|   | 
Details
   web
Records
Author Dulormne, M.; Musseau, O.; Muller, F.; Toribio, A.; Bâ, A.
Title Effects of NaCl on growth, water status, N2 fixation, and ion distribution in Pterocarpus officinalis seedlings Type Journal Article
Year 2010 Publication Plant and Soil Abbreviated Journal Plant and Soil
Volume 327 Issue 1 Pages 23-34
Keywords (down) Bradyrhizobium; Leaf water potential; Nodulation; Salt; Swamp forest
Abstract Pterocarpus officinalis (Fabaceae) dominates in the swamp forests of the Lesser Antilles, submitted to strong variations of soil salinity (30-445 mM). This study aimed to assess the effect of salinity on growth, nodulation, N2 fixation, water status and ions content in P. officinalis and to clarify the mechanisms involved. Seedlings inoculated or not with two strains from areas of contrasting salinity levels (< to 50 or 445 mM) were watered with 0, 171 and 342 mM solutions of NaCl in greenhouse conditions. Non-inoculated seedlings were tolerant to a salinity of 171 mM, with no significant effect on seedling biomass. Evapotranspiration per unit of leaf area (E/TLa) remained unchanged at 171 mM. Maintenance of a constant E/TLa and especially the control of ion transport to the upper parts of the plant could explain seedling salt tolerance up to intermediate salinity conditions (171 mM). The two strains have a 99.8% genetic identity in spite of differences in their original habitats, this explaining the similar response of the symbiosis to salinity. The higher salt sensitivity of inoculated seedlings was linked to the sensitivity of both Bradyrhizobium strains (reduction of free-living cells) and to that of the nodulation process (fewer nodules and inhibition of N2-fixation) to intermediate salinity. © Springer Science + Business Media B.V. 2009.
Address LSTM-UMR 113, Université des Antilles et de la Guyane, UFR des Sciences Exactes et Naturelles, B.P. 592, 97159 Pointe-à-Pitre, Guadeloupe (F.W.I.), France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Cited By :12; Export Date: 7 February 2017 Approved no
Call Number EcoFoG @ webmaster @ Serial 727
Permanent link to this record
 

 
Author Dutech, C.; Joly, H.I.; Jarne, P.
Title Gene flow, historical population dynamics and genetic diversity within French Guianan populations of a rainforest tree species, Vouacapoua americana Type Journal Article
Year 2004 Publication Heredity Abbreviated Journal Heredity
Volume 92 Issue 2 Pages 69-77
Keywords (down) bottleneck; climatic change; extinction-recolonization; microsatellite; neotropical rainforest; pollen and seed dispersal
Abstract Both gene flow and historical events influence the genetic diversity of natural populations. One way to understand their respective impact is to analyze population genetic structure at large spatial scales. We studied the distribution of genetic diversity of 17 populations of Vouacapoua americana (Caesalpiniaceae) in French Guiana, using nine micro satellite loci. Low genetic diversity was observed within populations, with a mean allelic richness and gene diversity of 4.1 and 0.506, respectively, which could be due to low effective population size and/or past bottlenecks. Using the regression between F-st/(1-F-st), estimated between pairs of populations, and the logarithm of the geographical distance, the spatial genetic structure can partly be explained by isolation-by-distance and limited gene flow among populations. This result is in agreement with the species' biology, including seed and pollen dispersal by rodents and insects, respectively. In contrast, no clear genetic signal of historical events was found when examining genetic differentiation among populations in relation to biogeographical hypotheses or by testing for bottlenecks within populations. Our conclusion is that nuclear spatial genetic structure of V. americana, at the geographic scale of French Guiana, is better explained by gene flow rather than by historical events.
Address Cirad Foret Silvolab, Lab Genet & Ecol Mol, F-97387 Kourou, France, Email: cdutech@bordeaux.inra.fr
Corporate Author Thesis
Publisher NATURE PUBLISHING GROUP Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-067X ISBN Medium
Area Expedition Conference
Notes ISI:000188431700003 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 240
Permanent link to this record
 

 
Author Ponton, S.; Flanagan, L.B.; Alstad, K.P.; Johnson, B.G.; Morgenstern, K.; Kljun, N.; Black, T.A.; Barr, A.G.
Title Comparison of ecosystem water-use efficiency among Douglas-fir forest, aspen forest and grassland using eddy covariance and carbon isotope techniques Type Journal Article
Year 2006 Publication Global Change Biology Abbreviated Journal Glob. Change Biol.
Volume 12 Issue 2 Pages 294-310
Keywords (down) boreal forest; conifer forest; eddy covariance; grassland; stable isotopes
Abstract Comparisons were made among Douglas-fir forest, aspen (broad leaf deciduous) forest and wheatgrass (C-3) grassland for ecosystem-level water-use efficiency (WUE). WUE was defined as the ratio of photosynthetic CO2 assimilation rate and evapotranspiration (ET) rate. The ET data measured by eddy covariance were screened so that they overwhelmingly represented transpiration. The three sites used in this comparison spanned a range of vegetation (plant functional) types and environmental conditions within western Canada. When compared in the relative order Douglas-fir (located on Vancouver Island, BC), aspen (northern Saskatchewan), grassland (southern Alberta), the sites demonstrated a progressive decline in precipitation and a general increase in maximum air temperature and atmospheric saturation deficit (D-max) during the mid-summer. The average (+/- SD) WUE at the grassland site was 2.6 +/- 0.7 mmol mol(-1), which was much lower than the average values observed for the two other sites (aspen: 5.4 +/- 2.3, Douglas-fir: 8.1 +/- 2.4). The differences in WUE among sites were primarily because of variation in ET. The highest maximum ET rates were approximately 5, 3.2 and 2.7 mm day(-1) for the grassland, aspen and Douglas-fir sites, respectively. There was a strong negative correlation between WUE and D-max for all sites. We also made seasonal measurements of the carbon isotope ratio of ecosystem respired CO2 (delta(R)) in order to test for the expected correlation between shifts in environmental conditions and changes to the ecosystem-integrated ratio of leaf intercellular to ambient CO2 concentration (c(i)/c(a)). There was a consistent increase in delta(R) values in the grassland, aspen forest and Douglas-fir forest associated with a seasonal reduction in soil moisture. Comparisons were made between WUE measured using eddy covariance with that calculated based on D and delta(R) measurements. There was excellent agreement between WUE values calculated using the two techniques. Our delta(R) measurements indicated that c(i)/c(a) values were quite similar among the Douglas-fir, aspen and grassland sites, despite large variation in environmental conditions among sites. This implied that the shorter-lived grass species had relatively high c(i)/c(a) values for the D of their habitat. By contrast, the longer-lived Douglas-fir trees were more conservative in water-use with lower c(i)/c(a) values relative to their habitat D. This illustrates the interaction between biological and environmental characteristics influencing ecosystem-level WUE. The strong correlation we observed between the two independent measurements of WUE, indicates that the stable isotope composition of respired CO2 is a useful ecosystem-scale tool to help study constraints to photosynthesis and acclimation of ecosystems to environmental stress.
Address Univ Lethbridge, Dept Biol Sci, Lethbridge, AB T1K 3M4, Canada, Email: larry.flanagan@uleth.ca
Corporate Author Thesis
Publisher BLACKWELL PUBLISHING Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1354-1013 ISBN Medium
Area Expedition Conference
Notes ISI:000234974900013 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 226
Permanent link to this record
 

 
Author Levionnois, S.; Jansen, S.; Wandji, R.T.; Beauchêne, J.; Ziegler, C.; Coste, S.; Stahl, C.; Delzon, S.; Authier, L.; Heuret, P.
Title Linking drought-induced xylem embolism resistance to wood anatomical traits in Neotropical trees Type Journal Article
Year 2021 Publication New Phytologist Abbreviated Journal New Phytol.
Volume 229 Issue 3 Pages 1453-1466
Keywords (down) bordered pits; drought-induced embolism; pit membrane; transmission electron microscopy; tropical trees; vessel grouping; xylem anatomy
Abstract Drought-induced xylem embolism is considered to be one of the main factors driving mortality in woody plants worldwide. Although several structure–functional mechanisms have been tested to understand the anatomical determinants of embolism resistance, there is a need to study this topic by integrating anatomical data for many species. We combined optical, laser, and transmission electron microscopy to investigate vessel diameter, vessel grouping, and pit membrane ultrastructure for 26 tropical rainforest tree species across three major clades (magnoliids, rosiids, and asteriids). We then related these anatomical observations to previously published data on drought-induced embolism resistance, with phylogenetic analyses. Vessel diameter, vessel grouping, and pit membrane ultrastructure were all predictive of xylem embolism resistance, but with weak predictive power. While pit membrane thickness was a predictive trait when vestured pits were taken into account, the pit membrane diameter-to-thickness ratio suggests a strong importance of the deflection resistance of the pit membrane. However, phylogenetic analyses weakly support adaptive coevolution. Our results emphasize the functional significance of pit membranes for air-seeding in tropical rainforest trees, highlighting also the need to study their mechanical properties due to the link between embolism resistance and pit membrane diameter-to-thickness ratio. Finding support for adaptive coevolution also remains challenging. © 2020 The Authors New Phytologist © 2020 New Phytologist Foundation
Address UMR BIOGECO, INRAE, Université de Bordeaux, Pessac, 33615, France
Corporate Author Thesis
Publisher Blackwell Publishing Ltd Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028646x (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 997
Permanent link to this record
 

 
Author González, A.L.; Céréghino, R.; Dézerald, O.; Farjalla, V.F.; Leroy, C.; Richardson, B.A.; Richardson, M.J.; Romero, G.Q.; Srivastava, D.S.
Title Ecological mechanisms and phylogeny shape invertebrate stoichiometry: A test using detritus-based communities across Central and South America Type Journal Article
Year 2018 Publication Functional Ecology Abbreviated Journal Funct Ecol
Volume 32 Issue 10 Pages 2448-2463
Keywords (down) body size scaling; carnivores; detritivores; ecological stoichiometry; macroinvertebrates; nitrogen; phosphorous; phylogenetic signal
Abstract Stoichiometric differences among organisms can affect trophic interactions and rates of nutrient cycling within ecosystems. However, we still know little about either the underlying causes of these stoichiometric differences or the consistency of these differences across large geographical extents. Here, we analyse elemental (carbon, nitrogen, phosphorus) composition of 872 aquatic macroinvertebrates (71 species) inhabiting tank bromeliads (n = 140) from five distantly located sites across Central and South America to (i) test phylogenetic, trophic and body size scaling explanations for why organisms differ in elemental composition and (ii) determine whether patterns in elemental composition are universal or context dependent. Taxonomy explained most variance in elemental composition, even though phylogenetic signals were weak and limited to regional spatial extents and to the family level. The highest elemental contents and lowest carbon:nutrient ratios were found in organisms at high trophic levels and with smaller body size, regardless of geographical location. Carnivores may have higher nutrient content and lower carbon:nutrient ratios than their prey, as organisms optimize growth by choosing the most nutrient-rich resources to consume and then preferentially retain nutrients over carbon in their bodies. Smaller organisms grow proportionally faster than large organisms and so are predicted to have higher nutrient requirements to fuel RNA and protein synthesis. Geography influenced the magnitude, more than the direction, of the ecological and/or phylogenetic effects on elemental composition. Overall, our results show that both ecological (i.e. trophic group) and evolutionary drivers explain among-taxa variation in the elemental content of invertebrates, whereas intraspecific variation is mainly a function of body size. Our findings also demonstrate that restricting analyses of macroinvertebrate stoichiometry solely to either the local scale or species level affects inferences of the patterns in invertebrate elemental content and their underlying mechanisms.
Address
Corporate Author Thesis
Publisher John Wiley & Sons, Ltd (10.1111) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0269-8463 ISBN Medium
Area Expedition Conference
Notes doi: 10.1111/1365-2435.13197 Approved no
Call Number EcoFoG @ webmaster @ Serial 849
Permanent link to this record
 

 
Author Lachenaud, P.; Rossi, V.; Thevenin, J.-M.; Doaré, F.
Title The “Guiana” genetic group: A new source of resistance to cacao (Theobroma cacao L.) black pod rot caused by Phytophthora capsici Type Journal Article
Year 2015 Publication Crop Protection Abbreviated Journal Crop Prot.
Volume 67 Issue Pages 91-95
Keywords (down) Black pod; Cocoa; French guiana; Phytophthora capsici; Resistance; Phytophthora capsici; Theobroma cacao
Abstract Black pod rot, caused by Stramenopiles of the genus Phytophthora, leads to serious production losses in all cocoa growing zones. In order to reduce the impact of these pests, preference is given to genetic control using resistant varieties, and sources of resistance are actively being sought, particularly in wild cacao trees. Surveys were undertaken in the natural cacao tree populations of south-eastern French Guiana between 1985 and 1995 and an abundant amount of plant material belonging to a particular genetic group, the “Guiana” group, was collected. A great deal of work has shown the merits of this genetic group as a source of resistance to Phytophthora palmivora and megakarya. We describe here the results of a global study to assess the resistance of the 186 clones in the “Guiana” group “core collection” to a Guianese strain of Phytophthora capsici (strain Reg 2-6). This study, which used an efficient methodology (fifteen series of tests on leaf discs and a statistical test adapted to the ordinal nature of the basic data), showed that the “Guiana” genetic group is a major source of resistance to P.capsici. Strain Reg 2-6 proves to be particularly virulent, as the Scavina 6 control, an international reference for resistance to Phytophthora, is not resistant to it. However, 24 clones of the “Guiana” group are, and 92 have proved to be more resistant than Scavina 6, thereby showing the interest of the group in genetically controlling P.capsici.Thus, of the clones in the Guiana group that are more resistant to P.capsici than Scavina 6, some, which are also resistant to P.palmivora and/or Phytophthora megakarya, and also displaying some other notable qualities, could be incorporated into cocoa genetic improvement programmes in countries where P.capsici is rife on cacao trees.
Address CIRAD, UPR BSEF, BP 2572Yaoundé, Cameroon
Corporate Author Thesis
Publisher Elsevier Ltd Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 02612194 (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 12 November 2014; Coden: Crptd; Correspondence Address: Lachenaud, P.; CIRAD, UPR 106, BP 701, France Approved no
Call Number EcoFoG @ webmaster @ Serial 565
Permanent link to this record
 

 
Author Zaremski, A.; Gastonguay, L.; Zaremski, C.; Chaffanel, F.; Le Floch, G.; Beauchene, J.
Title Capacity of tropical forest soils of french guiana and réunion for depolluting the woods impregnated with biocides Type Journal Article
Year 2013 Publication Bois et Forets des Tropiques Abbreviated Journal Bois Forets Tropiques
Volume 67 Issue 318 Pages 51-58
Keywords (down) Bioremediation; Copper chromium arsenic(CCA) wood-destroying fungi; Depollution; Loss of mass; Pentachlorophenol(PCP); Treated timber; Tropical soil
Abstract Wood material for a long time was treated with fungicides or insecticides whose impact on the soil after leaching constitutes a real environmental problem. Nowadays, most of the studies on degradation of these toxic products was carried out with microorganisms which have been isolated in the laboratory. The present study sought to refine the knowledge vis-à-vis these microorganisms, especially wood-destroying fungi degrading pollutants in situ, from which few data are actually available. To decontaminate treated wood, the capacity of wooddestroying microorganisms from tropical forest soils of French Guiana and Reunion was evaluated to degrade toxic biocides. These are pentachlorophenol (PCP) and copper- chromium arsenic based compounds (CCA). Monitoring the degradation of samples of red pine, Pinus resinosa, shows that soils of French Guiana are more efficient than those of Reunion Island in terms of microbial activity vis-àvis these two biocides. A significant difference in loss of mass in specimens of red pine treated with CCA and PCP can range from single to double (respectively 18% and 30%). These findings confirm that CCA is less leacher and less degradable than the PCP by microorganisms in the soil. According to the scale of mass loss in laboratory tests, the wood so treated would be classified very not durable after three years of contact with soil, while the treatment is expected to be very durable.
Address Cirad Umr Ecofog, BP 701, 97387 Kourou cedex, France
Corporate Author Thesis
Publisher Lavoisier Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 17775760 (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 12 May 2014; Source: Scopus; Language of Original Document: French Approved no
Call Number EcoFoG @ webmaster @ Serial 540
Permanent link to this record
 

 
Author Zinger, L.; Donald, J.; Brosse, S.; Gonzalez, M.A.; Iribar, A.; Leroy, C.; Murienne, J.; Orivel, J.; Schimann, H.; Taberlet, P.; Lopes, C.M.
Title Advances and prospects of environmental DNA in neotropical rainforests Type Journal Article
Year 2020 Publication Advances in Ecological Research Abbreviated Journal Adv. Ecol. Res.
Volume 62 Issue Pages 331-373
Keywords (down) Biomonitoring; Conservation biology; DNA metabarcoding; eDNA; Environmental genomics; Neotropics; Rainforests
Abstract The rainforests of the Neotropics shelter a vast diversity of plant, animal and microscopic species that provide critical ecosystem goods and services for both local and worldwide populations. These environments face a major crisis due to increased deforestation, pollution, and climate change, emphasizing the need for more effective conservation efforts. The adequate monitoring of these ecosystems has proven a complex and time consuming endeavour, which depends on ever dwindling taxonomic expertise. To date, many species remain undiscovered, let alone described, with otherwise limited information regarding known species population distributions and densities. Overcoming these knowledge shortfalls and practical limitations is becoming increasingly possible through techniques based on environmental DNA (eDNA), i.e., DNA that can be obtained from environmental samples (e.g. tissues, soil, sediment, water, etc.). When coupled with high-throughput sequencing, these techniques now enable realistic, cost-effective, and standardisable biodiversity assessments. This opens up enormous opportunities for advancing our understanding of complex and species-rich tropical communities, but also in facilitating large-scale biomonitoring programs in the neotropics. In this review, we provide a brief introduction to eDNA methods, and an overview of their current and potential uses in both terrestrial and aquatic ecosystems of neotropical rainforests. We also discuss the limits and challenges of these methods for our understanding and monitoring of biodiversity, as well as future research and applied perspectives of these techniques in neotropical rainforests, and beyond. © 2020 Elsevier Ltd
Address Departamento de Zoologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro, SP, Brazil
Corporate Author Thesis
Publisher Academic Press Inc. Place of Publication Editor Dumbrell A.J.; Turner E.C.; Fayle T.M.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title Advances in Ecological Research
Series Volume 62 Series Issue Edition
ISSN 00652504 (Issn); 9780128211342 (Isbn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 995
Permanent link to this record
 

 
Author Fouquet, A.; Dubut, V.; Hataway, R.; Scotti-Saintagne, C.; Scotti, I.; Noonan, B.
Title Isolation and characterisation of 19 microsatellite loci from the Amazonian frog Adenomera andreae (Amphibia: Anura: Leptodactylidae) Type Journal Article
Year 2009 Publication Conservation Genetics Resources Abbreviated Journal Conserv. Genet. Res.
Volume 1 Issue 1 Pages 217-220
Keywords (down) Biomedicine
Abstract Nineteen novel microsatellite loci were isolated from Adenomera andreae, a widespread Amazonian frog considered to be a species complex. Three multiplex kits were optimized. Genetic diversity was assessed in 66 individuals sampled in three populations along the West of the Approuague River catchment (French Guiana). We also tested the multiplex kits in four other Adenomera and nine Leptodactylus species with 43.4 and 17.5% success respectively.
Address
Corporate Author Thesis
Publisher Springer Netherlands Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1877-7252 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ eric.marcon @ Serial 185
Permanent link to this record
 

 
Author Jaouen, G.; Fournier, M.; Almeras, T.
Title Thigmomorphogenesis versus light in biomechanical growth strategies of saplings of two tropical rain forest tree species Type Journal Article
Year 2010 Publication Annals of Forest Science Abbreviated Journal Ann. For. Sci.
Volume 67 Issue 2 Pages 211
Keywords (down) biomechanics; thigmomorphogenesis; height growth strategies; tropical rain forest; French Guiana
Abstract In the dense tropical rainforest understorey, saplings exhibit different growth strategies aiming at reaching light levels better fitting their ecology. Investing mainly in height growth, at the expense of their width, a lot are close to mechanical instability. Tachigali melinonii, a long living heliophilic tree species, is frequently observed to be extremely slender and supported by neighbours. Such observations suggest an active growth control through the perception of mechanical environment. Mechanical environment or light availability, which one is the most influent on growth and slenderness (H/D)? To test this question, we recorded growth of control and staked saplings of two species with contrasting habits and ecology: T. melinonii, and Dicorynia guianensis, along a natural light gradient. Dicorynia, the more stable, responded more clearly to the staking treatment, showing slenderness increase when light is available, whereas for Tachigali, only light availability governed growth. For Tachigali, growth allocation is mainly governed by light availability and ontogeny, whereas Dicorynia is probably similar to the average tree strategy, using the thigmomorphogenetic physiological process to control its stability.
Address [Jaouen, Gaelle; Almeras, Tancrede] Univ Antilles Guyane, INRA, CNRS,Cirad, Unite Mixte Rech Ecol Forets Guyane,AgroParisTech, Kourou 97379, French Guiana, Email: gaelle.jaouen@ecofog.gf
Corporate Author Thesis
Publisher EDP SCIENCES S A Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1286-4560 ISBN Medium
Area Expedition Conference
Notes ISI:000276507100012 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 61
Permanent link to this record