toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Petit, M.; Denis, T.; Rux, O.; Richard-Hansen, C.; Berzins, R. url  doi
openurl 
  Title Estimating jaguar (Panthera onca) density in a preserved coastal area of French Guiana Type Journal Article
  Year 2018 Publication Mammalia Abbreviated Journal Mammalia  
  Volume 82 Issue (down) 2 Pages 188-192  
  Keywords camera trapping; density; French Guiana; home range; Panthera onca; spatially explicit capture recapture  
  Abstract Knowledge of the jaguar population is needed in French Guiana that faces an increase of human-jaguar conflicts. We carried out a camera trap survey to assess jaguar local density and home range size in a preserved coastal area of French Guiana. We ran spatially explicit capture recapture (SECR) models. In our model, the scale parameter σ, that is linked to the home range size, was larger for males (σ=3.87±0.59 SE km) than for females (σ=2.33±0.30 SE km). The assessed jaguar density was 3.22±0.87 SE ind. 100 km â '2, which should be considered as an optimal density in a French Guiana coastal area.  
  Address Office National de la Chasse et de la Faune Sauvage, Campus Agronomique, BP316, Kourou Cedex, French Guiana  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 7 May 2018 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 803  
Permanent link to this record
 

 
Author Hérault, B.; Piponiot, C. pdf  url
doi  openurl
  Title Key drivers of ecosystem recovery after disturbance in a neotropical forest: Long-term lessons from the Paracou experiment, French Guiana Type Journal Article
  Year 2018 Publication Forest Ecosystems Abbreviated Journal Forest Ecosystems  
  Volume 5 Issue (down) 2 Pages  
  Keywords Amazonia; Carbon fluxes; Climate change; Ecological resilience; Ecosystem modeling; Tropical forests  
  Abstract Background: Natural disturbance is a fundamental component of the functioning of tropical rainforests let to natural dynamics, with tree mortality the driving force of forest renewal. With ongoing global (i.e. land-use and climate) changes, tropical forests are currently facing deep and rapid modifications in disturbance regimes that may hamper their recovering capacity so that developing robust predictive model able to predict ecosystem resilience and recovery becomes of primary importance for decision-making: (i) Do regenerating forests recover faster than mature forests given the same level of disturbance? (ii) Is the local topography an important predictor of the post-disturbance forest trajectories? (iii) Is the community functional composition, assessed with community weighted-mean functional traits, a good predictor of carbon stock recovery? (iv) How important is the climate stress (seasonal drought and/or soil water saturation) in shaping the recovery trajectory? Methods: Paracou is a large scale forest disturbance experiment set up in 1984 with nine 6.25 ha plots spanning on a large disturbance gradient where 15 to 60% of the initial forest ecosystem biomass were removed. More than 70,000 trees belonging to ca. 700 tree species have then been censused every 2 years up today. Using this unique dataset, we aim at deciphering the endogenous (forest structure and composition) and exogenous (local environment and climate stress) drivers of ecosystem recovery in time. To do so, we disentangle carbon recovery into demographic processes (recruitment, growth, mortality fluxes) and cohorts (recruited trees, survivors). Results: Variations in the pre-disturbance forest structure or in local environment do not shape significantly the ecosystem recovery rates. Variations in the pre-disturbance forest composition and in the post-disturbance climate significantly change the forest recovery trajectory. Pioneer-rich forests have slower recovery rates than assemblages of late-successional species. Soil water saturation during the wet season strongly impedes ecosystem recovery but not seasonal drought. From a sensitivity analysis, we highlight the pre-disturbance forest composition and the post-disturbance climate conditions as the primary factors controlling the recovery trajectory. Conclusions: Highly-disturbed forests and secondary forests because they are composed of a lot of pioneer species will be less able to cope with new disturbance. In the context of increasing tree mortality due to both (i) severe droughts imputable to climate change and (ii) human-induced perturbations, tropical forest management should focus on reducing disturbances by developing Reduced Impact Logging techniques.  
  Address Université de la Guyane, UMR EcoFoG (AgroParistech, Cirad, CNRS, Inra, Université des Antilles), Campus Agronomique, Kourou, French Guiana, 97310, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Cited By :1; Export Date: 1 September 2018 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 812  
Permanent link to this record
 

 
Author Dejean, A.; Orivel, J.; Leponce, M.; Compin, A.; Delabie, J.H.C.; Azémar, F.; Corbara, B. doi  openurl
  Title Ant–plant relationships in the canopy of an Amazonian rainforest: the presence of an ant mosaic Type Journal Article
  Year 2018 Publication Biological Journal of the Linnean Society Abbreviated Journal  
  Volume 125 Issue (down) 2 Pages 344-354  
  Keywords  
  Abstract Using different techniques to access the canopy of an Amazonian rainforest, we inspected 157 tree crowns for arboreal ants. Diversity statistics showed that our study sample was not representative of the tree and ant populations due to their high diversity in Amazonian rainforests, but permitted us to note that a representative part of territorially dominant arboreal ant species (TDAAs) was inventoried. Mapping of TDAA territories and use of a null model showed the presence of an ant mosaic in the upper canopy, but this was not the case in the sub-canopy. Among the TDAAs, carton-nesting Azteca dominated (52.98% of the trees) whereas ant-garden ants (Camponotus femoratus and Crematogaster levior), common in pioneer formations, were secondarily abundant (21.64% of the trees), and the remaining 25.37% of trees sheltered one of 11 other TDAAs. The distribution of the trees forming the upper canopy influences the structure of the ant mosaic, which is related to the attractiveness of some tree taxa for certain arboreal ant species and represents a case of diffuse coevolution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0024-4066 ISBN Medium  
  Area Expedition Conference  
  Notes 10.1093/biolinnean/bly125 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 824  
Permanent link to this record
 

 
Author Gibson, J.C.; Larabee, F.J.; Touchard, A.; Orivel, J.; Suarez, A.V. url  doi
openurl 
  Title Mandible strike kinematics of the trap-jaw ant genus Anochetus Mayr (Hymenoptera: Formicidae) Type Journal Article
  Year 2018 Publication Journal of Zoology Abbreviated Journal  
  Volume 306 Issue (down) 2 Pages 119-128  
  Keywords catapult mechanism; comparative biomechanics; Formicidae; functional morphology; kinematics; mandible strike; power amplification  
  Abstract High-speed power-amplification mechanisms are common throughout the animal kingdom. In ants, power-amplified trap-jaw mandibles have evolved independently at least four times, including once in the subfamily Ponerinae which contains the sister genera Odontomachus and Anochetus. In Odontomachus, mandible strikes have been relatively well described and can occur in <0.15 ms and reach speeds of over 60 m s−1. In contrast, the kinematics of mandible strikes have not been examined in Anochetus, whose species are smaller and morphologically distinct from Odontomachus. In this study, we describe the mandible strike kinematics of four species of Anochetus representative of the morphological, phylogenetic, and size diversity present within the genus. We also compare their strikes to two representative species of Odontomachus. We found that two species, Anochetus targionii and Anochetus paripungens, have mandible strikes that overall closely resemble those found in Odontomachus, reaching a mean maximum rotational velocity and acceleration of around 3.7 × 104 rad s−1 and 8.5 × 108 rad s−2, respectively. This performance is consistent with predictions based on body size scaling relationships described for Odontomachus. In contrast, Anochetus horridus and Anochetus emarginatus have slower strikes relative to the other species of Anochetus and Odontomachus, reaching mean maximum rotational velocity and acceleration of around 1.3 × 104 rad s−1 and 2 × 108 rad s−2, respectively. This variation in strike performance among species of Anochetus likely reflects differences in evolutionary history, physiology, and natural history among species. © 2018 The Zoological Society of London  
  Address Department of Animal Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 15 October 2018 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 826  
Permanent link to this record
 

 
Author Salas-Lopez, A.; Violle, C.; Mallia, L.; Orivel, J. url  doi
openurl 
  Title Land-use change effects on the taxonomic and morphological trait composition of ant communities in French Guiana Type Journal Article
  Year 2018 Publication Insect Conservation and Diversity Abbreviated Journal Insect Conserv Divers  
  Volume 11 Issue (down) 2 Pages 162-173  
  Keywords Community assembly; Formicidae; functional diversity; gradient analysis; habitat filtering; land-use intensification; n-dimensional hypervolume approach  
  Abstract Abstract Land-use changes frequently lead to major changes in the composition and diversity of organisms. A reduction in the range of strategies enabling organisms to survive in a given environment and changes in the average trait values of species may potentially be associated with variations in species? number and identity. We investigated the variation in ant taxonomic composition and morphological trait diversity along a land-use gradient in French Guiana. We measured 13 core ant morphological traits on all species sampled. We then selected the set of five traits that best captured changes along the land-use gradient. Potential effects of the variation in morphological trait diversity and average values were evaluated by examining morphological traits individually as well as in combination. We found that variation in taxonomic diversity was unrelated to the plot-level morphospace. Conversely, a significant shift in taxonomic composition was accompanied by changes in the average values of community traits along the studied gradient, examined both individually and in combination. We argue that morphological trait values may be related to the success of different species in surviving in a given environment and, therefore, are indicative of the taxonomic turnover in ants along the land-use gradient. Nevertheless, in contradiction with theoretical expectations, the morphospace is only slightly affected by habitat filtering and loosely impacted by taxonomic changes. Examining the sensitivity of the morphospace to abiotic and biotic factors and how it reflects varying ecological pressures for species is thus of the utmost importance.  
  Address  
  Corporate Author Thesis  
  Publisher John Wiley & Sons, Ltd (10.1111) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1752-458x ISBN Medium  
  Area Expedition Conference  
  Notes doi: 10.1111/icad.12248 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 892  
Permanent link to this record
 

 
Author Lehnebach, R.; Bossu, J.; Va, S.; Morel, H.; Amusant, N.; Nicolini, E.; Beauchene, J. pdf  url
doi  openurl
  Title Wood density variations of legume trees in French Guiana along the shade tolerance continuum: Heartwood effects on radial patterns and gradients Type Journal Article
  Year 2019 Publication Forests Abbreviated Journal Forests  
  Volume 10 Issue (down) 2 Pages  
  Keywords French Guiana; Growth-mortality rate; Heartwood; Heartwood extractives; Legumes; Sapwood; Shade tolerance; Tropical tree species; Wood density variations  
  Abstract Increasing or decreasing wood density (WD) from pith to bark is commonly observed in tropical tree species. The different types of WD radial variations, long been considered to depict the diversity of growth and mechanical strategies among forest guilds (heliophilic vs. shade-tolerant), were never analyzed in the light of heartwood (HW) formation. Yet, the additional mass of chemical extractives associated to HW formation increases WD and might affect both WD radial gradient (i.e., the slope of the relation between WD and radial distance) and pattern (i.e., linear or nonlinear variation). We studied 16 legumes species from French Guiana representing a wide diversity of growth strategies and positions on the shade-tolerance continuum. Using WD measurements and available HW extractives content values, we computed WD corrected by the extractive content and analyzed the effect of HW on WD radial gradients and patterns. We also related WD variations to demographic variables, such as sapling growth and mortality rates. Regardless of the position along the shade-tolerance continuum, correcting WD gradients reveals only increasing gradients. We determined three types of corrected WD patterns: (1) the upward curvilinear pattern is a specific feature of heliophilic species, whereas (2) the linear and (3) the downward curvilinear patterns are observed in both mid- and late-successional species. In addition, we found that saplings growth and mortality rates are better correlated with the corrected WD at stem center than with the uncorrected value: taking into account the effect of HW extractives on WD radial variations provides unbiased interpretation of biomass accumulation and tree mechanical strategies. Rather than a specific feature of heliophilic species, the increasing WD gradient is a shared strategy regardless of the shade tolerance habit. Finally, our study stresses to consider the occurrence of HW when using WD.  
  Address Ecology of Guianan Forests (EcoFoG), AgroParisTech, French Agricultural Research and International Cooperation Organization (CIRAD), French National Centre for Scientific Research (CNRS), French National Institute for Agricultural Research (INRA), Université des Antilles, Université de Guyane, Kourou, French Guiana, 97310, France  
  Corporate Author Thesis  
  Publisher Mdpi Ag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 19994907 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 1 February 2019; Correspondence Address: Lehnebach, R.; Laboratory of Botany and Modeling of Plant Architecture and Vegetation (AMAP), French Agricultural Research and International Cooperation Organization (CIRAD)France; email: romain.lehnebach@cirad.fr; Funding details: Agence Nationale de la Recherche, ANR; Funding details: Federación Española de Enfermedades Raras, FEDER; Funding text 1: The authors thank Grégoire Vincent, Jean-François Molino, and Daniel Sabatier for providing demographical data.). The French Agricultural Research Centre for International Development (CIRAD) funded Romain Lehnebach PhD scholarship. This research project was also funded by the European Regional Development Fund (FEDER, no 31703) and benefits from an 'Investissements d'Avenir' grant managed by the French National Research Agency (CEBA, ref. ANR-10-LABX-25-01).; References: Kollmann, F.F.P., Côté, W.A., (1984) Principles of Wood Science and Technology: I Solid Wood, , Springer: Berlin, Germany; Muller-Landau, H.C., Interspecific and inter-site variation in wood specific gravity of tropical trees (2004) Biotropica, 36, pp. 20-32; Van Gelder, H.A., Poorter, L., Sterck, F.J., Wood mechanics, allometry, and life-history variation in a tropical rain forest tree community (2006) New Phyt, 171, pp. 367-378; Chave, J., Coomes, D., Jansen, S., Lewis, S.L., Swenson, N.G., Zanne, A.E., Towards a worldwide wood economics spectrum (2009) Ecol. Lett, 12, pp. 351-366; Wright, S.J., Kitajima, K., Kraft, N.J.B., Reich, P.B., Wright, I.J., Bunker, D.E., Condit, R., Díaz, S., Functional traits and the growth-mortality trade-off in tropical trees (2010) Ecology, 91, pp. 3664-3674; Niklas, K.J., Influence of tissue density-specific mechanical properties on the scaling of plant height (1993) Ann. Bot, 72, pp. 173-179; Niklas, K.J., Spatz, H.-C., Worldwide correlations of mechanical properties and green wood density (2010) Am. J. Bot, 97, pp. 1587-1594; Pratt, R.B., Jacobsen, A.L., Ewers, F.W., Davis, S.D., Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral (2007) New Phyt, 174, pp. 787-798; Lachenbruch, B., Moore, J., Evans, R., Radial Variation in Wood Structure and Function in Woody Plants, and Hypotheses for Its Occurrence (2011) In Size-and Age-Related Changes in Tree Structure and Function, 4, pp. 121-164. , Meinzer, F.C., Lachenbruch, B., Dawson, T.E., Eds.; Springer: Berlin, Germany; Hacke, U.G., Sperry, J.S., Pockman, W.T., Davis, S.D., McCulloh, K.A., Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure (2001) Oecologia, 126, pp. 457-461; Markesteijn, L., Poorter, L., Paz, H., Sack, L., Bongers, F., Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits (2011) Plant Cell Environ, 34, pp. 137-148; Rosner, S., Wood density as a proxy for vulnerability to cavitation: Size matters (2017) J. Plant Hydraul, 4, pp. 1-10; Zanne, A.E., Westoby, M., Falster, D.S., Ackerly, D.D., Loarie, S.R., Arnold, S.E.J., Coomes, D.A., Angiosperm wood structure: Global patterns in vessel anatomy and their relation to wood density and potential conductivity (2010) Am. J. Bot, 97, pp. 207-215; King, D.A., Davies, S.J., Tan, S., Noor, N.S.M., The role of wood density and stem support costs in the growth and mortality of tropical trees (2006) J. Ecol, 94, pp. 670-680; Poorter, L., Wright, S.J., Paz, H., Ackerly, D.D., Condit, R., Ibarra-Manríquez, G., Harms, K.E., Mazer, S.J., Are functional traits good predictors of demographic rates? Evidence from five neotropical forests (2008) Ecology, 89, pp. 1908-1920; Nascimento, H.E.M., Laurance, W.F., Condit, R., Laurance, S.G., D'Angelo, S., Andrade, A.C., Demographic and life-history correlates for Amazonian trees (2005) J. Veg. Sci, 16, pp. 625-634; Meinzer, F.C., Lachenbruch, B., Dawson, T.E., (2011) Size-and Age-Related Changes in Tree Structure and Function, , Springer: Dordrecht, The Netherlands; Wiemann, M., Williamson, G., Extreme radial changes in wood specific gravity in some tropical pioneers (1988) Wood Fiber Sci, 20, pp. 344-349; Rueda, R., Williamson, G.B., Radial and vertical wood specific gravity in Ochroma pyramidale (Cav. ex Lam.) Urb (Bombacaceae) (1992) Biotropica, 24, pp. 512-518; Williamson, G.B., Wiemann, M.C., Geaghan, J.P., Radial wood allocation in Schizolobium parahyba (2012) Am. J. Bot, 99, pp. 1010-1019; Bastin, J.-F., Fayolle, A., Tarelkin, Y., Van den Bulcke, J., de Haulleville, T., Mortier, F., Beeckman, H., Bogaert, J., Wood specific gravity variations and biomass of central African tree species: The simple choice of the outer wood (2015) PLoS ONE, 10; Longuetaud, F., Mothe, F., Santenoise, P., Diop, N., Dlouha, J., Fournier, M., Deleuze, C., Patterns of withinstem variations in wood specific gravity and water content for five temperate tree species (2017) Ann. For. Sci, 74, p. 64; Wiemann, M.C., Williamson, B., Testing a novel method to approximate wood specific gravity of trees (2012) For. Sci, 58, pp. 577-591; Wiemann, M.C., Williamson, G.B., Wood specific gravity gradients in tropical dry and montane rain forest trees (1989) Am. J. Bot, 76, pp. 924-928; Wiemann, M.C., Williamson, G.B., Radial gradients in the specific gravity of wood in some tropical and temperate trees (1989) For. Sci, 35, pp. 197-210; Parolin, P., Radial gradients in wood specific gravity in trees of central amazonian floodplains (2002) IAWA J, 23, pp. 449-457; Abe, H., Kuroda, K., Yamashita, K., Yazaki, K., Noshiro, S., Fujiwara, T., Radial variation of wood density of Quercus spp (Fagaceae) in Japan (2012) Mokuzai Gakkaishi, 58, pp. 329-338; Lei, H., Milota, M.R., Gartner, B.L., Between-and within-tree variation in the anatomy and specific gravity of wood in oregon White Oak (Quercus garryana Dougl.) (1996) IAWA J, 17, pp. 445-461; Woodcock, D., Shier, A., Wood specific gravity and its radial variations: The many ways to make a tree (2002) Trees, 16, pp. 437-443; Hérault, B., Beauchêne, J., Muller, F., Wagner, F., Baraloto, C., Blanc, L., Martin, J.-M., Modeling decay rates of dead wood in a neotropical forest (2010) Oecologia, 164, pp. 243-251; Thibaut, B., Baillères, H., Chanson, B., Fournier-Djimbi, M., Plantations d'arbres à croissance rapide et qualité des produits forestiers sous les tropiques (1997) Bois For. Trop, 252, pp. 49-54; Nock, C.A., Geihofer, D., Grabner, M., Baker, P.J., Bunyavejchewin, S., Hietz, P., Wood density and its radial variation in six canopy tree species differing in shade-tolerance in western Thailand (2009) Ann. Bot, 104, pp. 297-306; Hietz, P., Valencia, R., Joseph Wright, S., Strong radial variation in wood density follows a uniform pattern in two neotropical rain forests (2013) Funct. Ecol, 27, pp. 684-692; Osazuwa-Peters, O.L., Wright, S.J., Zanne, A.E., Radial variation in wood specific gravity of tropical tree species differing in growth-mortality strategies (2014) Am. J. Bot, 101, pp. 803-811; Plourde, B.T., Boukili, V.K., Chazdon, R.L., Radial changes in wood specific gravity of tropical trees: Interand intraspecific variation during secondary succession (2015) Funct. Ecol, 29, pp. 111-120; Hillis, W.E., Secondary Changes in Wood (1977) In The Structure, Biosynthesis, and Degradation of Wood, 11, pp. 247-309. , Loewus, F., Runeckles, V.C., Eds.; Plenum Press: New York, NY, USA; Hillis, W.E., (1987) Heartwood and Tree Exudates, , Springer-Verlag: Berlin, Germany; Yang, K.C., (1990) The Ageing Process of Sapwood Ray Parenchyma Cells in Four Woody Species, , Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada; Royer, M., Stien, D., Beauchêne, J., Herbette, G., McLean, J.P., Thibaut, A., Thibaut, B., Extractives of the tropical wood wallaba (Eperua falcata Aubl.) as natural anti-swelling agents (2010) Holzforschung, 64, pp. 211-215; Amusant, N., Moretti, C., Richard, B., Prost, E., Nuzillard, J.M., Thévenon, M.F., Chemical compounds from Eperua falcata and Eperua grandiflora heartwood and their biological activities against wood destroying fungus (Coriolus versicolor) (2006) Holz Roh Werkst, 65, pp. 23-28; Lehnebach, R., (2015) Variabilité Ontogénique du Profil Ligneux chez les Légumineuses de Guyane Française, , Ph.D. Thesis, Université de Montpellier, Montpellier, France; Sabatier, D., Prévost, M.F., Quelques données sur la composition floristique, et la diversite des peuplements forestiers de guyane francaise (1990) Bois For. Trop, 219, pp. 31-55; Ter Steege, H., Pitman, N.C.A., Phillips, O.L., Chave, J., Sabatier, D., Duque, A., Molino, J.-F., Castellanos, H., Continental-scale patterns of canopy tree composition and function across Amazonia (2006) Nature, 443, pp. 444-447; Ter Steege, H., Vaessen, R.W., Cárdenas-López, D., Sabatier, D., Antonelli, A., de Oliveira, S.M., Pitman, N.C.A., Salomão, R.P., The discovery of the Amazonian tree flora with an updated checklist of all known tree taxa (2016) Sci. Rep, 6, p. 29549; Woodcock, D.W., Shier, A.D., Does canopy position affect wood specific gravity in temperate forest trees? (2003) Ann. Bot, 91, pp. 529-537; Osazuwa-Peters, O.L., Wright, S.J., Zanne, A.E., Linking wood traits to vital rates in tropical rainforest trees: Insights from comparing sapling and adult wood (2017) Am. J. Bot, 104, pp. 1464-1473; Favrichon, V., Classification des espèces arborées en groupes fonctionnels en vue de la réalisation d'un modèle de dynamique de peuplement en forêt guyanaise (1994) Rev. Ecol. Terre Vie, 49, pp. 379-403; (2016) R: A Language and Environment for Statistical Computing, , R Foundation for Statistical Computing: Vienna, Austria; Taylor, A.M., Gartner, B.L., Morrell, J.J., Heartwood formation and natural durability-A review (2002) Wood Fiber Sci, 34, pp. 587-611; Molino, J.F., Sabatier, D., Tree diversity in tropical rain forests: A validation of the intermediate disturbance hypothesis (2001) Science, 294, pp. 1702-1704; Vincent, G., Molino, J.-F., Marescot, L., Barkaoui, K., Sabatier, D., Freycon, V., Roelens, J.B., The relative importance of dispersal limitation and habitat preference in shaping spatial distribution of saplings in a tropical moist forest: A case study along a combination of hydromorphic and canopy disturbance gradients (2011) Ann. For. Sci, 68, pp. 357-370; Pinheiro, J., Bates, D., (2000) Mixed-Effects Models in S and S-PLUS, , Springer-Verlag: New York, NY, USA; Hurvich, C.M., Tsai, C.-L., Bias of the corrected AIC criterion for underfitted regression and time series models (1991) Biometrika, 78, pp. 499-509; Mazerolle, M.J., AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c), , https://cran.r-project.org/package=AICcmodavg, R Package Version 2.1-0. 2016 (accessed on 1 December 2018); Harrel, F.E.J., Hmisc: Harrell Miscellaneous, , https://CRAN.R-project.org/package=Hmisc, R Package Version 3.14-3. 2016 (accessed on 1 December 2018); De Mendiburu, F., (2016) Agricolae: Statistical Procedures for Agricultural Research, , https://CRAN.R-project.org/package=agricolae, (accessed on 1 December 2018). R Package Version 1.2-4; Morel, H., Lehnebach, R., Cigna, J., Ruelle, J., Nicolini, E., Beauchêne, J., Basic wood density variations of Parkia velutina Benoist, a long-lived heliophilic Neotropical rainforest tree (2018) Bois For. Trop, 335, pp. 59-69; Bossu, J., (2015) Potentiel de Bagassa guianensis et Cordia alliodora pour la Plantation en Zone Tropicale: Description d'une Stratégie de Croissance Optimale Alliant Vitesse de Croissance et Qualité du Bois, , Ph.D. Thesis, Université de Guyane, Kourou, French Guiana; Oldeman, R.A.A., (1974) L'Architecture de la Forêt Guyanaise, , Office de la Recherche Scientifique et Technique Outre-Mer: Paris, France; Anten, N.P.R., Schieving, F., The role of wood mass density and mechanical constraints in the economy of tree architecture (2010) Am. Nat, 175, p. 11; Larjavaara, M., Muller-Landau, H.C., Rethinking the value of high wood density (2010) Funct. Ecol, 24, pp. 701-705; Lachenbruch, B., McCulloh, K.A., Traits, properties, and performance: How woody plants combine hydraulic and mechanical functions in a cell, tissue, or whole plant (2014) New Phyt, 204, pp. 747-764; Chapotin, S.M., Razanameharizaka, J.H., Holbrook, N.M., A biomechanical perspective on the role of large stem volume and high water content in baobab trees (Adansonia spp.; Bombacaceae) (2006) Am. J. Bot, 93, pp. 1251-1264; Kuo, M.-L., Arganbright, D.G., Cellular distribution of extractives in redwood and incense cedar-Part II Microscopic observation of the location of cell wall and cell cavity extractives (1980) Holzforschung, 34, pp. 41-47; Olson, J.R., Carpenter, S.B., Specific gravity, fibre length, and extractive content of young Paulownia (1985) Wood Fiber Sci, 17, pp. 428-438; Stringer, J.W., Olson, J.R., Radial and vertical variations in stem properties of juvenile black locust (Robinia pseudoacacia) (1987) Wood Fiber Sci, 19, pp. 59-67; Gierlinger, N., Wimmer, R., Radial distribution of heartwood extractives and lignin in mature European larch (2004) Wood Fiber Sci, 36, pp. 387-394; Bossu, J., Beauchêne, J., Estevez, Y., Duplais, C., Clair, B., New insights on wood dimensional stability influenced by secondary metabolites: The case of a fast-growing tropical species Bagassa guianensis Aubl (2016) PLoS ONE, 11; Amusant, N., Beauchene, J., Fournier, M., Janin, G., Thevenon, M.-F., Decay resistance in Dicorynia guianensis Amsh.: Analysis of inter-tree and intra-tree variability and relations with wood colour (2004) Ann. For. Sci, 61, pp. 373-380; Hillis, W.E., Distribution, properties and formation of some wood extractives (1971) Wood Sci. Tech, 5, pp. 272-289; Taylor, A., Freitag, C., Cadot, E., Morrell, J., Potential of near infrared spectroscopy to assess hot-watersoluble extractive content and decay resistance of a tropical hardwood (2008) Holz Roh Werkst, 66, pp. 107-111; Amusant, N., Nigg, M., Thibaut, B., Beauchene, J., Diversity of decay resistance strategies of durable tropical woods species: Bocoa prouacensis Aublet, Vouacapoua americana Aublet, Inga alba (Sw.) Wild (2014) Int. Biodeterior. Biodegrad, 94, pp. 103-108; Falster, D.S., Westoby, M., Tradeoffs between height growth rate, stem persistence and maximum height among plant species in a post-fire succession (2005) Oikos, 111, pp. 57-66; Panshin, A.J., de Zeeuw, C., (1980) Textbook of Wood Technology: Structure, Identification, Properties, and Uses of the Commercial Woods of the United States and Canada, , McGraw-Hill: New York, NY, USA; Hernández, R.E., Influence of accessory substances, wood density and interlocked grain on the compressive properties of hardwoods (2007) Wood Sci. Tech, 41, pp. 249-265; Gherardi Hein, P.R., Tarcísio Lima, J., Relationships between microfibril angle, modulus of elasticity and compressive strength in Eucalyptus wood (2012) Maderas. Cienc. Tecnol, 14, pp. 267-274; Cave, I.D., Walker, J.C.F., Stiffness of wood in fast-grown plantation softwoods: Theinfluence of microfibril angle (1994) For. Prod. J, 44, pp. 43-48; Bossu, J., Lehnebach, R., Corn, S., Regazzi, A., Beauchêne, J., Clair, B., Interlocked grain and density patterns in Bagassa guianensis: Changes with ontogeny and mechanical consequences for trees (2018) Trees, 32, pp. 1643-1655; Hart, J., Johnson, K., Production of decay-resistant sapwood in response to injury (1970) Wood Sci. Tech, 4, pp. 267-272; Boddy, L., Microenvironmental Aspects of Xylem Defenses to Wood Decay Fungi (1992) Defense Mechanisms of Woody Plants Against Fungi, pp. 96-132. , Blanchette, R.A., Biggs, A.R., Eds.; Springer: Berlin, Germany; Roszaini, K., Hale, M.D., Salmiah, U., In-vitro decay resistance of 12 malaysian broadleaf hardwood trees as a function of wood density and extractives compounds (2016) J. Trop. For. Sci, 28, pp. 533-540; Stamm, A.J., Density of wood substance, adsorption by wood, and permeability of wood (1929) J. Phys. Chem, 33, pp. 398-414 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 858  
Permanent link to this record
 

 
Author Fichaux, M.; Béchade, B.; Donald, J.; Weyna, A.; Delabie, J.H.C.; Murienne, J.; Baraloto, C.; Orivel, J. url  doi
openurl 
  Title Habitats shape taxonomic and functional composition of Neotropical ant assemblages Type Journal Article
  Year 2019 Publication Oecologia Abbreviated Journal Oecologia  
  Volume 189 Issue (down) 2 Pages 501-513  
  Keywords Formicidae; Functional diversity; Habitat filtering; Rainforest; Traits; Formicidae  
  Abstract Determining assembly rules of co-occurring species persists as a fundamental goal in community ecology. At local scales, the relative importance of environmental filtering vs. competitive exclusion remains a subject of debate. In this study, we assessed the relative importance of habitat filtering and competition in structuring understory ant communities in tropical forests of French Guiana. Leaf-litter ants were collected using pitfall and Winkler traps across swamp, slope and plateau forests near Saül, French Guiana. We used a combination of univariate and multivariate analyses to evaluate trait response of ants to habitat characteristics. Null model analyses were used to investigate the effects of habitat filtering and competitive interactions on community assembly at the scale of assemblages and sampling points, respectively. Swamp forests presented a much lower taxonomic and functional richness compared to slope and plateau forests. Furthermore, marked differences in taxonomic and functional composition were observed between swamp forests and slope or plateau forests. We found weak evidence for competitive exclusion based on null models. Nevertheless, the contrasting trait composition observed between habitats revealed differences in the ecological attributes of the species in the different forest habitats. Our analyses suggest that competitive interactions may not play an important role in structuring leaf-litter ant assemblages locally. Rather, habitats are responsible for driving both taxonomic and functional composition of ant communities.  
  Address International Center for Tropical Botany, Department of Biological Sciences, Florida International University, Miami, FL 33199, United States  
  Corporate Author Thesis  
  Publisher Springer Verlag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00298549 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 863  
Permanent link to this record
 

 
Author Levionnois, S.; Coste, S.; Nicolini, E.; Stahl, C.; Morel, H.; Heuret, P. url  doi
openurl 
  Title Scaling of petiole anatomies, mechanics and vasculatures with leaf size in the widespread Neotropical pioneer tree species Cecropia obtusa Trécul (Urticaceae) Type Journal Article
  Year 2020 Publication Tree physiology Abbreviated Journal Tree Physiol.  
  Volume 40 Issue (down) 2 Pages 245-258  
  Keywords allometry; leaf size; petiole anatomy; scaling; theoretical hydraulic conductivity; vessel widening; xylem  
  Abstract Although the leaf economic spectrum has deepened our understanding of leaf trait variability, little is known about how leaf traits scale with leaf area. This uncertainty has resulted in the assumption that leaf traits should vary by keeping the same pace of variation with increases in leaf area across the leaf size range. We evaluated the scaling of morphological, tissue-surface and vascular traits with overall leaf area, and the functional significance of such scaling. We examined 1,271 leaves for morphological traits, and 124 leaves for anatomical and hydraulic traits, from 38 trees of Cecropia obtusa Trécul (Urticaceae) in French Guiana. Cecropia is a Neotropical genus of pioneer trees that can exhibit large laminas (0.4 m2 for C. obtusa), with leaf size ranging by two orders of magnitude. We measured (i) tissue fractions within petioles and their second moment of area, (ii) theoretical xylem hydraulic efficiency of petioles and (iii) the extent of leaf vessel widening within the hydraulic path. We found that different scaling of morphological trait variability allows for optimisation of lamina display among larger leaves, especially the positive allometric relationship between lamina area and petiole cross-sectional area. Increasing the fraction of pith is a key factor that increases the geometrical effect of supportive tissues on mechanical rigidity and thereby increases carbon-use efficiency. We found that increasing xylem hydraulic efficiency with vessel size results in lower leaf lamina area: xylem ratios, which also results in potential carbon savings for large leaves. We found that the vessel widening is consistent with hydraulic optimisation models. Leaf size variability modifies scaling of leaf traits in this large-leaved species. © The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permission@oup.com.  
  Address UMR AMAP, CIRAD, CNRS, IRD, Université de Montpellier, Montpellier, 34398, France  
  Corporate Author Thesis  
  Publisher NLM (Medline) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 17584469 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 16 March 2020 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 921  
Permanent link to this record
 

 
Author Ntawuhiganayo, E.B.; Uwizeye, F.K.; Zibera, E.; Dusenge, M.E.; Ziegler, C.; Ntirugulirwa, B.; Nsabimana, D.; Wallin, G.; Uddling, J. pdf  url
doi  openurl
  Title Traits controlling shade tolerance in tropical montane trees Type Journal Article
  Year 2020 Publication Tree physiology Abbreviated Journal Tree Physiol.  
  Volume 40 Issue (down) 2 Pages 183-197  
  Keywords biomass allocation; leaf temperature; plant traits; Rwanda; shade intolerance; shade tolerance; tropical montane forest; article; biomass allocation; breathing; canopy; carbon balance; compensation; photosynthesis; plant leaf; plant stem; rain forest; Rwanda; shade tolerance; species difference; sweating  
  Abstract Tropical canopies are complex, with multiple canopy layers and pronounced gap dynamics contributing to their high species diversity and productivity. An important reason for this complexity is the large variation in shade tolerance among different tree species. At present, we lack a clear understanding of which plant traits control this variation, e.g., regarding the relative contributions of whole-plant versus leaf traits or structural versus physiological traits. We investigated a broad range of traits in six tropical montane rainforest tree species with different degrees of shade tolerance, grown under three different radiation regimes (under the open sky or beneath sparse or dense canopies). The two distinct shade-tolerant species had higher fractional biomass in leaves and branches while shade-intolerant species invested more into stems, and these differences were greater under low radiation. Leaf respiration and photosynthetic light compensation point did not vary with species shade tolerance, regardless of radiation regime. Leaf temperatures in open plots were markedly higher in shade-tolerant species due to their low transpiration rates and large leaf sizes. Our results suggest that interspecific variation in shade tolerance of tropical montane trees is controlled by species differences in whole-plant biomass allocation strategy rather than by difference in physiological leaf traits determining leaf carbon balance at low radiation. © The Author(s) 2019. Published by Oxford University Press.  
  Address Rwanda Agriculture and Animal Resources Development, PO Box 5016Kigali, Rwanda  
  Corporate Author Thesis  
  Publisher NLM (Medline) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 17584469 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 16 March 2020 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 922  
Permanent link to this record
 

 
Author Privet, K.; Vedel, V.; Fortunel, C.; Orivel, J.; Martinez, Q.; Cerdan, A.; Baraloto, C.; Pétillon, J. pdf  url
doi  openurl
  Title Relative effciency of pitfall trapping vs. nocturnal hand collecting in assessing soil-dwelling spider diversity along a structural gradient of neotropical habitats Type Journal Article
  Year 2020 Publication Diversity Abbreviated Journal Diversity  
  Volume 12 Issue (down) 2 Pages 81  
  Keywords Araneae; Diversity indices; Functional diversity; Guiana shield; Sampling methods; Species richness; Turnover; Araneae  
  Abstract Assessing spider diversity remains a great challenge, especially in tropical habitats where dozens of species can locally co-occur. Pitfall trapping is one of the most widely used techniques to collect spiders, but it suffers from several biases, and its accuracy likely varies with habitat complexity. In this study, we compared the efficiency of passive pitfall trapping versus active nocturnal hand collecting (\"HC) to capture low understory-dwelling spider taxonomical (morpho-species) and functional (hunting guilds) diversity along a structural gradient of habitats in French Guiana. We focused on four habitats describing a structural gradient: garden to the orchard to the forest edge to the undisturbed forest. Overall, estimated morpho-species richness and composition did not vary consistently between habitats, but abundances of ground-hunting spiders decreased significantly with increasing habitat complexity. We found habitat-dependence differences in taxonomic diversity between sampling strategies: NHC revealed higher diversity in the orchard, whereas pitfalls resulted in higher diversity in the forest. Species turnover resulted in high dissimilarity in species composition between habitats using either method. This study shows how pitfall trapping is influenced by habitat structure, rendering this sampling method incomplete for complex, tropical environments. However, pitfall traps remain a valuable component of inventories because they sample distinct assemblage of spiders. © 2020 by the authors.  
  Address International Center for Tropical Botany, Department of Biological Sciences, Florida International University, 11200 S.W. 8th Street, Miami, FL 33199, United States  
  Corporate Author Thesis  
  Publisher Mdpi Ag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 14242818 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 16 March 2020; Correspondence Address: Privet, K.; CNRS, Ecobio (Ecosystèmes, biodiversité, évolution), Université de RennesFrance; email: kprivet@hotmail.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 923  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: