toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Baraloto, C.; Morneau, F.; Bonal, D.; Blanc, L.; Ferry, B. openurl 
  Title Seasonal water stress tolerance and habitat associations within four neotropical tree genera Type Journal Article
  Year 2007 Publication Ecology Abbreviated Journal Ecology  
  Volume 88 Issue 2 Pages 478-489  
  Keywords (up) drought tolerance; French Guiana; photosynthetic capacity; phylogenetically independent contrast; relative growth rate; seasonally flooded forest; specific leaf area; torus translation method; tropical forest  
  Abstract We investigated the relationship between habitat association and physiological performance in four congeneric species pairs exhibiting contrasting distributions between seasonally flooded and terra firme habitats in lowland tropical rain forests of French Guiana, including Virola and Iryanthera ( Myristicaceae), Symphonia ( Clusiaceae), and Eperua (Caesalpiniaceae). We analyzed 10-year data sets of mapped and measured saplings ( stems >= 150 cm in height and < 10 cm diameter at breast height [dbh]) and trees ( stems >= 10 cm dbh) across 37.5 ha of permanent plots covering a 300-ha zone, within which seasonally flooded areas ( where the water table never descends below 1 m) have been mapped. Additionally, we tested the response of growth, survival, and leaf functional traits of these species to drought and flood stress in a controlled experiment. We tested for habitat preference using a modi. cation of the torus translation method. Strong contrasting associations of the species pairs of Iryanthera, Virola, and Symphonia were observed at the sapling stage, and these associations strengthened for the tree stage. Neither species of Eperua was significantly associated with flooded habitats at the sapling stage, but E. falcata was significantly and positively associated with flooded forests at the tree stage, and trees of E. grandiflora were found almost exclusively in nonflooded habitats. Differential performance provided limited explanatory support for the observed habitat associations, with only congeners of Iryanthera exhibiting divergent sapling survival and tree growth. Seedlings of species associated with flooded forest tended to have higher photosynthetic capacity than their congeners at field capacity. In addition, they tended to have the largest reductions in leaf gas exchange and growth rate in response to experimental drought stress and the least reductions in response to experimental inundation. The corroboration of habitat association with differences in functional traits and, to a lesser extent, measures of performance provides an explanation for the regional coexistence of these species pairs. We suggest that specialization to seasonally flooded habitats may explain patterns of adaptive radiation in many tropical tree genera and thereby provide a substantial contribution to regional tree diversity.  
  Address INRA, UMR Ecol Forets Guyane, Kourou, French Guiana, Email: baraloto@botany.ufl.edu  
  Corporate Author Thesis  
  Publisher ECOLOGICAL SOC AMER Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0012-9658 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000245668400021 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 165  
Permanent link to this record
 

 
Author Maréchaux, I.; Bonal, D.; Bartlett, M.K.; Burban, B.; Coste, S.; Courtois, E.A.; Dulormne, M.; Goret, J.-Y.; Mira, E.; Mirabel, A.; Sack, L.; Stahl, C.; Chave, J. url  doi
openurl 
  Title Dry-season decline in tree sapflux is correlated with leaf turgor loss point in a tropical rainforest Type Journal Article
  Year 2018 Publication Functional Ecology Abbreviated Journal Funct Ecol  
  Volume 32 Issue 10 Pages 2285-2297  
  Keywords (up) drought tolerance; hydraulic conductance; sap flow; sapflux density; tropical trees; turgor loss point; water potential; wilting point  
  Abstract Water availability is a key determinant of forest ecosystem function and tree species distributions. While droughts are increasing in frequency in many ecosystems, including in the tropics, plant responses to water supply vary with species and drought intensity and are therefore difficult to model. Based on physiological first principles, we hypothesized that trees with a lower turgor loss point (pi-tlp), that is, a more negative leaf water potential at wilting, would maintain water transport for longer into a dry season. We measured sapflux density of 22 mature trees of 10 species during a dry season in an Amazonian rainforest, quantified sapflux decline as soil water content decreased and tested its relationship to tree pi-tlp, size and leaf predawn and midday water potentials measured after the onset of the dry season. The measured trees varied strongly in the response of water use to the seasonal drought, with sapflux at the end of the dry season ranging from 37 to 117% (on average 83 +/- 5 %) of that at the beginning of the dry season. The decline of water transport as soil dried was correlated with tree pi-tlp (Spearman's rho > 0.63), but not with tree size or predawn and midday water potentials. Thus, trees with more drought-tolerant leaves better maintained water transport during the seasonal drought. Our study provides an explicit correlation between a trait, measurable at the leaf level, and whole-plant performance under drying conditions. Physiological traits such as pi-tlp can be used to assess and model higher scale processes in response to drying conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Wiley/Blackwell (10.1111) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0269-8463 ISBN Medium  
  Area Expedition Conference  
  Notes doi: 10.1111/1365-2435.13188 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 830  
Permanent link to this record
 

 
Author Li, Lingjuan ; Preece, Catherine ; Lin, Qiang ; Bréchet, Laëtitia M. ; Stahl, Clément ; Courtois, Elodie A. ; Verbruggen, Erik doi  openurl
  Title Resistance and resilience of soil prokaryotic communities in response to prolonged drought in a tropical forest Type Journal Article
  Year 2021 Publication FEMS Microbiology Ecology Abbreviated Journal  
  Volume 97 Issue 9 Pages  
  Keywords (up) drought, microbial communities, microbial network, tropical forest, resistance, resilience  
  Abstract Global climate changes such as prolonged duration and intensity of drought can lead to adverse ecological consequences in forests. Currently little is known about soil microbial community responses to such drought regimes in tropical forests. In this study, we examined the resistance and resilience of topsoil prokaryotic communities to a prolongation of the dry season in terms of diversity, community structure and co-occurrence patterns in a French Guianan tropical forest. Through excluding rainfall during and after the dry season, a simulated prolongation of the dry season by five months was compared to controls. Our results show that prokaryotic communities increasingly diverged from controls with the progression of rain exclusion. Furthermore, prolonged drought significantly affected microbial co-occurrence networks. However, both the composition and co-occurrence networks of soil prokaryotic communities immediately ceased to differ from controls when precipitation throughfall returned. This study thus suggests modest resistance but high resilience of microbial communities to a prolonged drought in tropical rainforest soils.  
  Address  
  Corporate Author Thesis  
  Publisher Oxford Academy Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1032  
Permanent link to this record
 

 
Author Levionnois, S.; Ziegler, C.; Jansen, S.; Calvet, E.; Coste, S.; Stahl, C.; Salmon, C.; Delzon, S.; Guichard, C.; Heuret, P. doi  openurl
  Title Vulnerability and hydraulic segmentations at the stem–leaf transition: coordination across Neotropical trees Type Journal Article
  Year 2020 Publication New Phytologist Abbreviated Journal New Phytol.  
  Volume 228 Issue 2 Pages 512-524  
  Keywords (up) drought-induced embolism resistance; hydraulic segmentation; leaf-specific conductivity; stem–leaf transition; tropical trees; vulnerability segmentation; air bubble; hydraulic conductivity; leaf; Neotropical Region; rainforest; tropical forest; vulnerability; xylem  
  Abstract Hydraulic segmentation at the stem–leaf transition predicts higher hydraulic resistance in leaves than in stems. Vulnerability segmentation, however, predicts lower embolism resistance in leaves. Both mechanisms should theoretically favour runaway embolism in leaves to preserve expensive organs such as stems, and should be tested for any potential coordination. We investigated the theoretical leaf-specific conductivity based on an anatomical approach to quantify the degree of hydraulic segmentation across 21 tropical rainforest tree species. Xylem resistance to embolism in stems (flow-centrifugation technique) and leaves (optical visualization method) was quantified to assess vulnerability segmentation. We found a pervasive hydraulic segmentation across species, but with a strong variability in the degree of segmentation. Despite a clear continuum in the degree of vulnerability segmentation, eight species showed a positive vulnerability segmentation (leaves less resistant to embolism than stems), whereas the remaining species studied exhibited a negative or no vulnerability segmentation. The degree of vulnerability segmentation was positively related to the degree of hydraulic segmentation, such that segmented species promote both mechanisms to hydraulically decouple leaf xylem from stem xylem. To what extent hydraulic and vulnerability segmentation determine drought resistance requires further integration of the leaf–stem transition at the whole-plant level, including both xylem and outer xylem tissue. © 2020 The Authors. New Phytologist © 2020 New Phytologist Trust  
  Address Univ. Bordeaux, INRAE, BIOGECO, Pessac, F-33615, France  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028646x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 952  
Permanent link to this record
 

 
Author Aguilos, M.; Stahl, C.; Burban, B.; Hérault, B.; Courtois, E.; Coste, S.; Wagner, F.; Ziegler, C.; Takagi, K.; Bonal, D. pdf  url
doi  openurl
  Title Interannual and seasonal variations in ecosystem transpiration and water use efficiency in a tropical rainforest Type Journal Article
  Year 2018 Publication Forests Abbreviated Journal Forests  
  Volume 10 Issue 1 Pages  
  Keywords (up) Drought; Evapotranspiration; Radiation; Tropical rainforest; Water use efficiency; Atmospheric radiation; Carbon dioxide; Climate change; Drought; Efficiency; Evapotranspiration; Forestry; Heat radiation; Radiation effects; Soil moisture; Tropics; Water supply; Climate condition; Drought conditions; Interannual variability; Mechanistic models; Seasonal variation; Tropical ecosystems; Tropical rain forest; Water use efficiency; Ecosystems  
  Abstract Warmer and drier climates over Amazonia have been predicted for the next century with expected changes in regional water and carbon cycles. We examined the impact of interannual and seasonal variations in climate conditions on ecosystem-level evapotranspiration (ET) and water use efficiency (WUE) to determine key climatic drivers and anticipate the response of these ecosystems to climate change. We used daily climate and eddyflux data recorded at the Guyaflux site in French Guiana from 2004 to 2014. ET and WUE exhibited weak interannual variability. The main climatic driver of ET and WUE was global radiation (Rg), but relative extractable water (REW) and soil temperature (Ts) did also contribute. At the seasonal scale, ET and WUE showed a modal pattern driven by Rg, with maximum values for ET in July and August and for WUE at the beginning of the year. By removing radiation effects during water depleted periods, we showed that soil water stress strongly reduced ET. In contrast, drought conditions enhanced radiation-normalized WUE in almost all the years, suggesting that the lack of soil water had a more severe effect on ecosystem evapotranspiration than on photosynthesis. Our results are of major concern for tropical ecosystem modeling because they suggest that under future climate conditions, tropical forest ecosystems will be able to simultaneously adjust CO2 and H2O fluxes. Yet, for tropical forests under future conditions, the direction of change in WUE at the ecosystem scale is hard to predict, since the impact of radiation on WUE is counterbalanced by adjustments to soil water limitations. Developing mechanistic models that fully integrate the processes associated with CO2 and H2O flux control should help researchers understand and simulate future functional adjustments in these ecosystems.  
  Address Hokkaido University, Sapporo, 060-0808, Japan  
  Corporate Author Thesis  
  Publisher Mdpi Ag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 19994907 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 1 February 2019; Correspondence Address: Bonal, D.; Université de Lorraine, AgroParisTech, INRA, UMR SilvaFrance; email: damien.bonal@inra.fr; References: Von Randow, C., Zeri, M., Restrepo-Coupe, N., Muza, M.N., de Gonçalves, L.G.G., Costa, M.H., Araujo, A.C., Saleska, S.R., Interannual variability of carbon and water fluxes in Amazonian forest, Cerrado and pasture sites, as simulated by terrestrial biosphere models (2013) Agric. For. Meteorol, 182-183, pp. 145-155; Duffy, P.B., Brando, P., Asner, G.P., Field, C.B., Projections of future meteorological drought and wet periods in the Amazon (2015) Proc. Natl. Acad. Sci. USA, 112, pp. 13172-13177; Cox, P.M., Betts, R.A., Collins, M., Harris, P.P., Huntingford, C., Jones, C.D., Amazonian forest dieback under climate-carbon cycle projections for the 21st century (2004) Theor. Appl. Climatol, 78, pp. 137-156; Poulter, B., Hattermann, F., Hawkins, E., Zaehle, S., Sitch, S., Restrepo-Coupe, N., Heyder, U., Cramer, W., Robust dynamics of Amazon dieback to climate change with perturbed ecosystem model parameters (2010) Glob. Chang. Biol, 16, pp. 2476-2495; Saleska, S.R., Didan, K., Huete, A.R., Da Rocha, H.R., Amazon forests green-up during 2005 drought (2007) Science, 318, p. 612; Phillips, O.L., Aragão, L.E.O.C., Lewis, S.L., Fisher, J.B., Lloyd, J., López-González, G., Malhi, Y., Quesada, C.A., Drought sensitivity of the amazon rainforest (2009) Science, 323, pp. 1344-1347; Bonal, D., Burban, B., Stahl, C., Wagner, F., Hérault, B., The response of tropical rainforests to drought-Lessons from recent research and future prospects (2016) Ann. For. Sci, 73, pp. 27-44; Wang, K.C., Dickinson, R.E., A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability (2012) Rev. Geophys, p. 50; Fisher, R.A., Williams, M., da Costa, A.L., Malhi, Y., da Costa, R.F., Almeida, S., Meir, P., The response of an Eastern Amazonian rain forest to drought stress: Results and modelling analyses from a throughfall exclusion experiment (2007) Glob. Chang. Biol, 13, pp. 2361-2378; Costa, M.H., Biajoli, M.C., Sanches, L., Malhado, A.C.M., Hutyra, L.R., Da Rocha, H.R., Aguiar, R.G., De Araújo, A.C., Atmospheric versus vegetation controls of Amazonian tropical rain forest evapotranspiration: Are the wet and seasonally dry rain forests any different? (2010) J. Geophys. Res. Biogeosci, 115, pp. 1-9; Carswell, F.E., Costa, A.L., Palheta, M., Malhi, Y., Meir, P., Costa, J.D.P.R., Ruivo, M.D.L., Clement, R.J., Seasonality in CO2 and H2O flux at an eastern Amazonian rain forest (2002) J. Geophys. Res. D Atmos, 107, p. 8076; Hasler, N., Avissar, R., What controls evapotranspiration in the Amazon basin? (2007) J. Hydrometeorol, 8, pp. 380-395; Da Rocha, H.R., Manzi, A.O., Cabral, O.M., Miller, S.D., Goulden, M.L., Saleska, S.R., Coupe, N.R., Artaxo, R., Patterns of water and heat flux across a biome gradient from tropical forest to savanna in brazil (2009) J. Geophys. Res. Biogeosci, p. 114; Kim, Y., Knox, R.G., Longo, M., Medvigy, D., Hutyra, L.R., Pyle, E.H., Wofsy, S.C., Moorcroft, P.R., Seasonal carbon dynamics and water fluxes in an Amazon rainforest (2012) Glob. Chang. Biol, 18, pp. 1322-1334; Maeda, E.E., Ma, X., Wagner, F.H., Kim, H., Oki, T., Eamus, D., Huete, A., Evapotranspiration seasonality across the Amazon Basin (2017) Earth Syst. Dyn, 8, pp. 439-454; Farquhar, G.D., Ehleringer, J.R., Hubick, K.T., Carbon isotope discrimination and photosynthesis (1989) Ann. Rev. Plant Physiol, 40, pp. 503-537; Hutyra, L.R., Munger, J.W., Saleska, S.R., Gottlieb, E., Daube, B.C., Dunn, A.L., Amaral, D.F., Wofsy, S.C., Seasonal controls on the exchange of carbon and water in an Amazonian rain forest (2007) J. Geophys. Res. Biogeosci; Negrón Juárez, R.I., Hodnett, M.G., Fu, R., Gouden, M.L., von Randow, C., Control of dry season evapotranspiration over the Amazonian forest as inferred from observation at a Southern Amazon forest site (2007) J. Clim, 20, pp. 2827-2839; Fisher, J.B., Malhi, Y., Bonal, D., Da Rocha, H.R., De Araújo, A.C., Gamo, M., Goulden, M.L., Kondo, H., The land-atmosphere water flux in the tropics (2009) Glob. Chang. Biol; Christoffersen, B.O., Restrepo-Coupe, N., Arain, M.A., Baker, I.T., Cestaro, B.P., Ciais, P., Fisher, J.B., Gulden, L., Mechanisms of water supply and vegetation demand govern the seasonality and magnitude of evapotranspiration in Amazonia and Cerrado (2014) Agric. For. Meteorol, 191, pp. 33-50; Da Costa, A.C.L., Rowland, L., Oliveira, R.S., Oliveira, A.A.R., Binks, O.J., Salmon, Y., Vasconcelos, S.S., Poyatos, R., Stand dynamics modulate water cycling and mortality risk in droughted tropical forest (2018) Glob. Chang. Biol; Huang, M., Piao, S., Sun, Y., Ciais, P., Cheng, L., Mao, J., Poulter, B., Wang, Y., Change in terrestrial ecosystem water-use efficiency over the last three decades (2015) Glob. Chang. Biol; Brienen, R.J.W., Wanek, W., Hietz, P., Stable carbon isotopes in tree rings indicate improved water use efficiency and drought responses of a tropical dry forest tree species (2011) Trees, 25, pp. 103-113; Yu, G., Song, X., Wang, Q., Liu, Y., Guan, D., Yan, J., Sun, X., Wen, X., Water-use efficiency of forest ecosystems in eastern China and its relations to climatic variables (2008) New Phytol, 177, pp. 927-937; Aguilos, M., Hérault, B., Burban, B., Wagner, F., Bonal, D., What drives long-term variations in carbon flux and balance in a tropical rainforest in French Guiana? Agric (2018) For. Meteorol, pp. 253-254; Bonal, D., Bosc, A., Ponton, S., Goret, J.Y., Burban, B.T., Gross, P., Bonnefond, J.M., Epron, D., Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana (2008) Glob. Chang. Biol; Aubinet, M., Grelle, A., Ibrom, A., Rannik, U., Moncrieff, J.B., Foken, T., Kowalski, A.S., Bernhofer, C., Estimates of the annual net carbon and water exchange of forests: The Euroflux methodology (2000) Adv. Ecol. Res, 30, pp. 113-175; Wagner, F., Hérault, B., Stahl, C., Bonal, D., Rossi, V., Modeling water availability for trees in tropical forests (2011) Agric. For. Meteorol, 151, pp. 1202-1213; Kuglitsch, F.G., Reichstein, M., Beer, C., Carrara, A., Ceulemans, R., Granier, A., Janssens, I.A., Loustau, D., Characterisation of ecosystem water-use efficiency of european forests from eddy covariance measurements (2008) Biogeosci. Discuss, 5, pp. 4481-4519; Dekker, S.C., Groenendijk, M., Booth, B.B.B., Huntingford, C., Cox, P.M., Spatial and temporal variations in plant water-use efficiency inferred from tree-ring, eddy covariance and atmospheric observations (2016) Earth Syst. Dyn, 7, pp. 525-533; Yang, Y., Guan, H., Batelaan, O., McVicar, T.R., Long, D., Piao, S., Liang, W., Simmons, C.T., Contrasting responses of water use efficiency to drought across global terrestrial ecosystems (2016) Sci. Rep, 6, p. 23284; Granier, A., Bréda, N., Biron, P., Villette, S., A lumped water balance model to evaluate duration and intensity of drought constraints in forest stands (1999) Ecol. Model, 116, pp. 269-283; Kume, T., Takizawa, H., Yoshifuji, N., Tanaka, K., Tantasirin, C., Tanaka, N., Suzuki, M., Impact of soil drought on sap flow and water status of evergreen trees in a tropical monsoon forest in northern Thailand (2007) For. Ecol. Manag, 238, pp. 220-230; Xiao, J., Sun, G., Chen, J., Chen, H., Chen, S., Dong, G., Gao, S., Han, S., Carbon fluxes, evapotranspiration, and water use efficiency of terrestrial ecosystems in China (2013) Agric. For. Meteorol; Boese, S., Jung, M., Carvalhais, N., Reichstein, M., The importance of radiation for semi-empirical water-use efficiency models (2017) Biogeosciences, 14, pp. 3015-3026; Bonal, D., Ponton, S., Le Thiec, D., Richard, B., Ningre, N., Hérault, B., Ogée, J., Sabatier, D., Leaf functional response to increasing atmospheric CO2 concentrations over the last century in two northern Amazonian tree species: An historical δ13C and δ18O approach using herbarium samples (2011) Plant Cell Environ, 34, pp. 1332-1344; Wagner, F., Rossi, V., Stahl, C., Bonal, D., Hérault, B., Water availability is the main climate driver of neotropical tree growth (2012) PLoS ONE, 7; Van der Molen, M.K., Dolman, A.J., Ciais, P., Eglin, T., Gobron, N., Law, B.E., Meir, P., Reichstein, M., Drought and ecosystem carbon cycling (2011) Agric. For. Meteorol, 151, pp. 765-773; Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Hogg, E.H., A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests (2010) For. Ecol. Manag, 259, pp. 660-684; Da Rocha, H.R., Goulden, M.L., Miller, S.D., Menton, M.C., Pinto, L.D., De Freitas, H.C., Seasonality of water and heat fluxes over a tropical forest in eastern Amazonia (2004) Ecol. Appl, 14, pp. 22-32; Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Evans, R., FLUXNET: A New tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities (2001) Bull. Am. Meteorol. Soc, 82, pp. 2415-2434; Stahl, C., Hérault, B., Rossi, V., Burban, B., Bréchet, C., Bonal, D., Depth of soil water uptake by tropical rainforest trees during dry periods: Does tree dimension matter? (2013) Oecologia, 173, pp. 1191-1201; Nepstad, D.C., De Carvalho, C.R., Davidson, E.A., Jipp, P.H., Lefebvre, P.A., Negreiros, G.H., Da Silva, E.D., Vieira, S., The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures (1994) Nature; Lee, J.-E., Boyce, K., Impact of the hydraulic capacity of plants on water and carbon fluxes in tropical South America (2010) J. Geophys. Res; Xiao, X., Zhang, Q., Saleska, S., Hutyra, L., De Camargo, P., Wofsy, S., Frolking, S., Moore, B., Satellite-based modeling of gross primary production in a seasonally moist tropical evergreen forest (2005) Remote Sens. Environ, 94, pp. 105-122; Wagner, F.H., Hérault, B., Bonal, D., Stahl, C., Anderson, L.O., Baker, T.R., Becker, G.S., Botosso, P.C., Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests (2016) Biogeosciences, 13, pp. 2537-2562; Stahl, C., Burban, B., Wagner, F., Goret, J.-Y., Bompy, F., Bonal, D., Influence of Seasonal Variations in Soil Water Availability on Gas Exchange of Tropical Canopy Trees (2013) Biotropica, 45, pp. 155-164; Maréchaux, I., Bonal, D., Bartlett, M.K., Burban, B., Coste, S., Courtois, E.A., Dulormne, M., Mirabel, A., Dry-season decline in tree sapflux is correlated with leaf turgor loss point in a tropical rainforest (2018) Funct. Ecol, 32, pp. 2285-2297; Chaves, M.M., Maroco, J.P., Pereira, J.S., Understanding plant responses to drought-from genes to the whole plant (2003) Funct. Plant Biol, 30, pp. 239-264 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 856  
Permanent link to this record
 

 
Author Bonal, D.; Bosc, A.; Ponton, S.; Goret, J.Y.; Burban, B.; Gross, P.; Bonnefond, J.M.; Elbers, J.; Longdoz, B.; Epron, D.; Guehl, J.M.; Granier, A. openurl 
  Title Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana Type Journal Article
  Year 2008 Publication Global Change Biology Abbreviated Journal Glob. Change Biol.  
  Volume 14 Issue 8 Pages 1917-1933  
  Keywords (up) dry season; ecosystem respiration; eddy covariance; gross ecosystem productivity; Neotropical rainforest; net ecosystem productivity; soil drought; solar radiation  
  Abstract The lack of information on the ways seasonal drought modifies the CO2 exchange between Neotropical rainforest ecosystems and the atmosphere and the resulting carbon balance hinders our ability to precisely predict how these ecosystems will respond as global environmental changes force them to face increasingly contrasting conditions in the future. To address this issue, seasonal variations in daily net ecosystem productivity (NEPd) and two main components of this productivity, daily total ecosystem respiration (R-Ed) and daily gross ecosystem productivity (GEP(d)), were estimated over 2 years at a flux tower site in French Guiana, South America (5 degrees 16'54'N, 52 degrees 54'44'W). We compared seasonal variations between wet and dry periods and between dry periods of contrasting levels of intensity (i.e. mild vs. severe) during equivalent 93-day periods. During the wet periods, the ecosystem was almost in balance with the atmosphere (storage of 9.0 g C m(-2)). Seasonal dry periods, regardless of their severity, are associated with higher incident radiation and lower R-Ed combined with reduced soil respiration associated with low soil water availability. During the mild dry period, as is normally the case in this region, the amount of carbon stored in the ecosystem was 32.7 g C m(-2). Severe drought conditions resulted in even lower R-Ed, whereas the photosynthetic activity was only moderately reduced and no change in canopy structure was observed. Thus, the severe dry period was characterized by greater carbon storage (64.6 g C m(-2)), emphasizing that environmental conditions, such as during a severe drought, modify the CO2 exchange between Neotropical rainforest ecosystems and the atmosphere and potentially the resulting carbon balance.  
  Address [Bonal, Damien; Goret, Jean-Yves; Burban, Benoit] INRA, UMR Ecol Forets Guyane, Kourou 97387, French Guiana, Email: damien.bonal@kourou.cirad.fr  
  Corporate Author Thesis  
  Publisher BLACKWELL PUBLISHING Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1354-1013 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000257712400015 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 133  
Permanent link to this record
 

 
Author Clair, B.; Jaouen, G.; Beauchene, J.; Fournier, M. openurl 
  Title Mapping radial, tangential and longitudinal shrinkages and relation to tension wood in discs of the tropical tree Symphonia globulifera Type Journal Article
  Year 2003 Publication Holzforschung Abbreviated Journal Holzforschung  
  Volume 57 Issue 6 Pages 665-671  
  Keywords (up) drying shrinkage; tension wood; Symphonia globulifera L. f.  
  Abstract A method for measuring shrinkage resulting from drying in the three anisotropic directions is developed and tested. Measurements are performed on sawn discs, a technique which simplifies preparation and enables large numbers of measurements. Shrinkage values can be represented as a map of the disc surface. The results indicate that comparisons between shrinkage distribution and tension wood distribution on the discs show a clear relationship and can be measured with relatively high accuracy in reference to the shrinkage map. In the long term, this method could be useful in the timber industry as a means for choosing the direction in which logs are cut depending on their type of wood composition.  
  Address CIRAD ENGREF INRA, UMR Ecol Forets Guyane, Kourou 97379, French Guiana  
  Corporate Author Thesis  
  Publisher WALTER DE GRUYTER & CO Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-3830 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000186257800016 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 243  
Permanent link to this record
 

 
Author Medjigbodo, G.; Rozière, E.; Charrier, K.; Izoret, L.; Loukili, A. url  doi
openurl 
  Title Hydration, shrinkage, and durability of ternary binders containing Portland cement, limestone filler and metakaolin Type Journal Article
  Year 2018 Publication Construction and Building Materials Abbreviated Journal  
  Volume 183 Issue Pages 114-126  
  Keywords (up) Durability; Limestone filler; Metakaolin; Shrinkage; Strength; Ternary binders  
  Abstract A partial replacement of the clinker by latent hydraulic or pozzolanic materials is encouraged due to environmental and specific technical requirements. Such substitution remains limited to a relatively low level (less than 30% by mass of cementitious materials). An experimental research work was carried out on mortars made with binary and ternary binders (Portland cement; metakaolin; limestone filler) to reach 45% total replacement. In order to investigate the activating effect of reduced water-to-cement ratio, two series of mixtures were designed with W/C0 of 0.42 and 0.5. Their heat of hydration, portlandite content, shrinkage, porosity, and carbonation were monitored. The tests were performed to understand the evolution of their relative strength (activity index) and durability parameters. The strength development of mortars with ternary binders was found to depend on metakaolin properties, including manufacturing process and particle size distribution. Reducing W/C0 ratio accelerated pozzolanic reaction and allowed improving early-age strength and durability parameters. © 2018 Elsevier Ltd  
  Address Association Technique de l'Industrie des Liants Hydrauliques (ATILH), 7 place de la Défense, Paris La Défense, 92974, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 1 September 2018 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 814  
Permanent link to this record
 

 
Author Rodrigues, A.M.S.; Stien, D.; Eparvier, V.; Espindola, L.S.; Beauchene, J.; Amusant, N.; Lemenager, N.; Baudasse, C.; Raguin, L. url  openurl
  Title The wood preservative potential of long-lasting Amazonian wood extracts Type Journal Article
  Year 2012 Publication International Biodeterioration and Biodegradation Abbreviated Journal  
  Volume 75 Issue Pages 146-149  
  Keywords (up) Durable wood extracts; Handroanthus serratifolius; Rotting fungi; Wood preservation  
  Abstract Investigations were carried out on the efficacy of extracts from seven Amazonian woods (Bagassa guianensis, Manilkara huberi, Sextonia rubra, Vouacapoua americana, Andira surinamensis, Handroanthus serratifolius, and Qualea rosea) with varying natural durability to reduce soft-rot degradation in a 6-wk soil-bed test. Six of the wood extracts had shown efficacy against soft-rot fungi. In particular, the preservation efficacies of B. guianensis, H. serratifolius, and S. rubra extracts were highly significant up to retention levels of 23, 25, and 12 kg m-3, respectively. Three extracts (A. surinamensis, H. serratifolius, and Q. rosea) were then tested against Gloeophyllum trabeum (brown rot) and Trametes versicolor (white rot), in an agar-block test. H. serratifolius wood extract was very efficient at protecting P. sylvestris samples at 5.1 kg m-3 against the brown rot. This extract could be used as a basis for new wood protectant formulations. © 2012 Elsevier Ltd.  
  Address Laboratoire de Préservation, CIRAD, 73 rue JF Breton, Montpellier 34398, TA B 40-16, cedex 5, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 15 January 2013; Source: Scopus Approved no  
  Call Number EcoFoG @ webmaster @ Serial 457  
Permanent link to this record
 

 
Author Scotti, I.; Calvo-Vialettes, L.; Scotti-Saintagne, C.; Citterio, M.; Degen, B.; Bonal, D. openurl 
  Title Genetic variation for growth, morphological, and physiological traits in a wild population of the Neotropical shade tolerant rainforest tree Sextonia rubra (Mez) van der Werff (Lauraceae) Type Journal Article
  Year 2010 Publication Tree Genetics & Genomes Abbreviated Journal Tree Genet. Genomes  
  Volume 6 Issue 2 Pages 319-329  
  Keywords (up) Ecophysiological traits; Heritability; Guiana shield; Amazon; Ecological genetics  
  Abstract Quantitative genetic diversity is a fundamental component of the interaction between natural populations and their environment. In breeding programmes, quantitative genetic studies on tropical trees have so far focused on fast-growing, light-demanding species, but no information exists on shade-tolerant, slow-growing species. For this study, 27 3-year-old open-pollinated families of the Neotropical shade-tolerant rainforest tree Sextonia rubra were measured in semicontrolled conditions for 20 morphological, growth, and photosynthesis traits; the effect of genetic relatedness, habitat of provenance, and mother tree status on seedling traits was analysed. Nine traits displayed significant genetic effects, while mother tree status and habitat effects were not significant (P > 0.05) for an y trait. Estimated heritability varied between 0.14 and 0.28, with growth-related traits having the highest values. Additive genetic variation correlated positively with nonheritable variation, suggesting that ecological-evolutionary factors increasing or decreasing additive genetic variance may also affect nonheritable variation in the same direction. Our results suggest that quantitative genetic variability should be taken into account in ecological studies on, and in the management of, natural tropical rainforests; further research is needed to investigate genetic x environment interactions, in particular from the point of view of the genetic response of shade-tolerant plant species to variations in light availability.  
  Address [Scotti, Ivan; Scotti-Saintagne, Caroline; Bonal, Damien] INRA, Unite Mixte Rech Ecol Forets Guyane, Kourou 97387, French Guiana, Email: ivan.scotti@ecofog.gf  
  Corporate Author Thesis  
  Publisher SPRINGER HEIDELBERG Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1614-2942 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000274112600015 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 68  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: