toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Dessert, C.; Clergue, C.; Rousteau, A.; Crispi, O.; Benedetti, M.F. url  doi
openurl 
  Title Atmospheric contribution to cations cycling in highly weathered catchment, Guadeloupe (Lesser Antilles) Type Journal Article
  Year 2020 Publication Chemical Geology Abbreviated Journal Chem. Geol.  
  Volume 531 Issue (down) 119354 Pages  
  Keywords Atmospheric deposit; Cation-nutrient recycling; Critical Zone; Saharan dust; Sr and Nd isotopes; Atmospheric chemistry; Biogeochemistry; Catchments; Deposits; Dust; Ecosystems; Forestry; Isotopes; Lakes; Positive ions; Rain; Recycling; Runoff; Soil moisture; Soil surveys; Tropics; Vegetation; Volcanoes; Weathering; Atmospheric deposits; Critical zones; Nutrient recycling; Saharan dust; Sr and Nd isotopes; Nutrients; catchment; cation; dust; isotopic composition; neodymium isotope; regolith; strontium isotope; trace element; water chemistry; water quality; Guadeloupe; Leeward Islands [Lesser Antilles]; Sahara  
  Abstract The important fertilizing role of atmospheric dust, and particularly African dust, in tropical rainforests is increasingly recognized but still poorly quantified. To better evaluate dust input into the Caribbean basin, we sampled critical zone compartments of a small forested volcanic catchment in Guadeloupe (soils, parent rock, atmospheric dust, plants, soil solutions, stream and rain waters). The aims of this study are to track sources of cation nutrients (Ca, Mg, K, Sr) developed on highly weathered soil in the rainforest of Guadeloupe, to quantify plant recycling of these nutrients, and to identify constraints on regolith development and its associated nutrient pool. In the Quiock Creek catchment, a large isotopic range of 87Sr/86Sr and eNd values was observed despite the small scale of observation. Sr isotopic composition of the dissolved load varied from 0.7084 in rainfall to 0.7110 in soil solution, whereas it ranges between 0.7068 and 0.7153 for soil samples and between 0.7096 and 0.7102 for plants. The Nd isotopic composition varied between -8.39 in near-surface soil samples to 2.71 in deeper soil. All samples had an intermediate signature between that of the bedrock endmember (87Sr/86Sr = 0.7038; eNd = 4.8) and the atmospheric endmember (sea salt: 87Sr/86Sr = 0.7092 and Saharan dust: 87Sr/86Sr = 0.7187, eNd=-11.5). The regolith was built on pyroclastic deposits, but, because of extreme leaching, the regolith has lost its original bedrock signature and inherited an exogenous atmospheric signature. Our results show that only the chemical weathering of the fresh near-surface minerals can provide nutrients to the ecosystem (first 30 cm). However, this dust weathering is too low to sustain the tropical forest ecosystem on its own. The cationic mass balance at the catchment scale, as well as the Sr isotopic signature, show that cation and Sr fluxes are of atmospheric origin only and that original bedrock no longer participates in nutrient cycles. The vegetation reflects the 87Sr/86Sr of the dissolved pool of atmospheric Sr. At the soil-plant scale, the cation-nutrient fluxes provided by vegetation (litter fall + leaf excretion) are major compared to input and output fluxes. The annual Ca, K, Sr and Mg fluxes within the vegetation are, respectively, 31, 28, 20 and 3 times greater than the exported fluxes at the outlet of the basin. The residence time of nutrients in the vegetation is 16 years for K and close to 45 years for Sr, Ca and Mg. These results emphasize the highly efficient vegetative turnover that dominates the nutrient cycle in the Quiock Creek catchment. This first characterization of biogeochemical cycles in the Guadeloupean rainforest suggests that the forest community of Quiock Creek is sustained by a small near-surface nutrient pool disconnected from the deep volcanic bedrock. We also demonstrated that, even with efficient nutrient recycling, Saharan dust plays a significant role in maintaining ecosystem productivity in Guadeloupe over long-time scales.  
  Address Laboratoire de biologie et de physiologie végétales, UMR EcoFoG, CNRS, Cirad, INRA, Université des Antilles, Université de Guyane, Pointe-à-Pitre, 97159, France  
  Corporate Author Thesis  
  Publisher Elsevier B.V. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00092541 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 18 November 2019; Correspondence Address: Dessert, C.; Université de Paris, Institut de physique du globe de Paris, CNRSFrance; email: dessert@ipgp.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 895  
Permanent link to this record
 

 
Author Croft, H.; Chen, J.M.; Wang, R.; Mo, G.; Luo, S.; Luo, X.; He, L.; Gonsamo, A.; Arabian, J.; Zhang, Y.; Simic-Milas, A.; Noland, T.L.; He, Y.; Homolová, L.; Malenovský, Z.; Yi, Q.; Beringer, J.; Amiri, R.; Hutley, L.; Arellano, P.; Stahl, C.; Bonal, D. url  doi
openurl 
  Title The global distribution of leaf chlorophyll content Type Journal Article
  Year 2020 Publication Remote Sensing of Environment Abbreviated Journal Remote Sens. Environ.  
  Volume 236 Issue (down) 111479 Pages  
  Keywords  
  Abstract Leaf chlorophyll is central to the exchange of carbon, water and energy between the biosphere and the atmosphere, and to the functioning of terrestrial ecosystems. This paper presents the first spatially-continuous view of terrestrial leaf chlorophyll content (ChlLeaf) at the global scale. Weekly maps of ChlLeaf were produced from ENVISAT MERIS full resolution (300 m) satellite data using a two-stage physically-based radiative transfer modelling approach. Firstly, leaf-level reflectance was derived from top-of-canopy satellite reflectance observations using 4-Scale and SAIL canopy radiative transfer models for woody and non-woody vegetation, respectively. Secondly, the modelled leaf-level reflectance was input into the PROSPECT leaf-level radiative transfer model to derive ChlLeaf. The ChlLeaf retrieval algorithm was validated using measured ChlLeaf data from 248 sample measurements at 28 field locations, and covering six plant functional types (PFTs). Modelled results show strong relationships with field measurements, particularly for deciduous broadleaf forests (R2 = 0.67; RMSE = 9.25 microg cm-2; p < 0.001), croplands (R2 = 0.41; RMSE = 13.18 microg cm-2; p < 0.001) and evergreen needleleaf forests (R2 = 0.47; RMSE = 10.63 microg cm-2; p < 0.001). When the modelled results from all PFTs were considered together, the overall relationship with measured ChlLeaf remained good (R2 = 0.47, RMSE = 10.79 microg cm-2; p < 0.001). This result is an improvement on the relationship between measured ChlLeaf and a commonly used chlorophyll-sensitive spectral vegetation index; the MERIS Terrestrial Chlorophyll Index (MTCI; R2 = 0.27, p < 0.001). The global maps show large temporal and spatial variability in ChlLeaf, with evergreen broadleaf forests presenting the highest leaf chlorophyll values, with global annual median values of 54.4 microg cm-2. Distinct seasonal ChlLeaf phenologies are also visible, particularly in deciduous plant forms, associated with budburst and crop growth, and leaf senescence. It is anticipated that this global ChlLeaf product will make an important step towards the explicit consideration of leaf-level biochemistry in terrestrial water, energy and carbon cycle modelling.  
  Address UMR EEF, INRA Université de Lorraine, Champenoux54280, France  
  Corporate Author Thesis  
  Publisher Elsevier Inc. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00344257 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 898  
Permanent link to this record
 

 
Author Lebrini, M.; Robert, F.; Roos, C. pdf  openurl
  Title Inhibition Effect of Alkaloids Extract from Annona Squamosa Plant on the Corrosion of C38 Steel in Normal Hydrochloric Acid Medium Type Journal Article
  Year 2010 Publication International Journal of Electrochemical Science Abbreviated Journal Int. J. Electrochem. Sci.  
  Volume 5 Issue (down) 11 Pages 1698-1712  
  Keywords Plant extract; corrosion inhibitors; C38 steel; acidic media; adsorption  
  Abstract In this work, an alkaloids extract from Annona squamosa plant have been studied as possible corrosion inhibitor for C38 steel in molar hydrochloric acid (1 M HCl). Potentiodynamic polarization and AC impedance methods have been used. The corrosion inhibition efficiency increases on increasing plant extract concentration. Polarisation studies showed that Annona squamosa extract was mixed-type inhibitor in 1 M HCl. The inhibition efficiency of Annona squamosa extract was temperature-dependent and its addition led to an increase of the activation corrosion energy revealing a physical adsorption between the extract and the metal surface. The adsorption of the Annona squamosa extract followed Langmuir's adsorption isotherm. The inhibitive effect of Annona squamosa is ascribed to the presence of organic compounds in the extract. The examined extract is considered as non-cytotoxic substance.  
  Address [Lebrini, M.] CNRS 8172 UMR ECOFOG, Lab Mat & Mol Milieu Amazonien, Cayenne 97337, French Guiana, Email: florent.robert@guyane.univ-ag.fr  
  Corporate Author Thesis  
  Publisher ELECTROCHEMICAL SCIENCE GROUP Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1452-3981 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000283999000015 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 20  
Permanent link to this record
 

 
Author Groc, S.; Delabie, J.H.C.; Longino, J.T.; Orivel, J.; Majer, J.D.; Vasconcelos, H.L.; Dejean, A. openurl 
  Title A new method based on taxonomic sufficiency to simplify studies on Neotropical ant assemblages Type Journal Article
  Year 2010 Publication Biological Conservation Abbreviated Journal Biol. Conserv.  
  Volume 143 Issue (down) 11 Pages 2832-2839  
  Keywords Higher-taxon surrogacy; “Indicator taxa” surrogacy; Multi-taxonomic assemblages; Mixed-level method; Terrestrial arthropod assemblages; Biodiversity indicators  
  Abstract Insects, particularly ants, are good bioindicators of the state of ecosystems. Nevertheless, incorporating them into conservation surveys is expensive due to problems associated with their identification, which is exacerbated by the fact that there are fewer and fewer taxonomists working today. “Taxonomic sufficiency” (TS), which identifies organisms to a level of taxonomic resolution sufficient enough to satisfy the objectives of a study, has never been applied to Neotropical ant communities. We analysed five Neotropical datasets representing ant assemblages collected with different sampling methods in various habitats. We first treated them using two complementary and cumulative TS methods, higher-taxon and “indicator taxa” surrogacies, before testing a new approach called “mixed-level method” that combines the two previous approaches. For the higher-taxon surrogacy, we showed that, above species, genus is the most informative taxonomic level. Then, mixed-level method provided more information on ant assemblages than did the two others, even though the “indicator taxa” surrogacy was based on relevant indicator genera. Although habitat type has no effect on its efficiency, this new method is influenced by the dataset structure and the type of sampling method used to collect data. We have thus developed a new method for analyzing Neotropical ant faunas that enables the taxonomic work linked to the identification of problematic species to be significantly reduced, while conserving most of the information on the ant assemblage. This method should enhance the work of Neotropical entomologists not specialised in taxonomy, particularly those concerned with biological conservation and indication. (C) 2010 Elsevier Ltd. All rights reserved.  
  Address [Groc, Sarah; Dejean, Alain] CNRS, Ecol Forets Guyane UMR 8172, F-97379 Kourou, France, Email: sarah.groc@laposte.net  
  Corporate Author Thesis  
  Publisher ELSEVIER SCI LTD Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3207 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000283412300048 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 22  
Permanent link to this record
 

 
Author Baraloto, C.; Paine, C.E.T.; Poorter, L.; Beauchene, J.; Bonal, D.; Domenach, A.M.; Herault, B.; Patino, S.; Roggy, J.C.; Chave, J. openurl 
  Title Decoupled leaf and stem economics in rain forest trees Type Journal Article
  Year 2010 Publication Ecology Letters Abbreviated Journal Ecol. Lett.  
  Volume 13 Issue (down) 11 Pages 1338-1347  
  Keywords Functional diversity; leaf economics; multiple factor analysis; plant strategies; plant traits; tropical forest; wood density  
  Abstract P>Cross-species analyses of plant functional traits have shed light on factors contributing to differences in performance and distribution, but to date most studies have focused on either leaves or stems. We extend these tissue-specific analyses of functional strategy towards a whole-plant approach by integrating data on functional traits for 13 448 leaves and wood tissues from 4672 trees representing 668 species of Neotropical trees. Strong correlations amongst traits previously defined as the leaf economics spectrum reflect a tradeoff between investments in productive leaves with rapid turnover vs. costly physical leaf structure with a long revenue stream. A second axis of variation, the 'stem economics spectrum', defines a similar tradeoff at the stem level: dense wood vs. high wood water content and thick bark. Most importantly, these two axes are orthogonal, suggesting that tradeoffs operate independently at the leaf and at the stem levels. By simplifying the multivariate ecological strategies of tropical trees into positions along these two spectra, our results provide a basis to improve global vegetation models predicting responses of tropical forests to global change.  
  Address [Baraloto, Christopher; Bonal, Damien; Patino, Sandra; Roggy, Jean-Christophe] INRA, UMR Ecol Forets Guyane, Kourou 97387, French Guiana, Email: chris.baraloto@ecofog.gf  
  Corporate Author Thesis  
  Publisher WILEY-BLACKWELL PUBLISHING, INC Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1461-023X ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000283157500002 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 26  
Permanent link to this record
 

 
Author Courtois, E.A.; Paine, C.E.T.; Blandinieres, P.A.; Stien, D.; Bessiere, J.M.; Houel, E.; Baraloto, C.; Chave, J. openurl 
  Title Diversity of the Volatile Organic Compounds Emitted by 55 Species of Tropical Trees: a Survey in French Guiana Type Journal Article
  Year 2009 Publication Journal of Chemical Ecology Abbreviated Journal J. Chem. Ecol.  
  Volume 35 Issue (down) 11 Pages 1349-1362  
  Keywords VOCs; Chemical diversity; Sesquiterpenes; Tropical; French Guiana  
  Abstract Volatile organic compounds (VOCs) are produced by a broad range of organisms, from bacteria to mammals, and they represent a vast chemical diversity. In plants, one of the preeminent roles of VOCs is their repellent or cytotoxic activity, which helps the plant deter its predators. Most studies on VOCs emitted by vegetative parts have been conducted in model plant species, and little is known about patterns of VOC emissions in diverse plant communities. We conducted a survey of the VOCs released immediately after mechanical damage of the bark and the leaves of 195 individual trees belonging to 55 tropical tree species in a lowland rainforest of French Guiana. We discovered a remarkably high chemical diversity, with 264 distinct VOCs and a mean of 37 compounds per species. Two monoterpenes (alpha-pinene and limonene) and two sesquiterpenes (beta-caryophyllene and alpha-copaene), which are known to have cytotoxic and deterrent effects, were the most frequent compounds in the sampled species. As has been established for floral scents, the blend of VOCs is largely species-specific and could be used to discriminate among 43 of the 55 sampled species. The species with the most diverse blends were found in the Sapindales, Laurales, and Magnoliales, indicating that VOC diversity is not uniformly distributed among tropical species. Interspecific variation in chemical diversity was caused mostly by variation in sesquiterpenes. This study emphasizes three aspects of VOC emission by tropical tree species: the species-specificity of the mixtures, the importance of sesquiterpenes, and the wide-ranging complexity of the mixtures.  
  Address [Courtois, Elodie A.; Blandinieres, Pierre-Alain; Stien, Didier; Houel, Emeline] CNRS, UMR Ecofog, F-97337 Cayenne, France, Email: courtois@cict.fr  
  Corporate Author Thesis  
  Publisher SPRINGER Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0098-0331 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000273086100009 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 73  
Permanent link to this record
 

 
Author Cabanillas, B.J.; Le Lamer, A.C.; Castillo, D.; Arevalo, J.; Rojas, R.; Odonne, G.; Bourdy, G.; Moukarzel, B.; Sauvain, M.; Fabre, N. openurl 
  Title Caffeic Acid Esters and Lignans from Piper sanguineispicum Type Journal Article
  Year 2010 Publication Journal of Natural Products Abbreviated Journal J. Nat. Prod.  
  Volume 73 Issue (down) 11 Pages 1884-1890  
  Keywords  
  Abstract Three new caffeic acid esters (1-3), four new lignans (4-7), and the known compounds (7'S)-parabenzlactone (8), dihydrocubebin (9), and justiflorinol (10) have been isolated from leaves of Piper sanguineispicum. Their structures were determined by spectroscopic methods, including 1D and 2D NMR, HRCIMS, CD experiments, and chemical methods. Compounds 1-10 were assessed for their antileishmanial potential against axenic amastigote forms of Leishmania amazonensis. Caffeic acid esters 1 and 3 exhibited the best antileishmanial activity (IC50 2.0 and 1.8 μM, respectively) with moderate cytotoxicity on murine macrophages.  
  Address [Cabanillas, Billy Joel; Le Lamer, Anne-Cecile; Odonne, Guillaume; Bourdy, Genevieve; Moukarzel, Beatrice; Sauvain, Michel; Fabre, Nicolas] Univ Toulouse, UPS, UMR 152, Lab Pharmacochim Subst Nat & Pharmacophores Redox, F-31062 Toulouse 9, France, Email: michel.sauvain@ird.fr  
  Corporate Author Thesis  
  Publisher AMER CHEMICAL SOC Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-3864 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000284559100024 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 74  
Permanent link to this record
 

 
Author Fyllas, N.M.; Patino, S.; Baker, T.R.; Nardoto, G.B.; Martinelli, L.A.; Quesada, C.A.; Paiva, R.; Schwarz, M.; Horna, V.; Mercado, L.M.; Santos, A.; Arroyo, L.; Jimenez, E.M.; Luizao, F.J.; Neill, D.A.; Silva, N.; Prieto, A.; Rudas, A.; Silviera, M.; Vieira, I.C.G.; Lopez-Gonzalez, G.; Malhi, Y.; Phillips, O.L.; Lloyd, J. openurl 
  Title Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate Type Journal Article
  Year 2009 Publication Biogeosciences Abbreviated Journal Biogeosciences  
  Volume 6 Issue (down) 11 Pages 2677-2708  
  Keywords  
  Abstract We analysed 1040 individual trees, located in 62 plots across the Amazon Basin for leaf mass per unit area (M-A), foliar carbon isotopic composition (delta C-13) and leaf level concentrations of C, N, P, Ca, Mg, K and Al. All trees were identified to the species level with the dataset containing 58 families, 236 genera and 508 species, distributed across a wide range of soil types and precipitation regimes. Some foliar characteristics such as M-A, [C], [N] and [Mg] emerge as highly constrained by the taxonomic affiliation of tree species, but with others such as [P], [K], [Ca] and delta C-13 also strongly influenced by site growing conditions. By removing the environmental contribution to trait variation, we find that intrinsic values of most trait pairs coordinate, although different species ( characterised by different trait suites) are found at discrete locations along a common axis of coordination. Species that tend to occupy higher fertility soils are characterised by a lower M-A and have a higher intrinsic [N], [P], [K], [Mg] and delta C-13 than their lower fertility counterparts. Despite this consistency, different scaling patterns were observed between low and high fertility sites. Inter-relationships are thus substantially modified by growth environment. Analysing the environmental component of trait variation, we found soil fertility to be the most important predictor, influencing all leaf nutrient concentrations and delta C-13 and reducing M-A. Mean annual temperature was negatively associated with leaf level [N], [P] and [K] concentrations. Total annual precipitation positively influences M-A, [C] and delta C-13, but with a negative impact on [Mg]. These results provide a first basis for understanding the relationship between the physiological functioning and distribution of tree species across Amazonia.  
  Address [Fyllas, N. M.; Baker, T. R.; Quesada, C. A.; Lopez-Gonzalez, G.; Phillips, O. L.; Lloyd, J.] Univ Leeds, Sch Geog, Earth & Biosphere Inst, Leeds LS2 9JT, W Yorkshire, England, Email: n.fyllas@leeds.ac.uk  
  Corporate Author Thesis  
  Publisher COPERNICUS PUBLICATIONS Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1726-4170 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000272232200025 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 92  
Permanent link to this record
 

 
Author Fisher, J.B.; Malhi, Y.; Bonal, D.; Da Rocha, H.R.; De Araujo, A.C.; Gamo, M.; Goulden, M.L.; Hirano, T.; Huete, A.R.; Kondo, H.; Kumagai, T.; Loescher, H.W.; Miller, S.; Nobre, A.D.; Nouvellon, Y.; Oberbauer, S.F.; Panuthai, S.; Roupsard, O.; Saleska, S.; Tanaka, K.; Tanaka, N.; Tu, K.P.; Von Randow, C. openurl 
  Title The land-atmosphere water flux in the tropics Type Journal Article
  Year 2009 Publication Global Change Biology Abbreviated Journal Glob. Change Biol.  
  Volume 15 Issue (down) 11 Pages 2694-2714  
  Keywords Amazon; eddy covariance; evaporation; evapotranspiration; ISLSCP-II; LBA; model; remote sensing; tropical  
  Abstract Tropical vegetation is a major source of global land surface evapotranspiration, and can thus play a major role in global hydrological cycles and global atmospheric circulation. Accurate prediction of tropical evapotranspiration is critical to our understanding of these processes under changing climate. We examined the controls on evapotranspiration in tropical vegetation at 21 pan-tropical eddy covariance sites, conducted a comprehensive and systematic evaluation of 13 evapotranspiration models at these sites, and assessed the ability to scale up model estimates of evapotranspiration for the test region of Amazonia. Net radiation was the strongest determinant of evapotranspiration (mean evaporative fraction was 0.72) and explained 87% of the variance in monthly evapotranspiration across the sites. Vapor pressure deficit was the strongest residual predictor (14%), followed by normalized difference vegetation index (9%), precipitation (6%) and wind speed (4%). The radiation-based evapotranspiration models performed best overall for three reasons: (1) the vegetation was largely decoupled from atmospheric turbulent transfer (calculated from X decoupling factor), especially at the wetter sites; (2) the resistance-based models were hindered by difficulty in consistently characterizing canopy (and stomatal) resistance in the highly diverse vegetation; (3) the temperature-based models inadequately captured the variability in tropical evapotranspiration. We evaluated the potential to predict regional evapotranspiration for one test region: Amazonia. We estimated an Amazonia-wide evapotranspiration of 1370 mm yr(-1), but this value is dependent on assumptions about energy balance closure for the tropical eddy covariance sites; a lower value (1096 mm yr(-1)) is considered in discussion on the use of flux data to validate and interpolate models.  
  Address [Fisher, Joshua B.; Malhi, Yadvinder] Univ Oxford, Environm Change Inst, Sch Geog & Environm, Oxford OX1 3QY, England, Email: joshbfisher@gmail.com  
  Corporate Author Thesis  
  Publisher WILEY-BLACKWELL PUBLISHING, INC Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1354-1013 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000270662000011 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 101  
Permanent link to this record
 

 
Author van Gorsel, E.; Delpierre, N.; Leuning, R.; Black, A.; Munger, J.W.; Wofsy, S.; Aubinet, M.; Feigenwinter, C.; Beringer, J.; Bonal, D.; Chen, B.Z.; Chen, J.Q.; Clement, R.; Davis, K.J.; Desai, A.R.; Dragoni, D.; Etzold, S.; Grunwald, T.; Gu, L.H.; Heinesch, B.; Hutyra, L.R.; Jans, W.W.P.; Kutsch, W.; Law, B.E.; Leclerc, M.Y.; Mammarella, I.; Montagnani, L.; Noormets, A.; Rebmann, C.; Wharton, S. openurl 
  Title Estimating nocturnal ecosystem respiration from the vertical turbulent flux and change in storage of CO2 Type Journal Article
  Year 2009 Publication Agricultural and Forest Meteorology Abbreviated Journal Agric. For. Meteorol.  
  Volume 149 Issue (down) 11 Pages 1919-1930  
  Keywords Ecosystem respiration; Micrometeorology; Advection; u-star correction; Eddy covariance; Chamber; Process-based modelling  
  Abstract Micrometeorological measurements of night time ecosystem respiration can be systematically biased when stable atmospheric conditions lead to drainage flows associated with decoupling of air flow above and within plant canopies. The associated horizontal and vertical advective fluxes cannot be measured using instrumentation on the single towers typically used at micrometeorological sites. A common approach to minimize bias is to use a threshold in friction velocity, u*, to exclude periods when advection is assumed to be important, but this is problematic in situations when in-canopy flows are decoupled from the flow above. Using data from 25 flux stations in a wide variety of forest ecosystems globally, we examine the generality of a novel approach to estimating nocturnal respiration developed by van Gorsel et al. (van Gorsel, E., Leuning, R., Cleugh, H.A., Keith, H., Suni, T., 2007. Nocturnal carbon efflux: reconciliation of eddy covariance and chamber measurements using an alternative to the u*-threshold filtering technique. Tellus 59B, 397-403, Tellus, 59B, 307-403). The approach is based on the assumption that advection is small relative to the vertical turbulent flux (F-C) and change in storage (F-S) of CO2 in the few hours after sundown. The sum of F-C and F-S reach a maximum during this period which is used to derive a temperature response function for ecosystem respiration. Measured hourly soil temperatures are then used with this function to estimate respiration R-Rmax. The new approach yielded excellent agreement with (1) independent measurements using respiration chambers, (2) with estimates using ecosystem light-response curves of F-c + F-s extrapolated to zero light, R-LRC, and (3) with a detailed process-based forest ecosystem model, R-cast. At most sites respiration rates estimated using the u*-filter, R-ust, were smaller than R-Rmax, and R-LRC. Agreement of our approach with independent measurements indicates that R-Rmax, provides an excellent estimate of nighttime ecosystem respiration. (C) 2009 Elsevier B.V. All rights reserved.  
  Address [van Gorsel, Eva; Leuning, Ray] CSIRO Marine & Atmospher Res, Canberra, ACT 2061, Australia, Email: Eva.vangorsel@csiro.au  
  Corporate Author Thesis  
  Publisher ELSEVIER SCIENCE BV Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000270640300013 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 102  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: