toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Jaouen, G.; Almeras, T.; Coutand, C.; Fournier, M. openurl 
  Title How to determine sapling buckling risk with only a few measurements Type Journal Article
  Year 2007 Publication American Journal of Botany Abbreviated Journal Am. J. Bot.  
  Volume 94 Issue 10 Pages 1583-1593  
  Keywords (up) biomechanics; critical buckling height; French Guiana; risk factor; sapling; stem form; tropical rain forest; trunk volume  
  Abstract Tree buckling risk (actual height/critical buckling height) is an important biomechanical trait of plant growth strategies, and one that contributes to species coexistence. To estimate the diversity of this trait among wide samples, a method that minimizes damage to the plants is necessary. On the basis of the rarely used, complete version of Greenhill's model (1881, Proceedings of the Cambridge Philosophical Society 4(2): 65-73), we precisely measured all the necessary parameters on a sample of 236 saplings of 16 species. Then, using sensitivity (variance) analysis, regressions between successive models for risk factors and species ranks and the use of these models on samples of self- and nonself-supporting saplings, we tested different degrees of simplification up to the most simple and widely used formula that assumes that the tree is a cylindrical homogeneous pole. The size factor had the greatest effect on buckling risk, followed by the form factor and the modulus of elasticity of the wood. Therefore, estimates of buckling risk must consider not only the wood properties but especially the form factor. Finally, we proposed a simple but accurate method of assessing tree buckling risk that is applicable to a wide range of samples and that requires mostly nondestructive measurements.  
  Address INRA, UMR Ecol Forets Guyane, Kourou 97379, French Guiana, Email: jaouen-g@kourou.cirad.fr  
  Corporate Author Thesis  
  Publisher BOTANICAL SOC AMER INC Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-9122 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000251466600001 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 148  
Permanent link to this record
 

 
Author Fournier, M.; Dlouhá, J.; Jaouen, G.; Almeras, T. url  openurl
  Title Integrative biomechanics for tree ecology: Beyond wood density and strength Type Journal Article
  Year 2013 Publication Journal of Experimental Botany Abbreviated Journal J. Exp. Bot.  
  Volume 64 Issue 15 Pages 4793-4815  
  Keywords (up) Biomechanics; Ecological strategy; Gravitropism; Shape; Size; Trees; Wood  
  Abstract Functional ecology has long considered the support function as important, but its biomechanical complexity is only just being elucidated. We show here that it can be described on the basis of four biomechanical traits, two safety traits against winds and self-buckling, and two motricity traits involved in sustaining an upright position, tropic motion velocity (MV) and posture control (PC). All these traits are integrated at the tree scale, combining tree size and shape together with wood properties. The assumption of trait constancy has been used to derive allometric scaling laws, but it was more recently found that observing their variations among environments and functional groups, or during ontogeny, provides more insights into adaptive syndromes of tree shape and wood properties. However, oversimpli-fed expressions have often been used, possibly concealing key adaptive drivers. An extreme case of oversimplification is the use of wood basic density as a proxy for safety. Actually, as wood density is involved in stiffiness, loads, and construction costs, the impact of its variations on safety is non-trivial. Moreover, other wood features, especially the microfibril angle (MFA), are also involved. Furthermore, wood is not only stiff and strong, but it also acts as a motor for MV and PC. The relevant wood trait for this is maturation strain asymmetry. Maturation strains vary with cell-wall characteristics such as MFA, rather than with wood density. Finally, the need for further studies about the ecological relevance of branching patterns, motricity traits, and growth responses to mechanical loads is discussed. © The Author 2013.  
  Address CNRS, Université de Montpellier 2, Laboratoire de Mécanique et Génie Civil, 34095 Montpellier, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00220957 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Cited By (since 1996):1; Export Date: 2 December 2013; Source: Scopus; Coden: Jeboa; doi: 10.1093/jxb/ert279; Language of Original Document: English; Correspondence Address: Fournier, M.; AgroParisTech, UMR 1092 LERFOB, 54000 Nancy, France; email: meriem.fournier@agroparistech.fr; References: Achim, A., Ruel, J.C., Gardiner, B.A., Lafamme, G., Meunier, S., Modelling the vulnerability of balsam fr forests to wind damage (2005) Forest Ecology and Management, 204, pp. 35-50; Almeras, T., Costes, E., Salles, J.C., Identification of biomechanical factors involved in stem shape variability between apricot-tree varieties (2004) Annals of Botany, 93, pp. 1-14; Almeras, T., Derycke, M., Jaouen, G., Beauchene, J., Fournier, M., Functional diversity in gravitropic reaction among tropical seedlings in relation to ecological and developmental traits (2009) Journal of Experimental Botany, 60, pp. 4397-4410; Almeras, T., Fournier, M., Biomechanical design and longterm stability of trees: Morphological and wood traits involved in the balance between weight increase and the gravitropic reaction (2009) Journal of Theoretical Biology, 256, pp. 370-381; Almeras, T., Gril, J., Costes, E., Bending of apricot tree branches under the weight of axillary growth: Test of a mechanical model with experimental data (2002) Trees – Structure and Function, 16, pp. 5-15; Almeras, T., Thibaut, A., Gril, J., Effect of circumferential heterogeneity of wood maturation strain, modulus of elasticity and radial growth on the regulation of stem orientation in trees (2005) Trees – Structure and Function, 19, pp. 457-467; Anten, N.P.R., Schieving, F., The role of wood mass density and mechanical constraints in the economy of tree architecture (2010) American Naturalist, 175, pp. 250-260; Archer, R.R., Wilson, B.F., Mechanics of the compression wood response II. On the location, action, and distribution of compression wood formation (1973) Plant Physiology, 51, pp. 777-782; Auclair, D., Nepveu, G., The CAQ network in France: 15 years of brainstorming and cooperative work to connect forest resources and wood quality through modelling approaches and simulation software (2012) Annals of Forest Science, 69, pp. 119-123; Baltunis, B.S., Wu, H.X., Powell, M.B., Inheritance of density, microfibril angle, and modulus of elasticity in juvenile wood of pinus radiata at two locations in Australia (2007) Canadian Journal of Forest Research, 37, pp. 2164-2174; Banin, L., Fieldpausch, T.R., Phillips, O.L., What controls tropical forest architecture? Testing environmental, structural and foristic drivers (2012) Global Ecology and Biogeography, 21, pp. 1179-1190; Baskin, T.I., Jensen, O.E., On the role of stress anisotropy in the growth of stems (2013) Journal of Experimental Botany, 64, pp. 4697-4707; Bastien, R., Bohr, T., Moulia, B., Douady, S., Unifying model of shoot gravitropism reveals proprioception as a central feature of posture control in plants (2013) Proceedings of the National Academy of Sciences, USA, 110, pp. 755-760; Boiffin, J., (2008) Variabilité de Traits Anatomiques, Mécaniques et Hydrauliques Ches les Juvéniles de Vingt-deux Espèces D'arbres de Sous-bois en Forêt Tropicales Humide, , Masters thesis, Université Henri Poincaré, Nancy, France; Boudaoud, A., An introduction to the mechanics of morphogenesis for plant biologists (2010) Trends in Plant Science, 15, pp. 353-360; Burgert, I., Frühmann, K., Keckes, J., Fratzl, P., Stanzl-Tschegg, S., Structure-function relationships of four compression wood types: Micromechanical properties at the tissue and fibre (2004) Trees – Structure and Function, 18, pp. 480-485; Burgert, I., Exploring the micromechanical design of plant cell walls (2006) American Journal of Botany, 93, pp. 1391-1401; Butler, D.W., Gleason, S.M., Davidson, I., Onoda, Y., Westoby, M., Safety and streamlining of woody shoots in wind: An empirical study across 39 species in tropical Australia (2012) New Phytologist, 193, pp. 137-149; Cao, J., Tamura, Y., Yoshida, A., Wind tunnel study on aerodynamic characteristics of shrubby specimens of three tree species (2012) Urban Forestry & Urban Greening, 11, pp. 465-476; Carlquist, S., (2001) Comparative Wood Anatomy: Systematic, Ecological, and Evolutionary Aspects of Dicotyledon Wood, , Berlin: Springer; Chapman, C.A., Kaufman, L., Chapman, L.J., Buttress formation and directional stress experienced during critical phases of tree development (1998) Journal of Tropical Ecology, 14, pp. 341-349; Chapotin, S.M., Razanameharizaka, J.H., Holbrook, N.M., Abiomechanical perspective on the role of large stem volume and high water content in baobab trees (Adansonia spp.; bombacaceae) (2006) American Journal of Botany, 93, pp. 1251-1264; Chave, J., Coomes, D., Jansen, S., Lewis, S.L., Swenson, N.G., Zanne, A.E., Towards a worldwide wood economics spectrum (2009) Ecology Letters, 12, pp. 351-366; Chevolot, M., Louisanna, E., Azri, W., Leblanc-Fournier, N., Roeckel-Drevet, P., Scotti-Saintagne, C., Scotti, I., Isolation of primers for candidate genes for mechano-sensing in five neotropical tree species (2011) Tree Genetics & Genomes, 7, pp. 655-661; Clair, B., Almeras, T., Pilate, G., Jullien, D., Sugiyama, J., Riekel, C., Maturation stress generation in poplar tension wood studied by synchrotron radiation microdiffraction (2011) Plant Physiology, 155, pp. 562-570; Clair, B., Almeras, T., Ruelle, J., Fournier, M., Reaction mechanisms for the shape control in angiosperms tension wood: Diversity, efficiency, limits and alternatives (2006) Proceedings of the Fifth Plant Biomechanics Conference, pp. 467-472. , 28 August-1 September 2006, Stockholm, Sweden. Stockholm, Suède: STFI-Packforsk AB; Clair, B., Fournier, M., Prévost, M.F., Beauchêne, J., Bardet, S., Biomechanics of buttressed trees: Bending strains and stresses (2003) American Journal of Botany, 90, pp. 1349-1356; Collet, C., Fournier, M., Ningre, F., Hounzandji, A.P.I., Constant, T., Growth and posture control strategies in fagus sylvatica and acer pseudoplatanus saplings in response to canopy disturbance (2011) Annals of Botany, 107, pp. 1345-1353; Coutand, C., Fournier, M., Moulia, B., The gravitropic response of poplar trunks: Key roles of prestressed wood regulation and the relative kinetics of cambial growth versus wood maturation (2007) Plant Physiology, 144, pp. 1166-1180; Darwin, C., Darwin, F.E., (1880) The Power of Movement in Plants, , London: Murray; Dassot, M., Constant, T., Fournier, M., The use of terrestrial LiDAR technology in forest science: Application fields, benefts and challenges (2011) Annals of Forest Science, 68, pp. 959-974; Dassot, M., Fournier, M., Ningre, F., Constant, T., Effect of tree size and competition on tension wood production over time in beech plantations and assessing relative gravitropic response with a biomechanical model (2012) American Journal of Botany, 99, pp. 1427-1435; De Langre, E., Effects of wind on plants (2008) Annual Review of Fluid Mechanics, 40, pp. 141-168; Dean, T.J., Long, J.N., Validity of constant stress and elastic-principles of stem formation in pinus contorta and trifolium pratense (1986) Annals of Botany, 58, pp. 833-740; Delcamp, M., Gourlet-Fleury, S., Flores, O., Gamier, E., Can functional classification of tropical trees predict population dynamics after disturbance? (2008) Journal of Vegetation Science, 19, pp. 209-220; Donaldson, L., Microfibril angle: Measurement, variation and relationship – A review (2008) IAWA Bulletin, 29, pp. 345-386; Duchateau, E., (2008) Diversité des Capacités de Réaction Gravitropique de Jeunes Arbres en Forêt Tropicale Humide, , Masters thesis, Université Henri Poincaré, Nancy, France; Eloy, C., Leonardo's rule, self-similarity, and wind-induced stresses in trees (2011) Physical Review Letters, 107, p. 258101; Ennos, A.R., The mechanics of root anchorage (2000) Advances in Botanical Research Incorporating Advances in Plant Pathology, 33, pp. 133-157; Evans, R., Ilic, J., Rapid prediction of wood stiffiness from microfibril angle and density (2001) Forest Products Journal, 51, pp. 53-57; Favrichon, V., Classification des especes arborees en groupes fonctionnels en vue de la realisation d'un modele de dynamique de peuplement en foret guyanaise (1994) Revue de Ecologie (Terre et Vie), 49, pp. 379-403; Fengel, D., Wegener, G., (1984) Wood. Chemistry, Ultrastructure, Reactions, , Berlin/New York: de Gruyter; Ferrand, J.C., Study of growth stresses: 1. Measurement method on increment cores (1982) Annales des Sciences Forestieres, 39, pp. 109-142; Fortunel, C., Fine, P.V.A., Baraloto, C., Leaf, stem and root tissue strategies across 758 neotropical tree species (2012) Functional Ecology, 26, pp. 1153-1161; Fournier, M., Baillères, H., Chanson, B., Tree biomechanics: Growth, cumulative prestresses, and reorientations (1994) Biomimetics, 2, pp. 229-251; Fournier, M., Chanson, B., Thibaut, B., Guitard, D., Measurement of residual growth strains at the stem surface. Observations on different species (1994) Annales des Sciences Forestieres, 51, pp. 249-266; Fournier, M., Stokes, A., Coutand, C., Fourcaud, T., Moulia, B., Tree biomechanics and growth strategies in the context of forest functional ecology (2006) Ecology and Biomechanics: A Mechanical Approach to the Ecology of Animals and Plants, pp. 1-34. , Herrel A, Speck T, Rowe N, eds. Boca Raton, FL: CRC Press; Gardiner, B., Byrne, K., Hale, S., Kamimura, K., Mitchell, S.J., Peltola, H., Ruel, J.-C., A review of mechanistic modelling of wind damage risk to forests (2008) Forestry, 81, pp. 447-463; Gibson, L.J., Ashby, M.F., (1997) Cellular Solids; Structure and Properties, , Cambridge: Cambridge University Press; Givnish, T.J., Ecological constraints on the evolution of plasticity in plants (2002) Evolutionary Ecology, 16, pp. 213-242; Gordon, J.E., (1978) Structures or Why Things do Not Fall Down, , Harmondsworth: Penguin Books; Greenhill, A., Determination of the greatest height consistent with stability that a vertical pole or mast can be made, and of the greatest height to which a tree of given proportions can grow (1881) Proceedings of the Cambridge Philosophical Society, 4, pp. 65-73; Grime, J.P., (2001) Plant Strategies, Vegetation Processes, and Ecosystem Properties, , Chichester; UK: John Wiley & Sons; Hamilton, J.R., Thomas, C.K., Carvell, K.L., Tension wood formation following release of upland oak advance reproduction (1985) Wood and Fiber Science, 17, pp. 382-390; Hejnowicz, Z., Graviresponses in herbs and trees: A major role for the redistribution of tissue and growth stresses (1997) Planta, 203, pp. S136-S146; Herault, B., Bachelot, B., Poorter, L., Rossi, V., Bongers, F., Chave, J., Paine, C.E.T., Baraloto, C., Functional traits shape ontogenetic growth trajectories of rain forest tree species (2011) Journal of Ecology, 99, pp. 1431-1440; Holbrook, N.M., Putz, F.E., Influence of neighbors on tree form: Effects of lateral shade and prevention of sway on the allometry of liquidambar styracifua (sweet gum) (1989) American Journal of Botany, 76, pp. 1740-1749; Huang, Y.S., Hung, L.F., Kuo-Huang, L.L., Biomechanical modeling of gravitropic response of branches: Roles of asymmetric periphery growth strain versus self-weight bending effect (2010) Trees – Structure and Function, 24, pp. 1151-1161; Iino, M., Toward understanding the ecological functions of tropisms: Interactions among and effects of light on tropisms (2006) Current Opinion in Plant Biology, 9, pp. 89-93; James, K.R., Haritos, N., Ades, P.K., Mechanical stability of trees under dynamic loads (2006) American Journal of Botany, 93, pp. 1522-1530; Jaouen, G., Almeras, T., Coutand, C., Fournier, M., How to determine sapling buckling risk with only a few measurements (2007) American Journal of Botany, 94, pp. 1583-1593; Jaouen, G., Fournier, M., Almeras, T., Thigmomorphogenesis versus light in biomechanical growth strategies of saplings of two tropical rain forest tree species (2010) Annals of Forest Science, 67, p. 211; Jaouen, G., (2007) Etude des Stratégies Biomécaniques de Croissance des Jeunes Arbres en Peuplement Hétérogène Tropical Humide, , Thèse de doctorat, Université Henri Poincaré, Nancy, France; Johnson, E.A., Miyanishi, K., (2007) Plant Disturbance Ecology: The Process and the Response, , New York: Academic Press; Jullien, D., Widmann, R., Loup, C., Thibaut, B., Relationship between tree morphology and growth stress in mature european beech stands (2013) Annals of Forest Science, 70, pp. 133-142; Jungnikl, K., Goebbels, J., Burgert, I., Fratzl, P., The role of material properties for the mechanical adaptation at branch junctions (2009) Trees – Structure and Function, 23, pp. 605-610; Kellogg, R.M., Wangaard, F.F., Variation in the cell-wall density of wood (1969) Wood and Fiber Science, 1, pp. 180-204; King, D., Loucks, O.L., Theory of tree bole and branch form (1978) Radiation and Environmental Biophysics, 15, pp. 141-165; King, D.A., Davies, S.J., Tan, S., Noor, N.S.M., The role of wood density and stem support costs in the growth and mortality of tropical trees (2006) Journal of Ecology, 94, pp. 670-680; King, D.A., Davies, S.J., Tan, S., Noor, N.S.M., Trees approach gravitational limits to height in tall lowland forests of Malaysia (2009) Functional Ecology, 23, pp. 284-291; Kooyman, R.M., Westoby, M., Costs of height gain in rainforest saplings: Main-stem scaling, functional traits and strategy variation across 75 species (2009) Annals of Botany, 104, pp. 987-993; Lachenbruch, B., Johnson, G.R., Downes, G.M., Evans, R., Relationships of density, microfibril angle, and sound velocity with stiffiness and strength in mature wood of douglas-fr (2010) Canadian Journal of Forest Research, 40, pp. 55-64; Lachenbruch, B., Moore, J.R., Evans, R., Radial variation in wood structure and function in woody plants, and hypotheses for its occurrence (2011) Size-and Age-related Changes in Tree Structure and Function, pp. 121-164. , Meinzer FC, Lachenbruch B, Dawson TE, eds. Netherlands: Springer; Lang, A.C., Haerdtle, W., Bruelheide, H., Geissler, C., Nadrowski, K., Schuldt, A., Yu, M., Von Oheimb, G., Tree morphology responds to neighbourhood competition and slope in species-rich forests of subtropical China (2010) Forest Ecology and Management, 260, pp. 1708-1715; Larjavaara, M., Maintenance cost, toppling risk and size of trees in a self-thinning stand (2010) Journal of Theoretical Biology, 265, pp. 63-67; Larjavaara, M., Muller-Landau, H.C., Rethinking the value of high wood density (2010) Functional Ecology, 24, pp. 701-705; Larjavaara, M., Muller-Landau, H.C., Still rethinking the value of high wood density (2012) American Journal of Botany, 99, pp. 165-168; Lens, F., Smets, E., Melzer, S., Stem anatomy supports arabidopsis thaliana as a model for insular woodiness (2012) New Phytologist, 193, pp. 12-17; Lopez, D., Michelin, S., De Langre, E., Flow-induced pruning of branched systems and brittle reconfguration (2011) Journal of Theoretical Biology, 284, pp. 117-124; Makela, A., Grace, J.C., Deckmyn, G., Kantola, A., Campioli, M., Simulating wood quality in forest management models (2010) Forest Systems, 19, pp. 48-68; Martínez-Cabrera, H.I., Schenk, H.J., Cevallos-Ferriz, S.R.S., Jones, C.S., Integration of vessel traits, wood density, and height in angiosperm shrubs and trees (2011) American Journal of Botany, 98, pp. 915-922; Martone, P.T., Boller, M., Burgert, I., Dumais, J., Edwards, J., Mach, K., Rowe, N., Speck, T., Mechanics without muscle: Biomechanical inspiration from the plant world (2010) Integrative and Comparative Biology, 50, pp. 888-907; Matsuzaki, J., Masumori, M., Tange, T., Stem phototropism of trees: A possible significant factor in determining stem inclination on forest slopes (2006) Annals of Botany, 98, pp. 573-581; McMahon, T.A., Size and shape in biology (1973) Science, 179, pp. 1202-1204; Medhurst, J., Downes, G., Ottenschlaeger, M., Harwood, C., Evans, R., Beadle, C., Intra-specific competition and the radial development of wood density, microfibril angle and modulus of elasticity in plantation-grown eucalyptus nitens (2012) Trees – Structure and Function, 26, pp. 1771-1780; Menard, L., McKey, D., Rowe, N., Developmental plasticity and biomechanics of treelets and lianas in manihot aff. Quinquepartita (Euphorbiaceae): A branch-angle climber of french guiana (2009) Annals of Botany, 103, pp. 1249-1259; Moulia, B., Plant biomechanics and mechanobiology are convergent paths to fourishing interdisciplinary research (2013) Journal of Experimental Botany, 64, pp. 4617-4633; Moulia, B., Coutand, C., Lenne, C., Posture control and skeletal mechanical acclimation in terrestrial plants: Implications for mechanical modeling of plant architecture (2006) American Journal of Botany, 93, pp. 1477-1489; Moulia, B., Der Loughian, C., Bastien, R., Integrative mechanobiology of growth and architectural development in changing mechanical environments (2011) Mechanical Integration of Plant Cells and Plants, 9, pp. 269-302. , Wojtaszek P, ed. Berlin/Heidelberg: Springer; Moulia, B., Fournier, M., The power and control of gravitropic movements in plants: A biomechanical and systems biology view (2009) Journal of Experimental Botany, 60, pp. 461-486; Moulia, B., Fournier-Djimbi, M., Optimal mechanical design of plant stems: The models behind the allometric power laws (1997) Proceedings of the First Plant Biomechanics Conference, , Vincent JFV, Jeronimidis G, eds. Reading: Centre for Biomimetics; Niklas, K.J., Dependency of the tensile modulus on transverse dimensions, water potential, and cell number of pith parenchyma (1988) American Journal of Botany, 75, pp. 1286-1292; Niklas, K.J., Plant biomechanics (1992) An Engineering Approach to Plant Form and Function, , Chicago: University of Chicago Press; Niklas, K.J., Plant allometry (1994) The Scaling of Form and Process, , Chicago: University of Chicago Press; Niklas, K.J., Mechanical properties of black locust (Robinia pseudoacacia L.) wood. Size- and age-dependent variations in sap-and heartwood (1997) Annals of Botany, 79, pp. 265-272; Niklas, K.J., Computing factors of safety against wind-induced tree stem damage (2000) Journal of Experimental Botany, 51, pp. 797-806; Niklas, K.J., Maximum plant height and the biophysical factors that limit it (2007) Tree Physiology, 27, pp. 433-440; Niklas, K.J., Cobb, E.D., Marler, T., A comparison between the record height-to-stem diameter allometries of pachycaulis and leptocaulis species (2006) Annals of Botany, 97, pp. 79-83; Niklas, K.J., Spatz, H.C., Vincent, J., Plant biomechanics: An overview and prospectus (2006) American Journal of Botany, 93, pp. 1369-1378; Niklas, K.J., Spatz, H.-C., Response to klaus mattheck's letter (2000) Trees – Structure and Function, 15, pp. 64-65; Niklas, K.J., Spatz, H.C., Growth and hydraulic (not mechanical) constraints govern the scaling of tree height and mass (2004) Proceedings of the National Academy of Sciences, USA, 101, pp. 15661-15663; Niklas, K.J., Spatz, H.C., Worldwide correlations of mechanical properties and green wood density (2010) American Journal of Botany, 97, pp. 1587-1594; Osunkoya, O.O., Omar-Ali, K., Amit, N., Dayan, J., Daud, D.S., Sheng, T.K., Comparative height-crown allometry and mechanical design in 22 tree species of kuala belalong rainforest, brunei, borneo (2007) American Journal of Botany, 94, pp. 1951-1962; Plucinski, M., Plucinski, S., Rodriguez-Iturbe, I., Consequences of the fractal architecture of trees on their structural measures (2008) Journal of Theoretical Biology, 251, pp. 82-92; Pretzsch, H., Forest dynamics, growth and yield (2009) From Measurement to Model, , Heidelberg: Springer; Read, J., Evans, R., Sanson, G.D., Kerr, S., Jaffre, T., Wood properties and trunk allometry of co-occurring rainforest canopy trees in a cyclone-prone environment (2011) American Journal of Botany, 98, pp. 1762-1772; Read, J., Stokes, A., Plant biomechanics in an ecological context (2006) American Journal of Botany, 93, pp. 1546-1565; Rodriguez, M., Langre, E., Moulia, B., A scaling law for the effects of architecture and allometry on tree vibration modes suggests a biological tuning to modal compartmentalization (2008) American Journal of Botany, 95, pp. 1523-1537; Rowe, N., Speck, T., Plant growth forms: An ecological and evolutionary perspective (2005) New Phytologist, 166, pp. 61-72; Salmen, L., Burgert, I., Cell wall features with regard to mechanical performance. A review COST action E35 2004-2008: Wood machining – Micromechanics and fracture (2009) Holzforschung, 63, pp. 121-129; Saren, M.P., Serimaa, R., Andersson, S., Saranpaa, P., Keckes, J., Fratzl, P., Effect of growth rate on mean microfibril angle and cross-sectional shape of tracheids of Norway spruce (2004) Trees – Structure and Function, 18, pp. 354-362; Schindler, D., Bauhus, J., Mayer, H., Wind effects on trees (2012) European Journal of Forest Research, 131, pp. 159-163; Scurfield, G., Reaction wood: Its structure and function (1973) Science, 179, pp. 647-655; Sellier, D., Fourcaud, T., Crown structure and wood properties: Influence on tree sway and response to high winds (2009) American Journal of Botany, 96, pp. 885-896; Siau, J.F., (1984) Transport Processes in Wood, , Berlin/Heidelberg: Springer; Sierra-De-Grado, R., Pando, V., Martinez-Zurimendi, P., Penalvo, A., Bascones, E., Moulia, B., Biomechanical differences in the stem straightening process among pinus pinaster provenances. A new approach for early selection of stem straightness (2008) Tree Physiology, 28, pp. 835-846; Sterck, F.J., Bongers, F., Ontogenetic changes in size, allometry, and mechanical design of tropical rain forest trees (1998) American Journal of Botany, 85, pp. 266-272; Stokes, A., (2000) The Supporting Roots of Trees and Woody Plants: Form, Function and Physiology, , Dordrecht, The Netherlands: Kluwer Academic Publishers; Sultan, S.E., Phenotypic plasticity for plant development, function and life history (2000) Trends in Plant Science, 5, pp. 537-542; Swenson, N.G., Enquist, B.J., Ecological and evolutionary determinants of a key plant functional trait: Wood density and its community-wide variation across latitude and elevation (2007) American Journal of Botany, 94, pp. 451-459; Taneda, H., Tateno, M., The criteria for biomass partitioning of the current shoot: Water transport versus mechanical support (2004) American Journal of Botany, 91, pp. 1949-1959; Tateno, M., Increase in lodging safety factor on thigmomorphogenetically dwarfed shoots of mulberry tree (1991) Physiologia Plantarum, 81, pp. 239-243; Tobin, B., Cermak, J., Chiatante, D., Towards developmental modelling of tree root systems (2007) Plant Biosystems, 141, pp. 481-501; Turner, I.M., (2001) The Ecology of Trees in the Tropical Rain Forest, , Cambridge: Cambridge University Press; Van Gelder, H.A., Poorter, L., Sterck, F.J., Wood mechanics, allometry, and life-history variation in a tropical rain forest tree community (2006) New Phytologist, 171, pp. 367-378; Violle, C., Navas, M.-L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., Garnier, E., Let the concept of trait be functional! (2007) Oikos, 116, pp. 882-892; Waghorn, M.J., Watt, M.S., Stand variation in pinus radiata and its relationship with allometric scaling and critical buckling height (2013) Annals of Botany, 111, pp. 675-680; Watt, M.S., Moore, J.R., Facon, J.-P., Modelling environmental variation in young's modulus for pinus radiata and implications for determination of critical buckling height (2006) Annals of Botany, 98, pp. 765-775; Westoby, M., Falster, D.S., Moles, A.T., Vesk, P.A., Wright, I.J., Plant ecological strategies: Some leading dimensions of variation between species (2002) Annual Review of Ecology and Systematics, 33, pp. 125-159; Wright, I.J., Reich, P.B., Westoby, M., The worldwide leaf economics spectrum (2004) Nature, 428, pp. 821-827; Wright, S.D., McConnaughay, K.D.M., Interpreting phenotypic plasticity: The importance of ontogeny (2002) Plant Species Biology, 17, pp. 119-131; Xu, P., Liu, H., Models of microfibril elastic modulus parallel to the cell axis (2004) Wood Science and Technology, 38, pp. 363-374; Yang, J.L., Bailleres, H., Evans, R., Downes, G., Evaluating growth strain of eucalyptus globulus labill. From SilviScan measurements (2006) Holzforschung, 60, pp. 574-579; Yang, J.L., Evans, R., Prediction of MOE of eucalypt wood from microfibril angle and density (2003) Holz Als Roh und Werkstoff, 61, pp. 449-452; Yoshida, M., Okuyama, T., Techniques for measuring growth stress on the xylem surface using strain and dial gauges (2002) Holzforschung, 56, pp. 461-467; Zhang, S.-B., Slik, J.W.F., Zhang, J.-L., Cao, K.-F., Spatial patterns of wood traits in China are controlled by phylogeny and the environment (2011) Global Ecology and Biogeography, 20, pp. 241-250 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 513  
Permanent link to this record
 

 
Author Almeras, T.; Derycke, M.; Jaouen, G.; Beauchene, J.; Fournier, M. openurl 
  Title Functional diversity in gravitropic reaction among tropical seedlings in relation to ecological and developmental traits Type Journal Article
  Year 2009 Publication Journal of Experimental Botany Abbreviated Journal J. Exp. Bot.  
  Volume 60 Issue 15 Pages 4397-4410  
  Keywords (up) Biomechanics; French Guiana; functional diversity; gravitropism; reaction wood; tropical rainforest  
  Abstract Gravitropism is necessary for plants to control the orientation of their axes while they grow in height. In woody plants, stem re-orientations are costly because they are achieved through diameter growth. The functional diversity of gravitropism was studied to check if the mechanisms involved and their efficiency may contribute to the differentiation of height growth strategies between forest tree species at the seedling stage. Seedlings of eight tropical species were grown tilted in a greenhouse, and their up-righting movement and diameter growth were measured over three months. Morphological, anatomical, and biomechanical traits were measured at the end of the survey. Curvature analysis was used to analyse the up-righting response along the stems. Variations in stem curvature depend on diameter growth, size effects, the increase in self-weight, and the efficiency of the gravitropic reaction. A biomechanical model was used to separate these contributions. Results showed that (i) gravitropic movements were based on a common mechanism associated to similar dynamic patterns, (ii) clear differences in efficiency (defined as the change in curvature achieved during an elementary diameter increment for a given stem diameter) existed between species, (iii) the equilibrium angle of the stem and the anatomical characters associated with the efficiency of the reaction also differed between species, and (iv) the differences in gravitropic reaction were related to the light requirements: heliophilic species, compared to more shade-tolerant species, had a larger efficiency and an equilibrium angle closer to vertical. This suggests that traits determining the gravitropic reaction are related to the strategy of light interception and may contribute to the differentiation of ecological strategies promoting the maintenance of biodiversity in tropical rainforests.  
  Address [Almeras, Tancrede; Derycke, Morgane; Jaouen, Gaelle] INRA, UMR Ecol Forets Guyane, F-97310 Kourou, France, Email: t_almeras@hotmail.com  
  Corporate Author Thesis  
  Publisher OXFORD UNIV PRESS Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0957 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000271389400017 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 96  
Permanent link to this record
 

 
Author Almeras, T.; Thibaut, A.; Gril, J. openurl 
  Title Effect of circumferential heterogeneity of wood maturation strain, modulus of elasticity and radial growth on the regulation of stem orientation in trees Type Journal Article
  Year 2005 Publication Trees-Structure and Function Abbreviated Journal Trees-Struct. Funct.  
  Volume 19 Issue 4 Pages 457-467  
  Keywords (up) biomechanics; reaction wood; maturation strain; Young's modulus; eccentricity  
  Abstract Active mechanisms of re-orientation are necessary to maintain the verticality of tree stems. They are achieved through the production of reaction wood, associated with circumferential variations of three factors related to cambial activity: maturation strain, longitudinal modulus of elasticity (MOE) and eccentric growth. These factors were measured on 17 mature trees from different botanical families and geographical locations. Various patterns of circumferential variation of these factors were identified. A biomechanical analysis based on beam theory was performed to quantify the individual impact of each factor. The main factor of re-orientation is the circumferential variation of maturation strains. However, this factor alone explains only 57% of the re-orientations. Other factors also have an effect through their interaction with maturation strains. Eccentric growth is generally associated with heterogeneity of maturation strains, and has an important complementary role, by increasing the width of wood with high maturation strain. Without this factor, the efficiency of re-orientations would be reduced by 31% for angiosperms and 26% for gymnosperms. In the case of angiosperms, MOE is often larger in tension wood than in normal wood. Without these variations, the efficiency of re-orientations would be reduced by 13%. In the case of gymnosperm trees, MOE of compression wood is lower than that of normal wood, so that re-orientation efficiency would be increased by 24% without this factor of variations.  
  Address Nagoya Univ, Lab Biomat Phys, Dept Bioagr Sci, Nagoya, Aichi 4648601, Japan, Email: t_almeras@hotmail.com  
  Corporate Author Thesis  
  Publisher SPRINGER Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0931-1890 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000229890700012 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 253  
Permanent link to this record
 

 
Author Jaouen, G.; Fournier, M.; Almeras, T. openurl 
  Title Thigmomorphogenesis versus light in biomechanical growth strategies of saplings of two tropical rain forest tree species Type Journal Article
  Year 2010 Publication Annals of Forest Science Abbreviated Journal Ann. For. Sci.  
  Volume 67 Issue 2 Pages 211  
  Keywords (up) biomechanics; thigmomorphogenesis; height growth strategies; tropical rain forest; French Guiana  
  Abstract In the dense tropical rainforest understorey, saplings exhibit different growth strategies aiming at reaching light levels better fitting their ecology. Investing mainly in height growth, at the expense of their width, a lot are close to mechanical instability. Tachigali melinonii, a long living heliophilic tree species, is frequently observed to be extremely slender and supported by neighbours. Such observations suggest an active growth control through the perception of mechanical environment. Mechanical environment or light availability, which one is the most influent on growth and slenderness (H/D)? To test this question, we recorded growth of control and staked saplings of two species with contrasting habits and ecology: T. melinonii, and Dicorynia guianensis, along a natural light gradient. Dicorynia, the more stable, responded more clearly to the staking treatment, showing slenderness increase when light is available, whereas for Tachigali, only light availability governed growth. For Tachigali, growth allocation is mainly governed by light availability and ontogeny, whereas Dicorynia is probably similar to the average tree strategy, using the thigmomorphogenetic physiological process to control its stability.  
  Address [Jaouen, Gaelle; Almeras, Tancrede] Univ Antilles Guyane, INRA, CNRS,Cirad, Unite Mixte Rech Ecol Forets Guyane,AgroParisTech, Kourou 97379, French Guiana, Email: gaelle.jaouen@ecofog.gf  
  Corporate Author Thesis  
  Publisher EDP SCIENCES S A Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1286-4560 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000276507100012 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 61  
Permanent link to this record
 

 
Author Fouquet, A.; Dubut, V.; Hataway, R.; Scotti-Saintagne, C.; Scotti, I.; Noonan, B. doi  openurl
  Title Isolation and characterisation of 19 microsatellite loci from the Amazonian frog Adenomera andreae (Amphibia: Anura: Leptodactylidae) Type Journal Article
  Year 2009 Publication Conservation Genetics Resources Abbreviated Journal Conserv. Genet. Res.  
  Volume 1 Issue 1 Pages 217-220  
  Keywords (up) Biomedicine  
  Abstract Nineteen novel microsatellite loci were isolated from Adenomera andreae, a widespread Amazonian frog considered to be a species complex. Three multiplex kits were optimized. Genetic diversity was assessed in 66 individuals sampled in three populations along the West of the Approuague River catchment (French Guiana). We also tested the multiplex kits in four other Adenomera and nine Leptodactylus species with 43.4 and 17.5% success respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Netherlands Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1877-7252 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 185  
Permanent link to this record
 

 
Author Zinger, L.; Donald, J.; Brosse, S.; Gonzalez, M.A.; Iribar, A.; Leroy, C.; Murienne, J.; Orivel, J.; Schimann, H.; Taberlet, P.; Lopes, C.M. doi  openurl
  Title Advances and prospects of environmental DNA in neotropical rainforests Type Journal Article
  Year 2020 Publication Advances in Ecological Research Abbreviated Journal Adv. Ecol. Res.  
  Volume 62 Issue Pages 331-373  
  Keywords (up) Biomonitoring; Conservation biology; DNA metabarcoding; eDNA; Environmental genomics; Neotropics; Rainforests  
  Abstract The rainforests of the Neotropics shelter a vast diversity of plant, animal and microscopic species that provide critical ecosystem goods and services for both local and worldwide populations. These environments face a major crisis due to increased deforestation, pollution, and climate change, emphasizing the need for more effective conservation efforts. The adequate monitoring of these ecosystems has proven a complex and time consuming endeavour, which depends on ever dwindling taxonomic expertise. To date, many species remain undiscovered, let alone described, with otherwise limited information regarding known species population distributions and densities. Overcoming these knowledge shortfalls and practical limitations is becoming increasingly possible through techniques based on environmental DNA (eDNA), i.e., DNA that can be obtained from environmental samples (e.g. tissues, soil, sediment, water, etc.). When coupled with high-throughput sequencing, these techniques now enable realistic, cost-effective, and standardisable biodiversity assessments. This opens up enormous opportunities for advancing our understanding of complex and species-rich tropical communities, but also in facilitating large-scale biomonitoring programs in the neotropics. In this review, we provide a brief introduction to eDNA methods, and an overview of their current and potential uses in both terrestrial and aquatic ecosystems of neotropical rainforests. We also discuss the limits and challenges of these methods for our understanding and monitoring of biodiversity, as well as future research and applied perspectives of these techniques in neotropical rainforests, and beyond. © 2020 Elsevier Ltd  
  Address Departamento de Zoologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro, SP, Brazil  
  Corporate Author Thesis  
  Publisher Academic Press Inc. Place of Publication Editor Dumbrell A.J.; Turner E.C.; Fayle T.M.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title Advances in Ecological Research  
  Series Volume 62 Series Issue Edition  
  ISSN 00652504 (Issn); 9780128211342 (Isbn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 995  
Permanent link to this record
 

 
Author Zaremski, A.; Gastonguay, L.; Zaremski, C.; Chaffanel, F.; Le Floch, G.; Beauchene, J. url  openurl
  Title Capacity of tropical forest soils of french guiana and réunion for depolluting the woods impregnated with biocides Type Journal Article
  Year 2013 Publication Bois et Forets des Tropiques Abbreviated Journal Bois Forets Tropiques  
  Volume 67 Issue 318 Pages 51-58  
  Keywords (up) Bioremediation; Copper chromium arsenic(CCA) wood-destroying fungi; Depollution; Loss of mass; Pentachlorophenol(PCP); Treated timber; Tropical soil  
  Abstract Wood material for a long time was treated with fungicides or insecticides whose impact on the soil after leaching constitutes a real environmental problem. Nowadays, most of the studies on degradation of these toxic products was carried out with microorganisms which have been isolated in the laboratory. The present study sought to refine the knowledge vis-à-vis these microorganisms, especially wood-destroying fungi degrading pollutants in situ, from which few data are actually available. To decontaminate treated wood, the capacity of wooddestroying microorganisms from tropical forest soils of French Guiana and Reunion was evaluated to degrade toxic biocides. These are pentachlorophenol (PCP) and copper- chromium arsenic based compounds (CCA). Monitoring the degradation of samples of red pine, Pinus resinosa, shows that soils of French Guiana are more efficient than those of Reunion Island in terms of microbial activity vis-àvis these two biocides. A significant difference in loss of mass in specimens of red pine treated with CCA and PCP can range from single to double (respectively 18% and 30%). These findings confirm that CCA is less leacher and less degradable than the PCP by microorganisms in the soil. According to the scale of mass loss in laboratory tests, the wood so treated would be classified very not durable after three years of contact with soil, while the treatment is expected to be very durable.  
  Address Cirad Umr Ecofog, BP 701, 97387 Kourou cedex, France  
  Corporate Author Thesis  
  Publisher Lavoisier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 17775760 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 12 May 2014; Source: Scopus; Language of Original Document: French Approved no  
  Call Number EcoFoG @ webmaster @ Serial 540  
Permanent link to this record
 

 
Author Lachenaud, P.; Rossi, V.; Thevenin, J.-M.; Doaré, F. url  openurl
  Title The “Guiana” genetic group: A new source of resistance to cacao (Theobroma cacao L.) black pod rot caused by Phytophthora capsici Type Journal Article
  Year 2015 Publication Crop Protection Abbreviated Journal Crop Prot.  
  Volume 67 Issue Pages 91-95  
  Keywords (up) Black pod; Cocoa; French guiana; Phytophthora capsici; Resistance; Phytophthora capsici; Theobroma cacao  
  Abstract Black pod rot, caused by Stramenopiles of the genus Phytophthora, leads to serious production losses in all cocoa growing zones. In order to reduce the impact of these pests, preference is given to genetic control using resistant varieties, and sources of resistance are actively being sought, particularly in wild cacao trees. Surveys were undertaken in the natural cacao tree populations of south-eastern French Guiana between 1985 and 1995 and an abundant amount of plant material belonging to a particular genetic group, the “Guiana” group, was collected. A great deal of work has shown the merits of this genetic group as a source of resistance to Phytophthora palmivora and megakarya. We describe here the results of a global study to assess the resistance of the 186 clones in the “Guiana” group “core collection” to a Guianese strain of Phytophthora capsici (strain Reg 2-6). This study, which used an efficient methodology (fifteen series of tests on leaf discs and a statistical test adapted to the ordinal nature of the basic data), showed that the “Guiana” genetic group is a major source of resistance to P.capsici. Strain Reg 2-6 proves to be particularly virulent, as the Scavina 6 control, an international reference for resistance to Phytophthora, is not resistant to it. However, 24 clones of the “Guiana” group are, and 92 have proved to be more resistant than Scavina 6, thereby showing the interest of the group in genetically controlling P.capsici.Thus, of the clones in the Guiana group that are more resistant to P.capsici than Scavina 6, some, which are also resistant to P.palmivora and/or Phytophthora megakarya, and also displaying some other notable qualities, could be incorporated into cocoa genetic improvement programmes in countries where P.capsici is rife on cacao trees.  
  Address CIRAD, UPR BSEF, BP 2572Yaoundé, Cameroon  
  Corporate Author Thesis  
  Publisher Elsevier Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 02612194 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 12 November 2014; Coden: Crptd; Correspondence Address: Lachenaud, P.; CIRAD, UPR 106, BP 701, France Approved no  
  Call Number EcoFoG @ webmaster @ Serial 565  
Permanent link to this record
 

 
Author González, A.L.; Céréghino, R.; Dézerald, O.; Farjalla, V.F.; Leroy, C.; Richardson, B.A.; Richardson, M.J.; Romero, G.Q.; Srivastava, D.S. url  doi
openurl 
  Title Ecological mechanisms and phylogeny shape invertebrate stoichiometry: A test using detritus-based communities across Central and South America Type Journal Article
  Year 2018 Publication Functional Ecology Abbreviated Journal Funct Ecol  
  Volume 32 Issue 10 Pages 2448-2463  
  Keywords (up) body size scaling; carnivores; detritivores; ecological stoichiometry; macroinvertebrates; nitrogen; phosphorous; phylogenetic signal  
  Abstract Stoichiometric differences among organisms can affect trophic interactions and rates of nutrient cycling within ecosystems. However, we still know little about either the underlying causes of these stoichiometric differences or the consistency of these differences across large geographical extents. Here, we analyse elemental (carbon, nitrogen, phosphorus) composition of 872 aquatic macroinvertebrates (71 species) inhabiting tank bromeliads (n = 140) from five distantly located sites across Central and South America to (i) test phylogenetic, trophic and body size scaling explanations for why organisms differ in elemental composition and (ii) determine whether patterns in elemental composition are universal or context dependent. Taxonomy explained most variance in elemental composition, even though phylogenetic signals were weak and limited to regional spatial extents and to the family level. The highest elemental contents and lowest carbon:nutrient ratios were found in organisms at high trophic levels and with smaller body size, regardless of geographical location. Carnivores may have higher nutrient content and lower carbon:nutrient ratios than their prey, as organisms optimize growth by choosing the most nutrient-rich resources to consume and then preferentially retain nutrients over carbon in their bodies. Smaller organisms grow proportionally faster than large organisms and so are predicted to have higher nutrient requirements to fuel RNA and protein synthesis. Geography influenced the magnitude, more than the direction, of the ecological and/or phylogenetic effects on elemental composition. Overall, our results show that both ecological (i.e. trophic group) and evolutionary drivers explain among-taxa variation in the elemental content of invertebrates, whereas intraspecific variation is mainly a function of body size. Our findings also demonstrate that restricting analyses of macroinvertebrate stoichiometry solely to either the local scale or species level affects inferences of the patterns in invertebrate elemental content and their underlying mechanisms.  
  Address  
  Corporate Author Thesis  
  Publisher John Wiley & Sons, Ltd (10.1111) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0269-8463 ISBN Medium  
  Area Expedition Conference  
  Notes doi: 10.1111/1365-2435.13197 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 849  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: