|   | 
Details
   web
Records
Author Fortunel, C.; Stahl, C.; Heuret, P.; Nicolini, E.; Baraloto, C.
Title Disentangling the effects of environment and ontogeny on tree functional dimensions for congeneric species in tropical forests Type Journal Article
Year 2020 Publication New Phytologist Abbreviated Journal New Phytol.
Volume 226 Issue 2 Pages 385-395
Keywords (down) chemistry; developmental stage; habitats; Micropholis; morphology; physiology; plant traits; seasons; developmental stage; ecosystem function; forest ecosystem; habitat selection; habitat structure; nutrient availability; ontogeny; physiological response; soil water; taxonomy; tropical forest; Amazonia
Abstract Soil water and nutrient availability are key drivers of tree species distribution and forest ecosystem functioning, with strong species differences in water and nutrient use. Despite growing evidence for intraspecific trait differences, it remains unclear under which circumstances the effects of environmental gradients trump those of ontogeny and taxonomy on important functional dimensions related to resource use, particularly in tropical forests. Here, we explore how physiological, chemical, and morphological traits related to resource use vary between life stages in four species within the genus Micropholis that is widespread in lowland Amazonia. Specifically, we evaluate how environment, developmental stage, and taxonomy contribute to single-trait variation and multidimensional functional strategies. We find that environment, developmental stage, and taxonomy differentially contribute to functional dimensions. Habitats and seasons shape physiological and chemical traits related to water and nutrient use, whereas developmental stage and taxonomic identity impact morphological traits –especially those related to the leaf economics spectrum. Our findings suggest that combining environment, ontogeny, and taxonomy allows for a better understanding of important functional dimensions in tropical trees and highlights the need for integrating tree physiological and chemical traits with classically used morphological traits to improve predictions of tropical forests’ responses to environmental change. © 2019 The Authors New Phytologist © 2019 New Phytologist Trust
Address Department of Biological Sciences, Florida International University, Miami, FL 33133, United States
Corporate Author Thesis
Publisher Blackwell Publishing Ltd Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028646x (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 977
Permanent link to this record
 

 
Author Verryckt, L.T.; Ellsworth, D.S.; Vicca, S.; Van Langenhove, L.; Peñuelas, J.; Ciais, P.; Posada, J.M.; Stahl, C.; Coste, S.; Courtois, E.A.; Obersteiner, M.; Chave, J.; Janssens, I.A.
Title Can light-saturated photosynthesis in lowland tropical forests be estimated by one light level? Type Journal Article
Year 2020 Publication Biotropica Abbreviated Journal Biotropica
Volume 52 Issue 6 Pages 1183-1193
Keywords (down) canopy architecture; interspecific variation; light intensity; lowland environment; parameter estimation; photon flux density; photosynthesis; saturation; tropical forest; French Guiana
Abstract Leaf-level net photosynthesis (An) estimates and associated photosynthetic parameters are crucial for accurately parameterizing photosynthesis models. For tropical forests, such data are poorly available and collected at variable light conditions. To avoid over- or underestimation of modeled photosynthesis, it is critical to know at which photosynthetic photon flux density (PPFD) photosynthesis becomes light-saturated. We studied the dependence of An on PPFD in two tropical forests in French Guiana. We estimated the light saturation range, including the lowest PPFD level at which Asat (An at light saturation) is reached, as well as the PPFD range at which Asat remained unaltered. The light saturation range was derived from photosynthetic light-response curves, and within-canopy and interspecific differences were studied. We observed wide light saturation ranges of An. Light saturation ranges differed among canopy heights, but a PPFD level of 1,000 µmol m−2 s−1 was common across all heights, except for pioneer trees species that did not reach light saturation below 2,000 µmol m−2 s−1. A light intensity of 1,000 µmol m−2 s−1 sufficed for measuring Asat of climax species at our study sites, independent of the species or the canopy height. Because of the wide light saturation ranges, results from studies measuring Asat at higher PPFD levels (for upper canopy leaves up to 1,600 µmol m−2 s−1) are comparable with studies measuring at 1,000 µmol m−2 s−1. © 2020 The Association for Tropical Biology and Conservation
Address UMR 5174, Laboratoire Evolution et Diversité Biologique, CNRS, Université Paul Sabatier, Toulouse, France
Corporate Author Thesis
Publisher Blackwell Publishing Ltd Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 00063606 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 948
Permanent link to this record
 

 
Author Verryckt, L.T.; Van Langenhove, L.; Ciais, P.; Courtois, E.A.; Vicca, S.; Peñuelas, J.; Stahl, C.; Coste, S.; Ellsworth, D.S.; Posada, J.M.; Obersteiner, M.; Chave, J.; Janssens, I.A.
Title Coping with branch excision when measuring leaf net photosynthetic rates in a lowland tropical forest Type Journal Article
Year 2020 Publication Biotropica Abbreviated Journal Biotropica
Volume 52 Issue 4 Pages 608-615
Keywords (down) branch cutting; canopy physiology; French Guiana; gas exchange; photosynthesis; rainforest; stomatal conductance; ecological modeling; environmental conditions; forest canopy; leaf; measurement method; photosynthesis; tree; tropical forest; Gruidae
Abstract Measuring leaf gas exchange from canopy leaves is fundamental for our understanding of photosynthesis and for a realistic representation of carbon uptake in vegetation models. Since canopy leaves are often difficult to reach, especially in tropical forests with emergent trees up to 60 m at remote places, canopy access techniques such as canopy cranes or towers have facilitated photosynthetic measurements. These structures are expensive and therefore not very common. As an alternative, branches are often cut to enable leaf gas exchange measurements. The effect of branch excision on leaf gas exchange rates should be minimized and quantified to evaluate possible bias. We compared light-saturated leaf net photosynthetic rates measured on excised and intact branches. We selected branches positioned at three canopy positions, estimated relative to the top of the canopy: upper sunlit foliage, middle canopy foliage, and lower canopy foliage. We studied the variation of the effects of branch excision and transport among branches at these different heights in the canopy. After excision and transport, light-saturated leaf net photosynthetic rates were close to zero for most leaves due to stomatal closure. However, when the branch had acclimated to its new environmental conditions—which took on average 20 min—light-saturated leaf net photosynthetic rates did not significantly differ between the excised and intact branches. We therefore conclude that branch excision does not affect the measurement of light-saturated leaf net photosynthesis, provided that the branch is recut under water and is allowed sufficient time to acclimate to its new environmental conditions. © 2020 The Association for Tropical Biology and Conservation
Address UMR 5174 Laboratoire Evolution et Diversité Biologique, Université Paul Sabatier, CNRS, Toulouse, France
Corporate Author Thesis
Publisher Blackwell Publishing Ltd Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 00063606 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 960
Permanent link to this record
 

 
Author Zinger, L.; Donald, J.; Brosse, S.; Gonzalez, M.A.; Iribar, A.; Leroy, C.; Murienne, J.; Orivel, J.; Schimann, H.; Taberlet, P.; Lopes, C.M.
Title Advances and prospects of environmental DNA in neotropical rainforests Type Journal Article
Year 2020 Publication Advances in Ecological Research Abbreviated Journal Adv. Ecol. Res.
Volume 62 Issue Pages 331-373
Keywords (down) Biomonitoring; Conservation biology; DNA metabarcoding; eDNA; Environmental genomics; Neotropics; Rainforests
Abstract The rainforests of the Neotropics shelter a vast diversity of plant, animal and microscopic species that provide critical ecosystem goods and services for both local and worldwide populations. These environments face a major crisis due to increased deforestation, pollution, and climate change, emphasizing the need for more effective conservation efforts. The adequate monitoring of these ecosystems has proven a complex and time consuming endeavour, which depends on ever dwindling taxonomic expertise. To date, many species remain undiscovered, let alone described, with otherwise limited information regarding known species population distributions and densities. Overcoming these knowledge shortfalls and practical limitations is becoming increasingly possible through techniques based on environmental DNA (eDNA), i.e., DNA that can be obtained from environmental samples (e.g. tissues, soil, sediment, water, etc.). When coupled with high-throughput sequencing, these techniques now enable realistic, cost-effective, and standardisable biodiversity assessments. This opens up enormous opportunities for advancing our understanding of complex and species-rich tropical communities, but also in facilitating large-scale biomonitoring programs in the neotropics. In this review, we provide a brief introduction to eDNA methods, and an overview of their current and potential uses in both terrestrial and aquatic ecosystems of neotropical rainforests. We also discuss the limits and challenges of these methods for our understanding and monitoring of biodiversity, as well as future research and applied perspectives of these techniques in neotropical rainforests, and beyond. © 2020 Elsevier Ltd
Address Departamento de Zoologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro, SP, Brazil
Corporate Author Thesis
Publisher Academic Press Inc. Place of Publication Editor Dumbrell A.J.; Turner E.C.; Fayle T.M.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title Advances in Ecological Research
Series Volume 62 Series Issue Edition
ISSN 00652504 (Issn); 9780128211342 (Isbn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 995
Permanent link to this record
 

 
Author Thomas, H.J.D.; Bjorkman, A.D.; Myers-Smith, I.H.; Elmendorf, S.C.; Kattge, J.; Diaz, S.; Vellend, M.; Blok, D.; Cornelissen, J.H.C.; Forbes, B.C.; Henry, G.H.R.; Hollister, R.D.; Normand, S.; Prevéy, J.S.; Rixen, C.; Schaepman-Strub, G.; Wilmking, M.; Wipf, S.; Cornwell, W.K.; Beck, P.S.A.; Georges, D.; Goetz, S.J.; Guay, K.C.; Rüger, N.; Soudzilovskaia, N.A.; Spasojevic, M.J.; Alatalo, J.M.; Alexander, H.D.; Anadon-Rosell, A.; Angers-Blondin, S.; te Beest, M.; Berner, L.T.; Björk, R.G.; Buchwal, A.; Buras, A.; Carbognani, M.; Christie, K.S.; Collier, L.S.; Cooper, E.J.; Elberling, B.; Eskelinen, A.; Frei, E.R.; Grau, O.; Grogan, P.; Hallinger, M.; Heijmans, M.M.P.D.; Hermanutz, L.; Hudson, J.M.G.; Johnstone, J.F.; Hülber, K.; Iturrate-Garcia, M.; Iversen, C.M.; Jaroszynska, F.; Kaarlejarvi, E.; Kulonen, A.; Lamarque, L.J.; Lantz, T.C.; Lévesque, E.; Little, C.J.; Michelsen, A.; Milbau, A.; Nabe-Nielsen, J.; Nielsen, S.S.; Ninot, J.M.; Oberbauer, S.F.; Olofsson, J.; Onipchenko, V.G.; Petraglia, A.; Rumpf, S.B.; Shetti, R.; Speed, J.D.M.; Suding, K.N.; Tape, K.D.; Tomaselli, M.; Trant, A.J.; Treier, U.A.; Tremblay, M.; Venn, S.E.; Vowles, T.; Weijers, S.; Wookey, P.A.; Zamin, T.J.; Bahn, M.; Blonder, B.; van Bodegom, P.M.; Bond-Lamberty, B.; Campetella, G.; Cerabolini, B.E.L.; Chapin, F.S., III; Craine, J.M.; Dainese, M.; Green, W.A.; Jansen, S.; Kleyer, M.; Manning, P.; Niinemets, Ü.; Onoda, Y.; Ozinga, W.A.; Peñuelas, J.; Poschlod, P.; Reich, P.B.; Sandel, B.; Schamp, B.S.; Sheremetiev, S.N.; de Vries, F.T.
Title Global plant trait relationships extend to the climatic extremes of the tundra biome Type Journal Article
Year 2020 Publication Nature Communications Abbreviated Journal Nat. Commun.
Volume 11 Issue 1351 Pages
Keywords (down) biome; climate change; extreme event; global change; growth; interspecific interaction; plant community; tundra; article; plant community; prediction; tundra; warming; classification; climate; ecosystem; genetics; plant; plant development; Climate; Ecosystem; Plant Development; Plants; Tundra
Abstract The majority of variation in six traits critical to the growth, survival and reproduction of plant species is thought to be organised along just two dimensions, corresponding to strategies of plant size and resource acquisition. However, it is unknown whether global plant trait relationships extend to climatic extremes, and if these interspecific relationships are confounded by trait variation within species. We test whether trait relationships extend to the cold extremes of life on Earth using the largest database of tundra plant traits yet compiled. We show that tundra plants demonstrate remarkably similar resource economic traits, but not size traits, compared to global distributions, and exhibit the same two dimensions of trait variation. Three quarters of trait variation occurs among species, mirroring global estimates of interspecific trait variation. Plant trait relationships are thus generalizable to the edge of global trait-space, informing prediction of plant community change in a warming world. © 2020, Crown.
Address Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Postbus 94240, Amsterdam, 1090 GE, Netherlands
Corporate Author Thesis
Publisher Nature Research Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 20411723 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 947
Permanent link to this record
 

 
Author Chave, J.; Piponiot, C.; Maréchaux, I.; de Foresta, H.; Larpin, D.; Fischer, F.J.; Derroire, G.; Vincent, G.; Hérault, B.
Title Slow rate of secondary forest carbon accumulation in the Guianas compared with the rest of the Neotropics Type Journal Article
Year 2020 Publication Ecological Applications Abbreviated Journal Ecol. Appl.
Volume 30 Issue 1 Pages e02004
Keywords (down) biomass; carbon; forest; French Guiana; regeneration; secondary forests; tropics; accumulation rate; Bayesian analysis; biomass; carbon sequestration; chronosequence; fertility; old-growth forest; pioneer species; regeneration; secondary forest; Costa Rica; French Guiana; Guyana Shield; Goupia glabra; Laetia procera; Xylopia
Abstract Secondary forests are a prominent component of tropical landscapes, and they constitute a major atmospheric carbon sink. Rates of carbon accumulation are usually inferred from chronosequence studies, but direct estimates of carbon accumulation based on long-term monitoring of stands are rarely reported. Recent compilations on secondary forest carbon accumulation in the Neotropics are heavily biased geographically as they do not include estimates from the Guiana Shield. We analysed the temporal trajectory of aboveground carbon accumulation and floristic composition at one 25-ha secondary forest site in French Guiana. The site was clear-cut in 1976, abandoned thereafter, and one large plot (6.25 ha) has been monitored continuously since. We used Bayesian modeling to assimilate inventory data and simulate the long-term carbon accumulation trajectory. Canopy change was monitored using two aerial lidar surveys conducted in 2009 and 2017. We compared the dynamics of this site with that of a surrounding old-growth forest. Finally, we compared our results with that from secondary forests in Costa Rica, which is one of the rare long-term monitoring programs reaching a duration comparable to our study. Twenty years after abandonment, aboveground carbon stock was 64.2 (95% credibility interval 46.4, 89.0) Mg C/ha, and this stock increased to 101.3 (78.7, 128.5) Mg C/ha 20 yr later. The time to accumulate one-half of the mean aboveground carbon stored in the nearby old-growth forest (185.6 [155.9, 200.2] Mg C/ha) was estimated at 35.0 [20.9, 55.9] yr. During the first 40 yr, the contribution of the long-lived pioneer species Xylopia nitida, Goupia glabra, and Laetia procera to the aboveground carbon stock increased continuously. Secondary forest mean-canopy height measured by lidar increased by 1.14 m in 8 yr, a canopy-height increase consistent with an aboveground carbon accumulation of 7.1 Mg C/ha (or 0.89 Mg C·ha−1·yr−1) during this period. Long-term AGC accumulation rate in Costa Rica was almost twice as fast as at our site in French Guiana. This may reflect higher fertility of Central American forest communities or a better adaptation of the forest tree community to intense and frequent disturbances. This finding may have important consequences for scaling-up carbon uptake estimates to continental scales.
Address INPHB, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro, Cote d'Ivoire
Corporate Author Thesis
Publisher Ecological Society of America Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 19395582 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 914
Permanent link to this record
 

 
Author Ntawuhiganayo, E.B.; Uwizeye, F.K.; Zibera, E.; Dusenge, M.E.; Ziegler, C.; Ntirugulirwa, B.; Nsabimana, D.; Wallin, G.; Uddling, J.
Title Traits controlling shade tolerance in tropical montane trees Type Journal Article
Year 2020 Publication Tree physiology Abbreviated Journal Tree Physiol.
Volume 40 Issue 2 Pages 183-197
Keywords (down) biomass allocation; leaf temperature; plant traits; Rwanda; shade intolerance; shade tolerance; tropical montane forest; article; biomass allocation; breathing; canopy; carbon balance; compensation; photosynthesis; plant leaf; plant stem; rain forest; Rwanda; shade tolerance; species difference; sweating
Abstract Tropical canopies are complex, with multiple canopy layers and pronounced gap dynamics contributing to their high species diversity and productivity. An important reason for this complexity is the large variation in shade tolerance among different tree species. At present, we lack a clear understanding of which plant traits control this variation, e.g., regarding the relative contributions of whole-plant versus leaf traits or structural versus physiological traits. We investigated a broad range of traits in six tropical montane rainforest tree species with different degrees of shade tolerance, grown under three different radiation regimes (under the open sky or beneath sparse or dense canopies). The two distinct shade-tolerant species had higher fractional biomass in leaves and branches while shade-intolerant species invested more into stems, and these differences were greater under low radiation. Leaf respiration and photosynthetic light compensation point did not vary with species shade tolerance, regardless of radiation regime. Leaf temperatures in open plots were markedly higher in shade-tolerant species due to their low transpiration rates and large leaf sizes. Our results suggest that interspecific variation in shade tolerance of tropical montane trees is controlled by species differences in whole-plant biomass allocation strategy rather than by difference in physiological leaf traits determining leaf carbon balance at low radiation. © The Author(s) 2019. Published by Oxford University Press.
Address Rwanda Agriculture and Animal Resources Development, PO Box 5016Kigali, Rwanda
Corporate Author Thesis
Publisher NLM (Medline) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 17584469 (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 16 March 2020 Approved no
Call Number EcoFoG @ webmaster @ Serial 922
Permanent link to this record
 

 
Author Shepard, W.D.; Clavier, S.; Cerdan, A.
Title A generic key to the known larval elmidae (Insecta: Coleoptera) of French Guiana Type Journal Article
Year 2020 Publication Papeis Avulsos de Zoologia Abbreviated Journal Pap. Avulsos Zool.
Volume 60 Issue Special Pages e202060
Keywords (down) Biodiversity; Identification; Immatures; Neotropical; Survey
Abstract An identification key is provided for 21 larval types of Elmidae (riffle beetles) known to occur in French Guiana. Not all elmid genera known to occur in French Guiana are known in the larval stage. Nor are all the known larval types assigned to known elmid genera. © 2020, Universidade de Sao Paulo. All rights reserved.
Address CNRS, UMR EcoFog (AgroParisTech, CIRAD, INRA, Université des Antilles, Université de Guyane), Kourou Cedex, France
Corporate Author Thesis
Publisher Universidade de Sao Paulo Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 00311049 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 980
Permanent link to this record
 

 
Author de Aguiar, H.J.A.C.; Barros, L.A.C.; Silveira, L.I.; Petitclerc, F.; Etienne, S.; Orivel, J.
Title Cytogenetic data for sixteen ant species from North-eastern Amazonia with phylogenetic insights into three subfamilies Type Journal Article
Year 2020 Publication Comparative Cytogenetics Abbreviated Journal Comp. Cytogenet.
Volume 14 Issue 1 Pages 43-60
Keywords (down) Biodiversity; Formicidae; Karyotype; Neotropical ants
Abstract Ants play essential roles in most terrestrial ecosystems and may be considered pests for agriculture and agroforestry. Recent morphological and molecular data have challenged conventional ant phylogeny and the interpretation of karyotypic variations. Existing Neotropical ant cytogenetic data focus on Atlantic rainforest species, and provide evolutionary and taxonomic insight. However, there are data for only 18 Amazonian species. In this study, we describe the karyotypes of 16 ant species belonging to 12 genera and three subfamilies, collected in the Brazilian state of Amapa, and in French Guiana. The karyotypes of six species are described for the first time, including that of the South American genus Allomerus Mayr, 1878. The karyotype of Crematogaster Lund, 1831 is also described for the first time for the New World. For other species, extant data for geographically distinct populations was compared with our own data, e.g. for the leafcutter ants Acromyrmex balzani (Emery, 1890) and Atta sexdens (Linnaeus, 1758). The information obtained for the karyotype of Dolichoderus imitator Emery, 1894 differs from extant data from the Atlantic forest, thereby highlighting the importance of population cytogenetic approaches. This study also emphasizes the need for good chromosome preparations for studying karyotype structure.
Address INRA, UMR EcoFoG, AgroParisTech, CIRAD, CNRS, Université de Guyane, Université des Antilles, Campus Agronomique, BP 316, Kourou Cedex, 97379, France
Corporate Author Thesis
Publisher Pensoft Publishers Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 19930771 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 917
Permanent link to this record
 

 
Author Talaga, S.; Dejean, A.; Azémar, F.; Dumont, Y.; Leroy, C.
Title Impacts of biotic and abiotic parameters on immature populations of Aedes aegypti Type Journal Article
Year 2020 Publication Journal of Pest Science Abbreviated Journal J. Pest Sci.
Volume 93 Issue 3 Pages 941-952
Keywords (down) Biocontrol agents; Competition; Ecosystem services; Mosquito control; Mosquito management; Predation; abiotic factor; biotic factor; competitive displacement; disease vector; maturation; mosquito; pest control; Aedes aegypti; Hexapoda; Zika virus
Abstract In recent centuries, the mosquito Aedes aegypti has spread into most urban areas throughout the tropics. This species is considered the main vector of the chikungunya, dengue, yellow fever and Zika viruses and causes major public health issues. The aim of this study is to investigate the relative influence of biotic and abiotic parameters on immature populations of Ae. aegypti. During a one-year-long field experiment, we monitored 108 macroinvertebrate aquatic communities inhabiting four types of water containers across three different urbanized sites in a Neotropical city. A multimodel inference approach revealed that, in addition to abiotic parameters, biotic interactions with aquatic organisms had an important influence on the abundance of Ae. aegypti and that the urbanized site considered influences the outcomes of the interactions. Controphic species other than mosquitoes aided Ae. aegypti development, suggesting a mechanism of facilitation through a chain of processes. However, the abundance of Ae. aegypti was lowered by competition with native mosquito species in the slightly urbanized area and by predation in more urbanized areas. Competitive displacement and reduction, as well as predation by native aquatic organisms, can be considered a form of ecosystem service. The conservation and/or augmentation of natural enemies should improve the short- and long-term success of incompatible and/or sterile insect techniques, thus opening up perspectives for the future of mosquito management. © 2020, Springer-Verlag GmbH Germany, part of Springer Nature.
Address University of Pretoria, Department of Mathematics and Applied Mathematics, Pretoria, South Africa
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 16124758 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 962
Permanent link to this record