|   | 
Details
   web
Records
Author Pavoine, S.; Marcon, E.; Ricotta, C.
Title ‘Equivalent numbers’ for species, phylogenetic or functional diversity in a nested hierarchy of multiple scales Type Journal Article
Year 2016 Publication Methods in Ecology and Evolution Abbreviated Journal Methods in Ecology and Evolution
Volume 7 Issue 10 Pages 1152-1163
Keywords (up) alpha diversity; beta diversity; biodiversity; community ecology; community phylogenetics; diversity apportionment; gamma diversity; quadratic entropy
Abstract Many recent studies have searched to integrate species’ functions and phylogenies in the measurement of biodiversity. To obtain easily interpretable measures, some researchers recommended diversity indices expressed in terms of equivalent numbers of species: the number of equally likely and maximally dissimilar species needed to produce the given value of diversity. Then, biodiversity is often calculated at three scales: within communities (α diversity), among communities (β diversity) and in a region (γ diversity). These three scales are, however, insufficient to tackle the organization of biodiversity in space because, for most organisms, there is a nested hierarchy of multiple scales characterized by different patterns and processes, from the small neighbourhood to the biosphere. We developed methodologies for analysing species, functional, taxonomic or phylogenetic diversity in a hierarchy of multiple scales using equivalent numbers of species. As an example, we analysed the taxonomic and functional diversity of macroinvertebrate assemblages in the Loire River, France, at four levels: within sites (α diversity), among sites within geological regions (β1 diversity), among geological regions (β2 diversity) and at the river scale (γ diversity). The new hierarchical approaches of biodiversity revealed very low differences among sites within regions and among regions in terms of taxonomy and functional traits (size and diet), despite moderate, significant species turnover among geological regions. We compare our framework with those other authors have developed. We argue that different definitions of α, β, γ diversities are used in the literature reflecting different points of view on biodiversity. We make recommendations on how to normalize functional (or phylogenetic) dissimilarities among species to render sites and regions comparable, and discuss the pros and cons of our approach. The hierarchical approaches of biodiversity in terms of ‘equivalent numbers’ respond to current demands to obtain intuitive, easily interpretable components of biodiversity. The approaches we propose go beyond current developments by considering a hierarchy of spatial scales and unbalanced sampling design. They will provide powerful tools to detect the ecological and evolutionary processes that act differently at different scales. © 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society
Address Department of Environmental Biology, University of Rome ‘La Sapienza’, Piazzale Aldo Moro 5, Rome, Italy
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 20 October 2016 Approved no
Call Number EcoFoG @ webmaster @ Serial 697
Permanent link to this record
 

 
Author Orivel, J.; Klimes, P.; Novotny, V.; Leponce, M.
Title Resource use and food preferences in understory ant communities along a complete elevational gradient in Papua New Guinea Type Journal Article
Year 2018 Publication Biotropica Abbreviated Journal Biotropica
Volume 50 Issue 4 Pages 641-648
Keywords (up) altitudinal gradient; food resources; Formicidae; Mt Wilhelm; nutritional ecology
Abstract Elevational gradients provide an interesting opportunity for studying the effect of climatic drivers over short distances on the various facets of biodiversity. It is globally assumed that the decrease in species richness with increasing elevation follows mainly the decrease in ecosystem productivity, but studies on functional diversity still remain limited. Here, we investigated how resource use and food preferences by both individual ant species and communities foraging in the understory vary with elevation along a complete elevational gradient (200 to 3200 m asl). Five bait types reflecting some of the main ecosystem processes in which ants are involved were tested: mutualism (sucrose and melezitose), predation (live termites), and detritivory (crushed insects and chicken feces). The observed monotonic decrease in both species richness and occurrences with elevation increase was accompanied by changes in some of the tested ecosystem processes. Such variations can be explained by resource availability and/or resource limitation: Predation and bird feces removal decreased with increasing elevation possibly reflecting a decline in species able to use these resources, while insect detritivory and nectarivory were most probably driven by resource limitation (or absence of limitation), as their relative use did not change along the gradient. Consequently, resource attractiveness (i.e., food preferences at the species level) appears as an important factor in driving community structuring in ants together with the abiotic environmental conditions.
Address
Corporate Author Thesis
Publisher John Wiley & Sons, Ltd (10.1111) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-3606 ISBN Medium
Area Expedition Conference
Notes doi: 10.1111/btp.12539 Approved no
Call Number EcoFoG @ webmaster @ Serial 893
Permanent link to this record
 

 
Author Honorio Coronado, E.N.; Dexter, K.G.; Pennington, R.T.; Chave, J.; Lewis, S.L.; Alexiades, M.N.; Alvarez, E.; Alves de Oliveira, A.; Amaral, I.L.; Araujo-Murakami, A.; Arets, E.J.M.M.; Aymard, G.A.; Baraloto, C.; Bonal, D.; Brienen, R.; Cerón, C.; Cornejo Valverde, F.; Di Fiore, A.; Farfan-Rios, W.; Feldpausch, T.R.; Higuchi, N.; Huamantupa-Chuquimaco, I.; Laurance, S.G.; Laurance, W.F.; López-Gonzalez, G.; Marimon, B.S.; Marimon-Junior, B.H.; Monteagudo Mendoza, A.; Neill, D.; Palacios Cuenca, W.; Peñuela Mora, M.C.; Pitman, N.C.A.; Prieto, A.; Quesada, C.A.; Ramirez Angulo, H.; Rudas, A.; Ruschel, A.R.; Salinas Revilla, N.; Salomão, R.P.; Segalin de Andrade, A.; Silman, M.R.; Spironello, W.; ter Steege, H.; Terborgh, J.; Toledo, M.; Valenzuela Gamarra, L.; Vieira, I.C.G.; Vilanova Torre, E.; Vos, V.; Phillips, O.L.
Title Phylogenetic diversity of Amazonian tree communities Type Journal Article
Year 2015 Publication Diversity and Distributions Abbreviated Journal Diversity and Distributions
Volume 21 Issue 11 Pages 1295-1307
Keywords (up) Amazon basin; Eudicots; Magnoliids; Monocots; Phylogenetic diversity; Species richness
Abstract Aim: To examine variation in the phylogenetic diversity (PD) of tree communities across geographical and environmental gradients in Amazonia. Location: Two hundred and eighty-three c. 1 ha forest inventory plots from across Amazonia. Methods: We evaluated PD as the total phylogenetic branch length across species in each plot (PDss), the mean pairwise phylogenetic distance between species (MPD), the mean nearest taxon distance (MNTD) and their equivalents standardized for species richness (ses.PDss, ses.MPD, ses.MNTD). We compared PD of tree communities growing (1) on substrates of varying geological age; and (2) in environments with varying ecophysiological barriers to growth and survival. Results: PDss is strongly positively correlated with species richness (SR), whereas MNTD has a negative correlation. Communities on geologically young- and intermediate-aged substrates (western and central Amazonia respectively) have the highest SR, and therefore the highest PDss and the lowest MNTD. We find that the youngest and oldest substrates (the latter on the Brazilian and Guiana Shields) have the highest ses.PDss and ses.MNTD. MPD and ses.MPD are strongly correlated with how evenly taxa are distributed among the three principal angiosperm clades and are both highest in western Amazonia. Meanwhile, seasonally dry tropical forest (SDTF) and forests on white sands have low PD, as evaluated by any metric. Main conclusions: High ses.PDss and ses.MNTD reflect greater lineage diversity in communities. We suggest that high ses.PDss and ses.MNTD in western Amazonia results from its favourable, easy-to-colonize environment, whereas high values in the Brazilian and Guianan Shields may be due to accumulation of lineages over a longer period of time. White-sand forests and SDTF are dominated by close relatives from fewer lineages, perhaps reflecting ecophysiological barriers that are difficult to surmount evolutionarily. Because MPD and ses.MPD do not reflect lineage diversity per se, we suggest that PDss, ses.PDss and ses.MNTD may be the most useful diversity metrics for setting large-scale conservation priorities. © 2015 John Wiley & Sons Ltd.
Address Universidad Autónoma del Beni, Av. Ejército Nacional, Riberalta, Riberalta, Bolivia
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 22 October 2015 Approved no
Call Number EcoFoG @ webmaster @ Serial 634
Permanent link to this record
 

 
Author Fortunel, C.; Paine, C.E.T.; Fine, P.V.A.; Mesones, I.; Goret, J.; Burban, B.; Cazal, J.; Baraloto, C.; Comita, L.
Title There's no place like home: seedling mortality contributes to the habitat specialisation of tree species across Amazonia Type Journal Article
Year 2016 Publication Ecology Letters Abbreviated Journal Ecology Letters
Volume 19 Issue 10 Pages 1256-1266
Keywords (up) Amazon basin; forests habitats; habitat association; herbivory; light availability; plant lineages; rainfall temporal variation; seedling performance; soil fertility; tropical trees
Abstract Understanding the mechanisms generating species distributions remains a challenge, especially in hyperdiverse tropical forests. We evaluated the role of rainfall variation, soil gradients and herbivory on seedling mortality, and how variation in seedling performance along these gradients contributes to habitat specialisation. In a 4-year experiment, replicated at the two extremes of the Amazon basin, we reciprocally transplanted 4638 tree seedlings of 41 habitat-specialist species from seven phylogenetic lineages among the three most important forest habitats of lowland Amazonia. Rainfall variation, flooding and soil gradients strongly influenced seedling mortality, whereas herbivory had negligible impact. Seedling mortality varied strongly among habitats, consistent with predictions for habitat specialists in most lineages. This suggests that seedling performance is a primary determinant of the habitat associations of adult trees across Amazonia. It further suggests that tree diversity, currently mostly harboured in terra firme forests, may be strongly impacted by the predicted climate changes in Amazonia. © 2016 John Wiley & Sons Ltd/CNRS
Address Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, United States
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 27 October 2016 Approved no
Call Number EcoFoG @ webmaster @ Serial 698
Permanent link to this record
 

 
Author Gloor, M.; Phillips, O.L.; Lloyd, J.J.; Lewis, S.L.; Malhi, Y.; Baker, T.R.; Lopez-Gonzalez, G.; Peacock, J.; Almeida, S.; de Oliveira, A.C.A.; Alvarez, E.; Amaral, I.; Arroyo, L.; Aymard, G.; Banki, O.; Blanc, L.; Bonal, D.; Brando, P.; Chao, K.J.; Chave, J.; Davila, N.; Erwin, T.; Silva, J.; Di Fiore, A.; Feldpausch, T.R.; Freitas, A.; Herrera, R.; Higuchi, N.; Honorio, E.; Jimenez, E.; Killeen, T.; Laurance, W.; Mendoza, C.; Monteagudo, A.; Andrade, A.; Neill, D.; Nepstad, D.; Vargas, P.N.; Penuela, M.C.; Cruz, A.P.; Prieto, A.; Pitman, N.; Quesada, C.; Salomao, R.; Silveira, M.; Schwarz, M.; Stropp, J.; Ramirez, F.; Ramirez, H.; Rudas, A.; ter Steege, H.; Silva, N.; Torres, A.; Terborgh, J.; Vasquez, R.; van der Heijden, G.
Title Does the disturbance hypothesis explain the biomass increase in basin-wide Amazon forest plot data? Type Journal Article
Year 2009 Publication Global Change Biology Abbreviated Journal Glob. Change Biol.
Volume 15 Issue 10 Pages 2418-2430
Keywords (up) Amazon rainforest; carbon sink; disturbance; mortality; power law
Abstract Positive aboveground biomass trends have been reported from old-growth forests across the Amazon basin and hypothesized to reflect a large-scale response to exterior forcing. The result could, however, be an artefact due to a sampling bias induced by the nature of forest growth dynamics. Here, we characterize statistically the disturbance process in Amazon old-growth forests as recorded in 135 forest plots of the RAINFOR network up to 2006, and other independent research programmes, and explore the consequences of sampling artefacts using a data-based stochastic simulator. Over the observed range of annual aboveground biomass losses, standard statistical tests show that the distribution of biomass losses through mortality follow an exponential or near-identical Weibull probability distribution and not a power law as assumed by others. The simulator was parameterized using both an exponential disturbance probability distribution as well as a mixed exponential-power law distribution to account for potential large-scale blowdown events. In both cases, sampling biases turn out to be too small to explain the gains detected by the extended RAINFOR plot network. This result lends further support to the notion that currently observed biomass gains for intact forests across the Amazon are actually occurring over large scales at the current time, presumably as a response to climate change.
Address [Gloor, M.; Phillips, O. L.; Lloyd, J. J.; Lewis, S. L.; Baker, T. R.; Lopez-Gonzalez, G.; Peacock, J.; Feldpausch, T. R.] Univ Leeds, Sch Geog, Leeds LS2 9JT, W Yorkshire, England, Email: eugloor@googlemail.com
Corporate Author Thesis
Publisher WILEY-BLACKWELL PUBLISHING, INC Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1354-1013 ISBN Medium
Area Expedition Conference
Notes ISI:000269577800006 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 196
Permanent link to this record
 

 
Author Rowland, L.; Stahl, C.; Bonal, D.; Siebicke, L.; Williams, M.; Meir, P.
Title The Response of Tropical Rainforest Dead Wood Respiration to Seasonal Drought Type Journal Article
Year 2013 Publication Ecosystems Abbreviated Journal Ecosystems
Volume 16 Issue 7 Pages 1294-1309
Keywords (up) Amazon rainforest; coarse woody debris; respiration; seasonal drought; soil water content; woody moisture content
Abstract Coarse woody debris (CWD, dead wood sections ≥10 cm diameter) represents a large store of carbon in tropical forests; however, estimates of the flux of carbon from CWD in these forests remain poorly constrained. The objective of this study was to resolve the dry/wet season response of respiration in CWD (Rcwd), and investigate the importance of biotic and abiotic factors for predicting the seasonal change of Rcwd at the ecosystem level. This study presents a 4-month time series of Rcwd measurements conducted on 42 dead trees (26 species) at the Paracou Research Station in French Guiana. Rcwd measurements were repeated 13 times on each CWD sample from July to November 2011, spanning the transition from wet to dry season, and then from dry season to the following wet season. Seasonal drought caused monthly Rcwd to drop by 20.5 ± 5.1% over the wet-dry transition. Changes in woody tissue moisture content explained 41.9% of the measured seasonal variability in Rcwd, but 60% of the seasonal variability in mean forest Rcwd rates could be modelled using surface soil water content. We estimate that Rcwd is approximately 5% of annual ecosystem respiration (Reco) and that seasonal variations in Rcwd contribute appreciably to seasonal variations of Reco, and should be included in functional models simulating the response of tropical rainforest ecosystems to current and future climate. © 2013 Springer Science+Business Media New York.
Address Division of Plant Sciences, Research School of Biology, The Australian National University, ACT, Australian Capital Territory, 0200, Australia
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 14329840 (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 18 October 2013; Source: Scopus; Coden: Ecosf; doi: 10.1007/s10021-013-9684-x; Language of Original Document: English; Correspondence Address: Rowland, L.; School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom; email: lucy.rowland@ed.ac.uk; Funding Details: NE/F002149/1, NERC, Natural Environment Research Council; Funding Details: NE/J011002/1, NERC, Natural Environment Research Council; Funding Details: FT110100457, ARC, Australian Research Council Approved no
Call Number EcoFoG @ webmaster @ Serial 506
Permanent link to this record
 

 
Author Ziegler, C.; Coste, S.; Stahl, C.; Delzon, S.; Levionnois, S.; Cazal, J.; Cochard, H.; Esquivel-Muelbert, A.; Goret, J.-Y.; Heuret, P.; Jaouen, G.; Santiago, L.S.; Bonal, D.
Title Large hydraulic safety margins protect Neotropical canopy rainforest tree species against hydraulic failure during drought Type Journal Article
Year 2019 Publication Annals of Forest Science Abbreviated Journal Ann. Forest Sci.
Volume 76 Issue 4 Pages 115
Keywords (up) Amazon rainforest; Embolism resistance; Hydraulic safety margins; Turgor loss point; Water potential
Abstract Key message: Abundant Neotropical canopy-tree species are more resistant to drought-induced branch embolism than what is currently admitted. Large hydraulic safety margins protect them from hydraulic failure under actual drought conditions. Context: Xylem vulnerability to embolism, which is associated to survival under extreme drought conditions, is being increasingly studied in the tropics, but data on the risk of hydraulic failure for lowland Neotropical rainforest canopy-tree species, thought to be highly vulnerable, are lacking. Aims: The purpose of this study was to gain more knowledge on species drought-resistance characteristics in branches and leaves and the risk of hydraulic failure of abundant rainforest canopy-tree species during the dry season. Methods: We first assessed the range of branch xylem vulnerability to embolism using the flow-centrifuge technique on 1-m-long sun-exposed branches and evaluated hydraulic safety margins with leaf turgor loss point and midday water potential during normal- and severe-intensity dry seasons for a large set of Amazonian rainforest canopy-tree species. Results: Tree species exhibited a broad range of embolism resistance, with the pressure threshold inducing 50% loss of branch hydraulic conductivity varying from − 1.86 to − 7.63 MPa. Conversely, we found low variability in leaf turgor loss point and dry season midday leaf water potential, and mostly large, positive hydraulic safety margins. Conclusions: Rainforest canopy-tree species growing under elevated mean annual precipitation can have high resistance to embolism and are more resistant than what was previously thought. Thanks to early leaf turgor loss and high embolism resistance, most species have a low risk of hydraulic failure and are well able to withstand normal and even severe dry seasons. © 2019, The Author(s).
Address Smithsonian Tropical Research Institute, Balboa, Ancon, Panama
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 12864560 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 901
Permanent link to this record
 

 
Author Lamarre, G.P.A.; Herault, B.; Fine, P.V.A.; Vedel, V.; Lupoli, R.; Mesones, I.; Baraloto, C.
Title Taxonomic and functional composition of arthropod assemblages across contrasting Amazonian forests Type Journal Article
Year 2016 Publication Journal of Animal Ecology Abbreviated Journal Journal of Animal Ecology
Volume 85 Issue 1 Pages 227-239
Keywords (up) Amazon; Arthropod community; Environmental filtering; Forest habitat; French Guiana; Functional composition; Mass sampling; Peru; Trophic cascades
Abstract Arthropods represent most of global biodiversity, with the highest diversity found in tropical rain forests. Nevertheless, we have a very incomplete understanding of how tropical arthropod communities are assembled. We conducted a comprehensive mass sampling of arthropod communities within three major habitat types of lowland Amazonian rain forest, including terra firme clay, white-sand and seasonally flooded forests in Peru and French Guiana. We examined how taxonomic and functional composition (at the family level) differed across these habitat types in the two regions. The overall arthropod community composition exhibited strong turnover among habitats and between regions. In particular, seasonally flooded forest habitats of both regions comprised unique assemblages. Overall, 17·7% (26 of 147) of arthropod families showed significant preferences for a particular habitat type. We present a first reproducible arthropod functional classification among the 147 taxa based on similarity among 21 functional traits describing feeding source, major mouthparts and microhabitats inhabited by each taxon. We identified seven distinct functional groups whose relative abundance contrasted strongly across the three habitats, with sap and leaf feeders showing higher abundances in terra firme clay forest. Our novel arthropod functional classification provides an important complement to link these contrasting patterns of composition to differences in forest functioning across geographical and environmental gradients. This study underlines that both environment and biogeographical processes are responsible for driving arthropod taxonomic composition while environmental filtering is the main driver of the variance in functional composition. © 2016 British Ecological Society.
Address International Center for Tropical Botany, Department of Biological Sciences, International Center for Tropical Botany, Florida International University, Miami, FL, United States
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Cited By :1; Export Date: 17 February 2017 Approved no
Call Number EcoFoG @ webmaster @ Serial 731
Permanent link to this record
 

 
Author Leclerc, T.; Vimal, R.; Troispoux, V.; Périgon, S.; Scotti, I.
Title Life after disturbance (I): changes in the spatial genetic structure of Jacaranda copaia (Aubl.) D. Don (Bignonianceae) after logging in an intensively studied plot in French Guiana Type Journal Article
Year 2015 Publication Annals of Forest Science Abbreviated Journal Annals of Forest Science
Volume 72 Issue 5 Pages 509-516
Keywords (up) Amazon; Bayesian clustering; Demogenetics; Guiana shield; Parentage analysis; Regeneration; Spatial genetic structure; Tropical rainforest
Abstract Key message: Forest disturbance affects the within-population distribution of genetic diversity, but not its overall levels, in a tropical pioneer tree species. In particular, clumps of related saplings with impoverished diversity are found in canopy gaps but not under forest cover. Context: Forest disturbances can have long-term consequences on the genetic structure of tree populations, because they can alter the demographic properties of the regeneration process and favour some subpopulations/genotypes, both by stochastic processes and by selection. Intermediate disturbances tend to favour species diversity, at least in highly diverse communities, but their effect on intra-specific diversity is unknown. Aims: In this study, we have looked at the genetic consequences of forest disturbance in a stand of the long-lived Neotropical pioneer species, Jacaranda copaia. Methods: The study site was experimentally logged in 1984, and the canopy gaps generated by the logging were mapped. Seedlings of J. copaia colonised the gaps, as expected, at a higher density than in the surrounding forest. In 2006, we exhaustively sampled all saplings and adult trees available in a 25-ha area. The samples were genotyped at nine microsatellite loci, and the distribution of genetic diversity was inspected by analyses of spatial autocorrelation, automated Bayesian assignment and comparisons of diversity between cohorts by bootstrap (RaBoT). Results: Spatial autocorrelation was found to extend farther in post-disturbance saplings than in the undisturbed population (100 m and beyond versus less than 50 m), and divergent clumps (F<inf>ST</inf> = 0.05) of related genotypes were found; genetic diversity was found to be impoverished in each clump relative to the global population at about half of the loci. Conclusion: Overall, our results suggest that forest disturbance has changed the patterns of distribution of genetic diversity, with potential consequences on long-term population viability. © 2015, INRA and Springer-Verlag France.
Address INRA, URFM « Ecologie des Forêts Méditerranéennes », Domaine de Saint-Paul, Avignon, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 16 July 2015 Approved no
Call Number EcoFoG @ webmaster @ Serial 611
Permanent link to this record
 

 
Author Scotti, I.; Montaigne, W.; Cseke, K.; Traissac, S.
Title Life after disturbance (II): the intermediate disturbance hypothesis explains genetic variation in forest gaps dominated by Virola michelii Heckel (Myristicaceae) Type Journal Article
Year 2015 Publication Annals of Forest Science Abbreviated Journal Annals of Forest Science
Volume 72 Issue 8 Pages 1035-1042
Keywords (up) Amazon; Bayesian clustering; Demogenetics; Guiana shield; Parentage analysis; Regeneration; Spatial genetic structure; Tropical rainforest
Abstract Key message: Genetic diversity appears to be unaffected by disturbance in a stand of the light-demanding Neotropical treeV. michelii. Although spatial genetic structure is modified in post-disturbance cohorts, mixing of seeds from different mother trees in canopy gaps appears to efficiently maintain genetic admixture. Context: The interplay between genetic and demographic processes has major consequences on population viability. Population size affects demographic trends, while genetic diversity insures viability by reducing risks of inbreeding depression and by maintaining adaptive potential. Yet, the consequences of increases in census size (as opposed to effective size) on genetic diversity of forest populations are poorly known. Aims: We have studied the structure of genetic diversity in populations of saplings of the light-responsive tree, Virola michelii (Myristicaceae, the nutmeg family), in two plots having undergone different levels of canopy-gap opening disturbance. This allowed us to test the “intermediate disturbance” hypothesis, which generally applies to species diversity, at the intra-specific scale. Methods: Levels and distribution of genetic diversity were compared between plots and between life stages. Sapling parentage was analysed to infer each adult tree’s contribution to regeneration. Results: Genetic diversity was higher, and spatial genetic structure was stronger in the post-disturbance than in the control seedling population. Parentage analysis suggested that a limited number of parents contributed to most of the regeneration, but that efficient mixing of their progeny may have enhanced the diversity of saplings occupying canopy gaps. Conclusion: A mixture of demo-genetic processes may contribute to maintain genetic diversity in spite of, or possibly due to, ecosystem disturbance in V. michelii. © 2015, INRA and Springer-Verlag France.
Address Solicaz, Guyane Technopôle, 16 bis Rue du 14 Juillet, Cayenne, French Guiana
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 14 December 2015 Approved no
Call Number EcoFoG @ webmaster @ Serial 642
Permanent link to this record