐LABX‐25‐01) to Jérôme Orivel. The publication of this article was funded by the Open Access Fund of the Leibniz Association. Finally, we thank Markus Pfenninger and two anonymous reviewers for providing helpful comments on an earlier version of this manuscript.; References: Adler, P.B., HilleRisLambers, J., Levine, J.M., A niche for neutrality (2007) Ecology Letters, 10, pp. 95-104. , https://doi.org/10.1111/j.1461-0248.2006.00996.x; Aitchison, J., The statistical analysis of compositional data (1982) Journal of the Royal Statistical Society: Series B (Methodological), 44, pp. 139-177. , https://doi.org/10.1111/j.2517-6161.1982.tb01195.x; Andersson, M., Sexual selection, natural selection and quality advertisement (1982) Biological Journal of the Linnean Society, 17, pp. 375-393. , https://doi.org/10.1111/j.1095-8312.1982.tb02028.x; Bartlett, J.W., Frost, C., Reliability, repeatability and reproducibility: Analysis of measurement errors in continuous variables (2008) Ultrasound in Obstetrics and Gynecology, 31, pp. 466-475. , https://doi.org/10.1002/uog.5256; Baur, H., Kranz-Baltensperger, Y., Cruaud, A., Rasplus, J.Y., Timokhov, A.V., Gokhman, V.E., Morphometric analysis and taxonomic revision of Anisopteromalus Ruschka (Hymenoptera: Chalcidoidea: Pteromalidae) – An integrative approach (2014) Systematic Entomology, 39, pp. 691-709; Baur, H., Leuenberger, C., Analysis of ratios in multivariate morphometry (2011) Systematic Biology, 60, pp. 813-825. , https://doi.org/10.1093/sysbio/syr061; Bell, G., The distribution of abundance in neutral communities (2017) The American Naturalist, 155, p. 606. , https://doi.org/10.2307/3078983; Bickford, D., Lohman, D.J., Sodhi, N.S., Ng, P.K.L., Meier, R., Winker, K., Das, I., Cryptic species as a window on diversity and conservation (2007) Trends in Ecology & Evolution, 22, pp. 148-155. , https://doi.org/10.1016/j.tree.2006.11.004; Blomberg, S.P., Garland, T., Ives, A.R., Testing for phylogenetic signal in comparative data: Behavioral traits are more labile (2003) Evolution, 57, pp. 717-745; Blomquist, G.J., Structure and analysis of insect hydrocarbons (2010) Insect hydrocarbons: Biology, biochemistry, and chemical ecology, pp. 19-34. , G. J. Blomquist, A.-G. Bagnères, (Eds.),, New York, NY, Cambridge University Press; Blomquist, G.J., Bagnères, A.-G., Introduction: History and overview of insect hydrocarbons (2010) Insect hydrocarbons: Biology, biochemistry, and chemical ecology, pp. 3-18. , G. J. Blomquist, A.-G. Bagnères, (Eds.),, New York, NY, Cambridge University Press; Bolaños, L.M., Rosenblueth, M., Manrique de Lara, A., Migueles-Lozano, A., Gil-Aguillón, C., Mateo-Estrada, V., Martínez-Romero, E., Cophylogenetic analysis suggests cospeciation between the Scorpion Mycoplasma Clade symbionts and their hosts (2019) PLoS ONE, 14. , https://doi.org/10.1371/journal.pone.0209588; Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.-H., Xie, D., Drummond, A.J., BEAST 2: A Software Platform for Bayesian Evolutionary Analysis (2014) PLoS Computational Biology, 10. , https://doi.org/10.1371/journal.pcbi.1003537; Boyle, J.H., Martins, D., Musili, P.M., Pierce, N.E., Population genomics and demographic sampling of the ant-plant Vachellia drepanolobium and its symbiotic ants from sites across its range in East Africa (2018) Frontiers in Ecology and Evolution, 7, p. 206. , https://doi.org/10.3389/fevo.2019.00206; Brückner, A., Heethoff, M., A chemo-ecologists' practical guide to compositional data analysis (2017) Chemoecology, 27, pp. 33-46. , https://doi.org/10.1007/s00049-016-0227-8; Carlson, D.A., Bernier, U.R., Sutton, B.D., Elution patterns from capillary GC for methyl-branched alkanes (1998) Journal of Chemical Ecology, 24, pp. 1845-1865; Chomicki, G., Ward, P.S., Renner, S.S., Macroevolutionary assembly of ant/plant symbioses: Pseudomyrmex ants and their ant-housing plants in the Neotropics (2015) Proceedings of the Royal Society B: Biological Sciences, 282, p. 20152200; Chung, H., Carroll, S.B., Wax, sex and the origin of species: Dual roles of insect cuticular hydrocarbons in adaptation and mating (2015) BioEssays, 37, pp. 822-830. , https://doi.org/10.1002/bies.201500014; Chung, H., Loehlin, D.W., Dufour, H.D., Vaccaro, K., Millar, J.G., Carroll, S.B., A single gene affects both ecological divergence and mate choice in Drosophila (2014) Science, 343 (6175), pp. 1148-1151; Cruaud, A., Rønsted, N., Chantarasuwan, B., Chou, L.S., Clement, W.L., Couloux, A., Savolainen, V., An extreme case of plant – insect codiversification: Figs and fig-pollinating wasps (2012) Systematic Biology, 61, pp. 1029-1047. , https://doi.org/10.1093/sysbio/sys068; Csösz, S., Wagner, H.C., Bozsó, M., Seifert, B., Arthofer, W., Schlick-Steiner, B.C., Pénzes, Z., Tetramorium indocile Santschi, 1927 stat. rev. is the proposed scientific name for Tetramorium sp. C sensu Schlick-Steiner et al. (2006) based on combined molecular and morphological evidence (Hymenoptera: Formicidae) (2014) Zoologischer Anzeiger, 253, pp. 469-481; Darwell, C.T., Cook, J.M., Cryptic diversity in a fig wasp community — morphologically differentiated species are sympatric but cryptic species are parapatric (2017) Molecular Ecology, 26, pp. 937-950. , https://doi.org/10.1111/mec.13985; Davidson, D.W., Ecological studies of Neotropical ant gardens (1988) Ecology, 69, pp. 1138-1152. , https://doi.org/10.2307/1941268; De Queiroz, K., Species concepts and species delimitation (2007) Systematic Biology, 56, pp. 879-886. , https://doi.org/10.1080/10635150701701083; de Vienne, D.M., Refrégier, G., López-Villavicencio, M., Tellier, A., Hood, M.E., Giraud, T., Cospeciation vs host-shift speciation: Methods for testing, evidence from natural associations and relation to coevolution (2013) New Phytologist, 198, pp. 347-385. , https://doi.org/10.1111/nph.12150; Degnan, P.H., Lazarus, A.B., Brock, C.D., Wernegreen, J.J., Host – symbiont stability and fast evolutionary rates in an ant – Bacterium Association: Cospeciation of Camponotus species and their endosymbionts, Candidatus Blochmannia (2004) Systematic Biology, 53, pp. 95-110. , https://doi.org/10.1080/10635150490264842; Dieckmann, U., Doebeli, M., On the origin of species by sympatric speciation (1999) Nature, 400, pp. 354-357. , https://doi.org/10.1038/22521; Doebeli, M., Dieckmann, U., Evolutionary branching and sympatric speciation caused by different types of ecological interactions (2000) The American Naturalist, 156, pp. S77-S101. , https://doi.org/10.1086/303417; Emery, V.J., Tsutsui, N.D., Recognition in a social symbiosis: Chemical phenotypes and nestmate recognition behaviors of Neotropical parabiotic ants (2013) PLoS ONE, 8. , https://doi.org/10.1371/journal.pone.0056492; Excoffier, L., Lischer, H.E.L., Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows (2010) Molecular Ecology Resources, 10, pp. 564-567; García-Robledo, C., Kuprewicz, E.K., Staines, C.L., Erwin, T.L., Kress, W.J., Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction (2015) Proceedings of the National Academy of Sciences of the United States of America, 113, pp. 680-685. , https://doi.org/10.1073/pnas.1507681113; Gause, G.F., Experimental studies on the struggle for existence I. Mixed population of two species of yeast (1932) Journal of Experimental Biology, 9, pp. 389-402; Gebiola, M., Monti, M.M., Johnson, R.C., Woolley, J.B., Hunter, M.S., Giorgini, M., Pedata, P.A., A revision of the Encarsia pergandiella species complex (Hymenoptera: Aphelinidae) shows cryptic diversity in parasitoids of whitefly pests (2017) Systematic Entomology, 42, pp. 31-59; Grundt, H.H., Kjølner, S., Borgen, L., Rieseberg, L.H., Brochmann, C., High biological species diversity in the arctic flora (2006) Proceedings of the National Academy of Sciences of the United States of America, 103, pp. 972-975. , https://doi.org/10.1073/pnas.0510270103; Guimarães, P.R., Jordano, P., Thompson, J.N., Evolution and coevolution in mutualistic networks (2011) Ecology Letters, 14, pp. 877-885. , https://doi.org/10.1111/j.1461-0248.2011.01649.x; Gustafson, K.D., Kensinger, B.J., Bolek, M.G., Luttbeg, B., Distinct snail (Physa) morphotypes from different habitats converge in shell shape and size under common garden conditions (2014) Evolutionary Ecology Research, 16, pp. 77-89; Han, M.V., Zmasek, C.M., PhyloXML: XML for evolutionary biology and comparative genomics (2009) BMC Bioinformatics, 10, p. 356. , https://doi.org/10.1186/1471-2105-10-356; Hardin, G., The competitive exclusion principle (1960) Science, 131, pp. 1292-1297; Heethoff, M., Laumann, M., Weigmann, G., Raspotnig, G., Integrative taxonomy: Combining chemical, morphological and molecular data for delineation of the parthenogenetic Trhypochthonius tectorum complex (Acari, Oribatida, Trhypochthoniidae) (2011) Frontiers in Zoology, 8, p. 2; Hoeksema, J.D., Bruna, E.M., Pursuing the big questions about interspecific mutualism: A review of theoretical approaches (2000) Oecologia, 125, pp. 321-330. , https://doi.org/10.1007/s004420000496; Hoffmann, A.A., Turelli, M., Simmons, G.M., Unidirectional incompatibility between populations of Drosophila simulans (1986) Evolution, 40, pp. 692-701; Hosokawa, T., Kikuchi, Y., Nikoh, N., Shimada, M., Fukatsu, T., Strict Host-Symbiont cospeciation and reductive genome evolution in insect gut bacteria (2006) PLoS Biology, 4. , https://doi.org/10.1371/journal.pbio.0040337; Hubbell, S.P., (2001) The unified neutral theory of biodiversity and biogeography, , Princeton, NJ, Princeton University Press; Hubbell, S.P., Neutral theory in community ecology and the hypothesis of functional equivalence (2005) Functional Ecology, 19, pp. 166-172. , https://doi.org/10.1111/j.0269-8463.2005.00965.x; Hudson, E.J., Price, T.D., Pervasive reinforcement and the role of sexual selection in biological speciation (2014) Journal of Heredity, 105, pp. 821-833. , https://doi.org/10.1093/jhered/esu041; Janz, N., Nyblom, K., Nylin, S., Evolutionary dynamics of host-plant specialization: A case study of the Tribe Nymohalini (2001) Evolution, 55, pp. 783-796; Jousselin, E., van Noort, S., Berry, V., Rasplus, J.-Y., Rønsted, N., Erasmus, J.C., Greeff, J.M., One fig to bind them all: Host conservatism in a fig wasp community unraveled by cospeciation analyses among pollinating and nonpollinating fig wasps (2008) Evolution, 62, pp. 1777-1797. , https://doi.org/10.1111/j.1558-5646.2008.00406.x; Kamilar, J.M., Cooper, N., Phylogenetic singal in primate behaviour, ecolog anf life history (2013) Philosophical Transactions of the Royal Society of London. Series B, 368, p. 20120341; Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Kessler, M., Climatologies at high resolution for the earth's land surface areas (2017) Scientific Data, 4, p. 170122. , https://doi.org/10.1038/sdata.2017.122; Kawakita, A., Takimura, A., Terachi, T., Sota, T., Kato, M., Cospeciation analysis of an obligate pollination mutualism: Have Glochidon trees (Euphorbiaceae) and pollinating Epicephala moths (Gracillaridae) diverified in parallel? (2004) Evolution, 58, pp. 2201-2214; Klingenberg, C.P., Size, shape, and form: Concepts of allometry in geometric morphometrics (2016) Development Genes and Evolution, 226, pp. 113-137. , https://doi.org/10.1007/s00427-016-0539-2; Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms (2018) Molecular Biology and Evolution, 35, pp. 1547-1549. , https://doi.org/10.1093/molbev/msy096; Leavitt, D.H., Starrett, J., Westphal, M.F., Hedin, M., Multilocus sequence data reveal dozens of putative cryptic species in a radiation of endemic Californian mygalomorph spiders (Araneae, Mygalomorphae, Nemesiidae) (2015) Molecular Phylogenetics and Evolution, 91, pp. 56-67. , https://doi.org/10.1016/j.ympev.2015.05.016; Leigh, J.W., Bryant, D., POPART: Full-feature software for haplotype network construction (2015) Methods in Ecology and Evolution, 6, pp. 1110-1116; Liaw, A., Wiener, M., Classification and regression by randomForest (2002) R News, 2, pp. 18-22; Martin, S.J., Helanterä, H., Drijfhout, F.P., Evolution of species-specific cuticular hydrocarbon patterns in Formica ants (2008) Biological Journal of the Linnean Society, 95, pp. 131-140. , https://doi.org/10.1111/j.1095-8312.2008.01038.x; Menzel, F., Blaimer, B.B., Schmitt, T., How do cuticular hydrocarbons evolve? Physiological constraints and climatic and biotic selection pressures act on a complex functional trait (2017) Proceedings of the Royal Society B-Biological Sciences, 284, p. 20161727. , https://doi.org/10.1098/rspb.2016.1727; Menzel, F., Linsenmair, K.E., Blüthgen, N., Selective interspecific tolerance in tropical Crematogaster-Camponotus associations (2008) Animal Behavior, 75, pp. 837-846. , https://doi.org/10.1016/j.anbehav.2007.07.005; Menzel, F., Orivel, J., Kaltenpoth, M., Schmitt, T., What makes you a potential partner? Insights from convergently evolved ant-ant symbioses (2014) Chemoecology, 24, pp. 105-119. , https://doi.org/10.1007/s00049-014-0149-2; Menzel, F., Schmitt, T., Blaimer, B.B., The evolution of a complex trait: Cuticular hydrocarbons in ants evolve independent from phylogenetic constraints (2017) Journal of Evolutionary Biology, 30, pp. 1372-1385. , https://doi.org/10.1111/jeb.13115; Montero-Pau, J., Gomez, A., Muñoz, J., Application of an inexpensive and high-throughput genomic DNA extraction method for the molecular ecology of zooplanktonic diapausing eggs (2008) Limnology and Oceanography: Methods, 6, pp. 218-222. , https://doi.org/10.4319/lom.2008.6.218; Nosil, P., (2012) Ecological speciation, , Oxford, UK, Oxford University Press; Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Wagner, H., (2016) vegan: Community Ecology Package, , https://cran.r-project.org/web/packages/vegan/; Orivel, J., Errard, C., Dejean, A., Ant gardens: Interspecific recognition in parabiotic ant species (1997) Behavioral Ecology and Sociobiology, 40, pp. 87-93. , https://doi.org/10.1007/s002650050319; Paradis, E., Pegas: An R package for population genetics with an integrated-modular approach (2010) Bioinformatics, 26, pp. 419-420. , https://doi.org/10.1093/bioinformatics/btp696; Quek, S.-P., Davies, S.J., Itino, T., Pierce, N.E., Codiversification in an ant-plant mutualism: Stem texture and the evolution of host use in Crematogaster (Formicidae: Myrmicinae) Inhabitants of Macaranga (Euphorbiaceae) (2004) Evolution, 58, pp. 554-570; (2018) R: A language and environment for statistical computing, , Vienna, Austria, R Foundation for Statistical Computing; Rambaut, A., Drummond, A.J., Xie, D., Baele, G., Suchard, M.A., Posterior summarization in Bayesian Phylogenetics using Tracer 1.7 (2018) Systematic Biology, 67, pp. 901-904. , https://doi.org/10.1093/sysbio/syy032; Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Huelsenbeck, J.P., MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space (2012) Systematic Biology, 61, pp. 539-542; Schlenke, T.A., Begun, D.J., Strong selective sweep associated with a transposon insertion in Drosophila simulans (2004) Proceedings of the National Academy of Sciences of the United States of America, 101, pp. 1626-1631. , https://doi.org/10.1073/pnas.0303793101; Schuler, H., Köppler, K., Daxböck-Horvath, S., Rasool, B., Krumböck, S., Schwarz, D., Riegler, M., The hitchhiker's guide to Europe: The infection dynamics of an ongoing Wolbachia invasion and mitochondrial selective sweep in Rhagoletis cerasi (2016) Molecular Ecology, 25, pp. 1595-1609; Schultz, T.R., Solomon, S.A., Mueller, U.G., Villesen, P., Boomsma, J.J., Adams, R.M.M., Norden, B., Cryptic speciation in the fungus-growing ants Cyphomyrmex longiscapus Weber and Cyphomyrmex muelleri Schultz and Solomon, new species (Formicidae, Attini) (2002) Insectes Sociaux, 49, pp. 331-343. , https://doi.org/10.1007/PL00012657; Schwander, T., Arbuthnott, D., Gries, R., Gries, G., Nosil, P., Crespi, B.J., Hydrocarbon divergence and reproductive isolation in Timema stick insects (2013) BMC Evolutionary Biology, 13, p. 151. , https://doi.org/10.1186/1471-2148-13-151; Scriven, J.J., Whitehorn, P.R., Goulson, D., Tinsley, M.C., Niche partitioning in a sympatric cryptic species complex (2016) Ecology and Evolution, 6, pp. 1328-1339. , https://doi.org/10.1002/ece3.1965; Seifert, B., Removal of allometric variance improves species separation in multi-character discriminant functions when species are strongly allometric and exposes diagnostic characters (2008) Myrmecological News, 11, pp. 91-105; Servedio, M.R., Van Doorn, G.S., Kopp, M., Frame, A.M., Nosil, P., Magic traits in speciation: “magic” but not rare? (2011) Trends in Ecology & Evolution, 26, pp. 389-397; Smadja, C., Butlin, R.K., On the scent of speciation: The chemosensory system and its role in premating isolation (2009) Heredity, 102, pp. 77-97. , https://doi.org/10.1038/hdy.2008.55; Steiner, F.M., Csöcs, S., Markó, B., Gamisch, A., Rinnhofer, L., Folterbauer, C., Schlick-Steiner, B.C., Molecular phylogenetics and evolution turning one into five: Integrative taxonomy uncovers complex evolution of cryptic species in the harvester ant Messor “structor” (2018) Molecular Phylogenetics and Evolution, 127, pp. 387-404. , https://doi.org/10.1016/j.ympev.2018.04.005; Stork, N.E., How many species of insects and other terrestrial arthropods are there on earth? (2018) Annual Review of Ecology Evolution and Systematics, 63, pp. 31-45; Ströher, P.R., Li, C., Pie, M.R., Exon-primed intron-crossing (EPIC) markers as a tool for ant phylogeography (2013) Revista Brasileira de Entomologia, 57, pp. 427-430. , https://doi.org/10.1590/S0085-56262013005000039; Struck, T.H., Feder, J.L., Bendiksby, M., Birkeland, S., Cerca, J., Gusarov, V.I., Dimitrov, D., Finding evolutionary processes hidden in cryptic species (2018) Trends in Ecology & Evolution, 33, pp. 153-163. , https://doi.org/10.1016/j.tree.2017.11.007; Tajima, F., Statistical method for testing the neutral mutation hypothesis by DNA polymorphism (1989) Genetics, 123, pp. 585-595; Tamura, K., Nei, M., Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees (1993) Molecular Biology and Evolution, 10, pp. 512-526; Thibert-Plante, X., Gavrilets, S., Evolution of mate choice and the so-called magic traits in ecological speciation (2013) Ecology Letters, 16, pp. 1004-1013. , https://doi.org/10.1111/ele.12131; Thomas, M.L., Simmons, L.W., Sexual dimorphism in cuticular hydrocarbons of the Australian field cricket Teleogryllus oceanicus (Orthoptera: Gryllidae) (2008) Journal of Insect Physiology, 54, pp. 1081-1089. , https://doi.org/10.1016/j.jinsphys.2008.04.012; Thompson, J.D., Higgins, D.G., Gibson, T.J., CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice (1994) Nucleic Acids Research, 22, pp. 4673-4680. , https://doi.org/10.1093/nar/22.22.4673; Thompson, J.N., Schwind, C., Guimarães, P.R., Friberg, M., Diversification through multitrait evolution in a coevolving interaction (2013) Proceedings of the National Academy of Sciences of the United States of America, 110, pp. 11487-11492. , https://doi.org/10.1073/pnas.1307451110; Türke, M., Fiala, B., Linsenmair, K.E., Feldhaar, H., Estimation of dispersal distances of the obligately plant-associated ant Crematogaster decamera (2010) Ecological Entomology, 35, pp. 662-671. , https://doi.org/10.1111/j.1365-2311.2010.01222.x; van Wilgenburg, E., Symonds, M.R.E., Elgar, M.A., Evolution of cuticular hydrocarbon diversity in ants (2011) Journal of Evolutionary Biology, 24, pp. 1188-1198. , https://doi.org/10.1111/j.1420-9101.2011.02248.x; van Zweden, J.S., d'Ettorre, P., Nestmate recognition in social insects and the role of hydrocarbons (2010) Insect hydrocarbons: Biology, biochemistry, and chemical ecology, pp. 222-243. , G. J. Blomquist, A.-G. Bagnères, (Eds.),, New York, NY, Cambridge University Press; Vantaux, A., Dejean, A., Dor, A., Orivel, J., Parasitism versus mutualism in the ant-garden parabiosis between Camponotus femoratus and Crematogaster levior (2007) Insectes Sociaux, 54, pp. 95-99. , https://doi.org/10.1007/s00040-007-0914-0; Violle, C., Nemergut, D.R., Pu, Z., Jiang, L., Phylogenetic limiting similarity and competitive exclusion (2011) Ecology Letters, 14, pp. 782-787. , https://doi.org/10.1111/j.1461-0248.2011.01644.x; Vodă, R., Dapporto, L., Dincă, V., Vila, R., Why do cryptic species tend not to co-occur? A case study on two cryptic pairs of butterflies (2015) PLoS ONE, 10. , https://doi.org/10.1371/journal.pone.0117802; Wickham, H., (2016) ggplot2: Elegant graphics for data analysis, , 2nd ed., New York, NY, Springer-Verlag; Wolak, M.E., Fairbairn, D.J., Paulsen, Y.R., Guidelines for estimating repeatability (2012) Methods in Ecology and Evolution, 3, pp. 129-137. , https://doi.org/10.1111/j.2041-210X.2011.00125.x Approved no  
  Call Number EcoFoG @ webmaster @ Serial 881  
Permanent link to this record
 

 
Author Céréghino, R.; Corbara, B.; Leroy, C.; Carrias, J.-F. doi  openurl
  Title Ecological determinants of community structure across the trophic levels of freshwater food webs: a test using bromeliad phytotelmata Type Journal Article
  Year 2020 Publication Hydrobiologia Abbreviated Journal Hydrobiologia  
  Volume 847 Issue 2 Pages 391-402  
  Keywords (up) Environmental filtering; Functional group; Neotropical; Niche; Trophic interactions; alga; assembly rule; bacterium; community structure; ecological modeling; environmental conditions; food web; freshwater ecosystem; functional group; Neotropic Ecozone; niche; protozoan; taxonomy; trophic interaction; trophic level; algae; Invertebrata; Protozoa  
  Abstract Understanding the relative importance of habitat and biotic drivers on community assembly across food web components is an important step towards predicting the consequences of environmental changes. Because documenting entire food webs is often impractical, this question has been only partially investigated. Here, we partitioned variation in species assemblages of the major components of tank bromeliad food webs (bacteria, algae, protozoans, detritivorous and predatory invertebrates) into habitat and biotic determinants and examined the influence of habitat variables and predator or prey abundance on all taxonomic assemblages. Ecological determinism of assemblage structure ranged from weak in bacteria (< 10% of the explained variance) to strong in predatory invertebrates (90%). Habitat features and canopy openness significantly influenced species assemblages; however, prey or predator density had far and away the most significant structuring effects. If biotic forces are at least as important as the abiotic forces while the importance of stochasticity declines towards upper trophic levels, then trophic levels could respond differently to natural or anthropogenic disturbance and to shifts in species distributions. The effects of such differential responses on food web reconfiguration, however, remain to be elucidated. © 2019, Springer Nature Switzerland AG.  
  Address UMR EcoFoG (AgroParisTech, CIRAD, CNRS, INRA, Université de Guyane, Université des Antilles), Kourou, 97310, France  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00188158 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 996  
Permanent link to this record
 

 
Author Duplais, C.; Papon, N.; Courdavault, V. doi  openurl
  Title Tracking the Origin and Evolution of Plant Metabolites Type Journal Article
  Year 2020 Publication Trends in Plant Science Abbreviated Journal Trends Plant Sci.  
  Volume 25 Issue 12 Pages 1182-1184  
  Keywords (up) enzyme evolution; iridoids; Lamiaceae; nepetalactone; plant metabolites  
  Abstract Iridoids are monoterpenes that are produced by various plants as chemical defense molecules. Lichman et al. recently described the timeline of molecular events that underpin the re-emergence of iridoid biosynthesis in an independent lineage of aromatic plants (catnip). This study represents a benchmark for studying enzyme and metabolite evolution in different clades across the tree of life. © 2020 Elsevier Ltd  
  Address Biomolécules et Biotechnologies Végétales (BBV) EA 2106, Université de Tours, Tours, France  
  Corporate Author Thesis  
  Publisher Elsevier Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 13601385 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 937  
Permanent link to this record
 

 
Author Colin, F.; Sanjines, A.; Fortin, M.; Bontemps, J.-D.; Nicolini, E. url  openurl
  Title Fagus sylvatica trunk epicormics in relation to primary and secondary growth Type Journal Article
  Year 2012 Publication Annals of Botany Abbreviated Journal Ann. Bot.  
  Volume 110 Issue 5 Pages 995-1005  
  Keywords (up) epicormics; European beech; Fagus sylvatica; mixed ZIP models; ontogeny; radial growth; sprouting  
  Abstract Background and AimsEuropean beech epicormics have received far less attention than epicormics of other species, especially sessile oak. However, previous work on beech has demonstrated that there is a negative effect of radial growth on trunk sprouting, while more recent investigations on sessile oak proved a strong positive influence of the presence of epicormics. The aims of this study were, first, to make a general quantification of the epicormics present along beech stems and, secondly, to test the effects of both radial growth and epicormic frequency on sprouting. MethodsIn order to test the effect of radial growth, ten forked individuals were sampled, with a dominant and a dominated fork of almost equal length for every individual. To test the effects of primary growth and epicormic frequency, on the last 17 annual shoots of each fork arm, the number of axillary buds, shoot length, ring width profiles, epicormic shoots and other epicormics were carefully recorded. Key ResultsThe distribution of annual shoot length, radial growth profiles and parallel frequencies of all epicormics are presented. The latter frequencies were parallel to the annual shoot lengths, nearly equivalent for both arms of each tree, and radial growth profiles included very narrow rings in the lowest annual shoots and even missing rings in the dominated arms alone. The location of the latent buds and the epicormics was mainly at branch base, while epicormic shoots, bud clusters and spheroblasts were present mainly in the lowest annual shoots investigated. Using a zero-inflated mixed model, sprouting was shown to depend positively on epicormic frequency and negatively on radial growth. ConclusionsSupport for a trade-off between cambial activity and sprouting is put forward. Sprouting mainly depends on the frequency of epicormics. Between-and within-tree variability of the epicormic composition in a given species may thus have fundamental and applied implications. © 2012 The Author.  
  Address Equipe Architecture et Développement des Plantes, CIRAD, Campus Agronomique de Silvolab, BP 701, 97387 Kourou cedex, Guyane, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 03057364 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 8 October 2012; Source: Scopus; Coden: Anboa; doi: 10.1093/aob/mcs178; Language of Original Document: English; Correspondence Address: Colin, F.; INRA, Centre de Nancy, UMR 1092 INRA-AgroParisTech LERFoB, 54280 Champenoux, France; email: colin@nancy.inra.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 439  
Permanent link to this record
 

 
Author Dejean, A.; Rodríguez-Pérez, H.; Carpenter, J.M.; Azémar, F.; Corbara, B. url  doi
openurl 
  Title The predatory behavior of the Neotropical social wasp Polybia rejecta Type Journal Article
  Year 2017 Publication Behavioural Processes Abbreviated Journal  
  Volume 140 Issue Pages 161-168  
  Keywords (up) Epiponine wasps; Polistinae; Predation; Prey selection; Recruitment; Vespidae  
  Abstract Abstract We experimentally studied the predatory behavior of Polybia rejecta (Vespidae, Polistinae, Epiponini) towards 2–88 mm-long insects attracted to a UV light trap. Foragers, which began to hunt at 6:30, selected 4–14 mm-long prey insects. Prey detection by sight by hovering wasps was confirmed using decoys. After the wasps landed and walked along a sinuous path, prey were detected by contact or from a distance (1–3 cm). This was followed by seizure, stinging (contrarily to most other known cases), prey manipulation and retrieval. Prey that flew off might be caught in flight. The prey load, representing 30.7% of a forager’s weight, was optimized by capturing up to six small prey or two medium-sized prey successively (both of which might be consumed in situ). The foragers cut off the wings of larger prey or cut them into two pieces and returned to gather the second piece. The handling time increased exponentially with the weight of the prey. Partial loading (i.e., retrieving a load much inferior to the maximum possible) was likely related to social facilitation, a form of nest-based recruitment that was demonstrated through the experimental elimination of local enhancement by removing foragers (both mechanisms favor the exploitation of favorable patches).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0376-6357 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 751  
Permanent link to this record
 

 
Author Lamarre, G.P.A.; Mendoza, I.; Fine, P.V.A.; Baraloto, C. url  openurl
  Title Leaf synchrony and insect herbivory among tropical tree habitat specialists Type Journal Article
  Year 2014 Publication Plant Ecology Abbreviated Journal Plant Ecol.  
  Volume 215 Issue 2 Pages 209-220  
  Keywords (up) Escape; French Guiana; Herbivorous insects; Phenology; Resource availability; Time lag  
  Abstract Growth defense tradeoff theory predicts that plants in low-resource habitats invest more energy in defense mechanisms against natural enemies than growth, whereas plants in high-resource habitats can afford higher leaf loss rates. A less-studied defense against herbivores involves the synchrony of leaf production, which can be an effective defense strategy if leaf biomass production exceeds the capacity of consumption by insects. The aim of this study was to determine whether leaf synchrony varied across habitats with different available resources and whether insects were able to track young leaf production among tree habitat specialists in a tropical forest of French Guiana. We predicted that high-resource habitats would exhibit more synchrony in leaf production due to the low cost and investment to replace leaf tissue. We also expected closer patterns of leaf synchrony and herbivory within related species, assuming that they shared herbivores. We simultaneously monitored leaf production and herbivory rates of five pairs of tree species, each composed of a specialist of terra firme or white-sand forests within the same lineage. Our prediction was not supported by the strong interaction of habitat and lineage for leaf synchrony within individuals of the same species; although habitat specialists differed in leaf synchrony within four of five lineages, the direction of the effect was variable. All species showed short time lags for the correlation between leaf production and herbivory, suggesting that insects are tightly tracking leaf production, especially for the most synchronous species. Leaf synchrony may provide an important escape defense against herbivores, and its expression appears to be constrained by both evolutionary history and environmental factors. © 2014 Springer Science+Business Media Dordrecht.  
  Address Department of Biology, University of Florida, Gainesville, FL, 32611, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 13850237 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 24 February 2014; Source: Scopus; Coden: Plecf; Language of Original Document: English; Correspondence Address: Lamarre, G. P. A.; Université Antilles Guyane, UMR Ecologie des Forêts de Guyane, 97310 Kourou, French Guiana; email: greglamarre973@gmail.com; Funding Details: DEB-0743103/0743800, NSF, National Science Foundation Approved no  
  Call Number EcoFoG @ webmaster @ Serial 530  
Permanent link to this record
 

 
Author Porth, I.; Scotti-Saintagne, C.; Barreneche, T.; Kremer, A.; Burg, K. url  openurl
  Title Linkage mapping of osmotic stress induced genes of oak Type Journal Article
  Year 2005 Publication Tree Genetics and Genomes Abbreviated Journal Tree Genet. Genomes  
  Volume 1 Issue 1 Pages 31-40  
  Keywords (up) Est; Linkage map; Oak; Osmotic stress; Quercus ssp.; Fagaceae; Quercus; Quercus petraea; Quercus robur  
  Abstract Water stress affecting long-lived trees is an important challenge in forestry. Due to global climate change, forest trees will be threatened by extreme conditions like flooding or drought. It is necessary to understand differences in stress tolerance within certain species and to investigate putative relations on genomic level. In this study, osmotic stress induced genes of Quercus ssp. were positioned on two genetic linkage maps of oak. An intra-specific cross 3P*A4 of Quercus robur consisting of 88 offspring and an inter-specific cross 11P*QS29 of Q. robur and Q. petraea comprising 72 full-sibs were analyzed for the inheritance of 14 loci represented by 34 individual single nucleotide polymorphisms. Seven genes in the intra-cross, as well as other six genes in the inter-cross could be mapped and one gene could not be localised due to the severe distortion of the segregation. The collection of expressed sequences involved ribosomal proteins, members of the oxylase/oxygenase gene family, betaine aldehyde dehydrogenase, Dc3 promoter-binding factor, a putative member of the nodulin family, glutathione-S-transferase and proteins with unknown functions. In the inter-cross, two linked markers exhibited 89% deficiency of heterozygosity. Thirteen genes were positioned on ten different oak chromosomes and can serve as orthologous markers in comparative mapping studies within Fagaceae. © Springer-Verlag 2005.  
  Address INRA BIOGECO, 69 Route d'Arcachon, 33612 Cestas, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 16142942 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Cited By (since 1996): 9; Export Date: 22 October 2011; Source: Scopus; doi: 10.1007/s11295-005-0005-1; Language of Original Document: English; Correspondence Address: Burg, K.; Division of Biogenetics and Natural Resources, Austrian Research Center Seibersdorf, 2444 Seibersdorf, Austria; email: kornel.burg@arcs.ac.at Approved no  
  Call Number EcoFoG @ webmaster @ Serial 357  
Permanent link to this record
 

 
Author Clair, B.; Alteyrac, J.; Gronvold, A.; Espejo, J.; Chanson, B.; Alméras, T. pdf  url
openurl 
  Title Patterns of longitudinal and tangential maturation stresses in Eucalyptus nitens plantation trees Type Journal Article
  Year 2013 Publication Annals of Forest Science Abbreviated Journal Ann. Forest Sci.  
  Volume 70 Issue 8 Pages 801-811  
  Keywords (up) Eucalyptus nitens; G-layer; Longitudinal maturation stress; Maturation strain; Tangential maturation stress; Tension wood  
  Abstract Context: Tree orientation is controlled by asymmetric mechanical stresses set during wood maturation. The magnitude of maturation stress differs between longitudinal and tangential directions, and between normal and tension woods. Aims: We aimed at evaluating patterns of maturation stress on eucalypt plantation trees and their relation with growth, with a focus on tangential stress evaluation. Methods: Released maturation strains along longitudinal and tangential directions were measured around the circumference of 29 Eucalyptus nitens trees, including both straight and leaning trees. Results: Most trees produced asymmetric patterns of longitudinal maturation strain, but more than half of the maturation strain variability occurred between trees. Many trees produced high longitudinal tensile stress all around their circumference. High longitudinal tensile stress was not systematically associated with the presence of gelatinous layer. The average magnitude of released longitudinal maturation strain was found negatively correlated to the growth rate. A methodology is proposed to ensure reliable evaluation of released maturation strain in both longitudinal and tangential directions. Tangential strain evaluated with this method was lower than previously reported. Conclusion: The stress was always tensile along the longitudinal direction and compressive along the tangential direction, and their respective magnitude was positively correlated. This correlation does not result from a Poisson effect but may be related to the mechanism of maturation stress generation. © 2013 # The Author(s) 2013. This article is published with open access at Springerlink.com.  
  Address Facultad de Ciencias Forestales, Universidad de Concepcion, Ciudad Universitaria, Concepcion, Chile  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 12864560 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 16 December 2013; Source: Scopus; Coden: Afosf; doi: 10.1007/s13595-013-0318-4; Language of Original Document: English; Correspondence Address: Clair, B.; CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), Campus Agronomique, BP 701, 97387 Kourou, French Guiana; email: bruno.clair@univ-montp2.fr; Funding Details: ANR-12-BS09-0004, French National Research Agency; References: Alméras, T., Fournier, M., Biomechanical design and long-term stability of trees: Morphological and wood traits involved in the balance between weight increase and the gravitropic reaction (2009) J Theor Biol, 256, pp. 370-381. , 19013473 10.1016/j.jtbi.2008.10.011; Alméras, T., Thibaut, A., Gril, J., Effect of circumferential heterogeneity of wood maturation strain, modulus of elasticity and radial growth on the regulation of stem orientation in trees (2005) Trees, 19, pp. 457-467. , 10.1007/s00468-005-0407-6; Archer, R.R., (1986) Growth Stresses and Strains in Trees, , Springer Verlag Berlin/Heidelberg/New York; Archer, R.R., On the origin of growth stresses in trees. Part 1: Micro mechanics of the developing cambial cell wall. Wood Sci (1987) Technol., 21, pp. 139-154; Baillères, H., Chanson, B., Fournier, M., Tollier, M.T., Monties, B., Structure, composition chimique et retraits de maturation du bois chez les clones d' Eucalyptus (1995) Ann Sci for, 52, pp. 157-172. , 10.1051/forest:19950206; Bergman, R., Cai, Z., Carll, C.G., Clausen, C.A., Ma, D., Falk, R.H., Frihart, C.R., Star, (2010) Wood Handbook: Wood As An Engineering Material, , U.S. Department of Agriculture, Forest Service, Forest Products Laboratory., Washington D.C. (USA)/Madison, WI, (USA); Biechele, T., Nutto, L., Becker, G., Growth strain in Eucalyptus nitens at different stages of development (2009) Silva Fennica, 43, pp. 669-679; Bonser, R.H.C., Ennos, A.R., Measurement of prestrain in trees:implications for the determination of safety factors (1998) Funct Ecol, 12, pp. 971-974. , 10.1046/j.1365-2435.1998.00279.x; Boyd, J.D., Tree growth stresses – Part I: Growth stress evaluation (1950) Austr. J. Sci. Res. Series B, Biological Sciences, 3, pp. 270-293; Boyd, J.D., Tree growth stresses – Part II: The development of shakes and other visual failure in timber (1950) Aust. J. App. Sci., 1, pp. 296-312; Clair, B., Alméras, T., Sugiyama, J., Compression stress in opposite wood of angiosperms: Observations in chestnut, mani and poplar (2006) Ann for Sci, 63, pp. 507-510. , 10.1051/forest:2006032; Clair, B., Ruelle, J., Beauchêne, J., Prevost, M.F., Fournier, M., Tension wood and opposite wood in 21 tropical rain forest species. 1. Occurence and efficiency of G-layer (2006) IAWA J, 27, pp. 329-338; Clair, B., Ruelle, J., Thibaut, B., Relationship between growth stress, mechano-physical properties and proportion of fibre with gelatinous layer in Chestnut (Castanea sativa Mill.) (2003) Holzforschung, 57, pp. 189-195. , 1:CAS:528:DC%2BD3sXjs1ensr8%3D; Coutand, C., Fournier, M., Moulia, B., The gravitropic response of poplar trunks: Key roles of prestressed wood regulation and the relative kinetics of cambial growth versus wood maturation (2007) Plant Physiol, 144, pp. 1166-1180. , 17468227 10.1104/pp.106.088153 1:CAS:528:DC%2BD2sXmvValtbg%3D; Fang, C.-H., Clair, B., Gril, J., Liu, S.-Q., Growth stresses are highly controlled by the amount of G-layer in poplar tension wood (2008) IAWA J, 29, pp. 237-246. , 10.1163/22941932-90000183; Ferrand, J.C., Study of growth stresses. 1. Measurement method on increment cores (1982) Ann Sci for, 39, pp. 109-142. , 10.1051/forest:19820201 (in French with English summary); Ferrand, J.C., Study of growth stresses. 2. Variations in the forest of growth stresses of beech (Fagus sylvatica) (1982) Ann Sci for, 39, pp. 187-218. , 10.1051/forest:19820301 (in French with English summary); Ferrand, J.C., Study of growth stresses. 3. Eucalyptus dedegatensis and Eucalyptus nitens – Influence of sylviculture and site index (1982) Ann Sci for, 39, pp. 355-378. , 10.1051/forest:19820402 (in French with English summary); Fournier, M., Chanson, B., Thibaut, B., Guitard, D., Measurement of residual growth strains at the stem surface. Observations of different species (1994) Ann. For. Sci., 51, pp. 249-266. , 10.1051/forest:19940305 (in French with English summary); Gerard, J., Bailleres, H., Fournier, M., Thibaut, B., Wood quality in plantation Eucalyptus – A study of variation in three reference properties (1995) Bois For. Trop, 245, pp. 101-110. , (in French with English summary); Giordano, G., Curro, P., Ghisi, G., Contribution of internal stresses in wood of Eucalyptus (1969) Wood Sci Technol, 3, pp. 1-13. , 10.1007/BF00349980; Jacobs, M.R., The fibre tension of woody stems, with special reference to the genus Eucalyptus (1938) Bull. Com. For. Bur, 22, p. 37; Jacobs, M.R., (1945) The Growth Stresses of Woody Stems, , Commonwealth Forestry Bureau Canberra, Australia; Jullien, D., Laghdir, A., Gril, J., Modelling log-end cracks due to growth stresses: Calculation of the elastic energy release rate (2003) Holzforschung, 57, pp. 407-414. , 10.1515/HF.2003.060 1:CAS:528:DC%2BD3sXntFeksrk%3D; Jullien, D., Gril, J., Growth strain assessment at the periphery of small-diameter trees using the two-grooves method: Influence of operating parameters estimated by numerical simulations (2008) Wood Sci. Technol., 42, pp. 551-565. , 10.1007/s00226-008-0202-9 1:CAS:528:DC%2BD1cXhtVOiu7jL; Jullien, D., Widmann, R., Loup, C., Thibaut, B., Relationship between tree morphology and growth stress in mature European beech stands (2013) Ann for Sci, 68, pp. 681-688; Kubler, H., Studies on growth stresses in trees – Part I: The origin of growth stresses and the stresses in transverse direction (1959) Holz Als Roh- Und Werkstoff, 17, pp. 1-9. , 10.1007/BF02608827; Kubler, H., Growth stresses in trees and related wood properties (1987) For. Abst., 48, pp. 131-189; Moulia, B., Coutand, C., Lenne, C., Posture control and skeletal mechanical acclimation in terrestrial plants: Implications for mechanical modelling of plant architecture (2006) Am J Bot, 93, pp. 1477-1489. , 21642095 10.3732/ajb.93.10.1477; Nicholson, J., A rapid method for estimating the longitudinal growth stress in logs (1971) Wood Sci. Technol., 5, pp. 40-48. , 10.1007/BF00363119; Nicholson, J.E., Growth stress differences in Eucalypts (1973) For Sci, 19, pp. 169-174; Okuyama, T., Sasaki, Y., Kikata, Y., Kawai, N., The seasonal change in growth stress in the tree trunk (1981) Mokuzai Gakkaishi, 27, pp. 350-355; Okuyama, T., Yamamoto, H., Yoshida, M., Hattori, Y., Archer, R.R., Growth stresses in tension wood: Role of microfibrils and lignification (1994) Ann for Sci, 51, pp. 291-300. , 10.1051/forest:19940308; Onaka, F., Studies on compression and tension wood (traduction) (1949) Wood Res, 1, pp. 1-88. , traduction n.p; Sasaki, Y., Okuyama, T., Kikata, Y., The evolution process of the growth stress in the tree. The surface stresses on the tree (1978) Mokuzai Gakkaishi, 24, pp. 140-157. , (in Japenese with English summary); Scurfield, G., Histochemistry of reaction wood cell walls in two species of Eucalyptus and in Tristania Conferta R (1972) Br. Aust. J. Bot., 20, pp. 9-26. , 10.1071/BT9720009 1:CAS:528:DyaE38XltFWksLk%3D; Yamamoto, H., Generation mechanism of growth stresses in wood cell walls: Roles of lignin deposition and cellulose microfibril during cell wall maturation (1998) Wood Sci. Technol., 32, pp. 171-182. , 1:CAS:528:DyaK1cXktlKhsb0%3D; Yamamoto, H., Abe, K., Arakawa, Y., Okuyama, T., Gril, J., Role of the gelatinous layer on the origin of the physical properties of the tension wood of Acer sieboldianum (2005) Wood Sci. Technol., 51, pp. 222-233. , 10.1007/s10086-004-0639-x 1:CAS:528:DC%2BD2MXpslOqurs%3D; Yamamoto, H., Yoshida, M., Okuyama, T., Growth stress controls negative gravitropism in woody plant stems (2002) Planta, 216, pp. 280-292. , 12447542 10.1007/s00425-002-0846-x 1:CAS:528:DC%2BD3sXktFOiug%3D%3D; Yang, J.L., Waugh, G., Growth stress, its measurement and effects (2001) Autr. For., 64, pp. 127-135; Yoshida, M., Ohta, H., Yamamoto, H., Okuyama, T., Tensile growth stress and lignin distribution in the cell walls of yellow poplar, Liriodendron tulipifera Linn (2002) Trees, 16, pp. 457-464. , 10.1007/s00468-002-0186-2 1:CAS:528:DC%2BD38XosFWltro%3D; Yoshida, M., Okuyama, T., Techniques for measuring growth stress (2002) Holzforschung, 56, pp. 461-467. , 10.1515/HF.2002.071 1:CAS:528:DC%2BD38XovVaru7c%3D Approved no  
  Call Number EcoFoG @ webmaster @ Serial 519  
Permanent link to this record
 

 
Author Grossiord, C.; Christoffersen, B.; Alonso-Rodríguez, A.M.; Anderson-Teixeira, K.; Asbjornsen, H.; Aparecido, L.M.T.; Carter Berry, Z.; Baraloto, C.; Bonal, D.; Borrego, I.; Burban, B.; Chambers, J.Q.; Christianson, D.S.; Detto, M.; Faybishenko, B.; Fontes, C.G.; Fortunel, C.; Gimenez, B.O.; Jardine, K.J.; Kueppers, L.; Miller, G.R.; Moore, G.W.; Negron-Juarez, R.; Stahl, C.; Swenson, N.G.; Trotsiuk, V.; Varadharajan, C.; Warren, J.M.; Wolfe, B.T.; Wei, L.; Wood, T.E.; Xu, C.; McDowell, N.G. url  doi
openurl 
  Title Precipitation mediates sap flux sensitivity to evaporative demand in the neotropics Type Journal Article
  Year 2019 Publication Oecologia Abbreviated Journal Oecologia  
  Volume 191 Issue 3 Pages 519-530  
  Keywords (up) Evapotranspiration; Plant functional traits; Transpiration; Vapor pressure deficit; drought; evapotranspiration; flux measurement; hydrological cycle; Neotropical Region; precipitation (chemistry); precipitation (climatology); tree; tropical forest; tropical region; vapor pressure; water; drought; evapotranspiration; forest; tree; vapor pressure; Droughts; Forests; Plant Transpiration; Trees; Vapor Pressure; Water  
  Abstract Transpiration in humid tropical forests modulates the global water cycle and is a key driver of climate regulation. Yet, our understanding of how tropical trees regulate sap flux in response to climate variability remains elusive. With a progressively warming climate, atmospheric evaporative demand [i.e., vapor pressure deficit (VPD)] will be increasingly important for plant functioning, becoming the major control of plant water use in the twenty-first century. Using measurements in 34 tree species at seven sites across a precipitation gradient in the neotropics, we determined how the maximum sap flux velocity (vmax) and the VPD threshold at which vmax is reached (VPDmax) vary with precipitation regime [mean annual precipitation (MAP); seasonal drought intensity (PDRY)] and two functional traits related to foliar and wood economics spectra [leaf mass per area (LMA); wood specific gravity (WSG)]. We show that, even though vmax is highly variable within sites, it follows a negative trend in response to increasing MAP and PDRY across sites. LMA and WSG exerted little effect on vmax and VPDmax, suggesting that these widely used functional traits provide limited explanatory power of dynamic plant responses to environmental variation within hyper-diverse forests. This study demonstrates that long-term precipitation plays an important role in the sap flux response of humid tropical forests to VPD. Our findings suggest that under higher evaporative demand, trees growing in wetter environments in humid tropical regions may be subjected to reduced water exchange with the atmosphere relative to trees growing in drier climates. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.  
  Address Earth Systems Science Division, Pacific Northwest National Laboratory, Richland, WA, United States  
  Corporate Author Thesis  
  Publisher Springer Verlag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00298549 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 904  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: