toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Legeay, J.; Husson, C.; Boudier, B.; Louisanna, E.; Baraloto, C.; Schimann, H.; Marcais, B.; Buée, M. doi  openurl
  Title Surprising low diversity of the plant pathogen Phytophthora in Amazonian forests Type Journal Article
  Year 2020 Publication Environmental Microbiology Abbreviated Journal Environ. Microbiol.  
  Volume 22 Issue 12 Pages 5019-5032  
  Keywords  
  Abstract The genus Phytophthora represents a group of plant pathogens with broad global distribution. The majority of them cause the collar and root-rot of diverse plant species. Little is known about Phytophthora communities in forest ecosystems, especially in the Neotropical forests where natural enemies could maintain the huge plant diversity via negative density dependence. We characterized the diversity of soil-borne Phytophthora communities in the North French Guiana rainforest and investigated how they are structured by host identity and environmental factors. In this little-explored habitat, 250 soil cores were sampled from 10 plots hosting 10 different plant families across three forest environments (Terra Firme, Seasonally Flooded and White Sand). Phytophthora diversity was studied using a baiting approach and metabarcoding (High-Throughput Sequencing) on environmental DNA extracted from both soil samples and baiting-leaves. These three approaches revealed very similar communities, characterized by an unexpected low diversity of Phytophthora species, with the dominance of two cryptic species close to Phytophthora heveae. As expected, the Phytophthora community composition of the French Guiana rainforest was significantly impacted by the host plant family and environment. However, these plant pathogen communities are very small and are dominated by generalist species, questioning their potential roles as drivers of plant diversity in these Amazonian forests. © 2020 Society for Applied Microbiology and John Wiley & Sons Ltd.  
  Address International Center for Tropical Botany, Department of Biological Sciences, Florida International University, Miami, FL 33199, United States  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 14622912 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 940  
Permanent link to this record
 

 
Author Bastin, J.-F.; Rutishauser, E.; Kellner, J.R.; Saatchi, S.; Pélissier, R.; Hérault, B.; Slik, F.; Bogaert, J.; De Cannière, C.; Marshall, A.R.; Poulsen, J.; Alvarez-Loyayza, P.; Andrade, A.; Angbonga-Basia, A.; Araujo-Murakami, A.; Arroyo, L.; Ayyappan, N.; de Azevedo, C.P.; Banki, O.; Barbier, N.; Barroso, J.G.; Beeckman, H.; Bitariho, R.; Boeckx, P.; Boehning-Gaese, K.; Brandão, H.; Brearley, F.Q.; Breuer Ndoundou Hockemba, M.; Brienen, R.; Camargo, J.L.C.; Campos-Arceiz, A.; Cassart, B.; Chave, J.; Chazdon, R.; Chuyong, G.; Clark, D.B.; Clark, C.J.; Condit, R.; Honorio Coronado, E.N.; Davidar, P.; de Haulleville, T.; Descroix, L.; Doucet, J.-L.; Dourdain, A.; Droissart, V.; Duncan, T.; Silva Espejo, J.; Espinosa, S.; Farwig, N.; Fayolle, A.; Feldpausch, T.R.; Ferraz, A.; Fletcher, C.; Gajapersad, K.; Gillet, J.-F.; Amaral, I.L. do; Gonmadje, C.; Grogan, J.; Harris, D.; Herzog, S.K.; Homeier, J.; Hubau, W.; Hubbell, S.P.; Hufkens, K.; Hurtado, J.; Kamdem, N.G.; Kearsley, E.; Kenfack, D.; Kessler, M.; Labrière, N.; Laumonier, Y.; Laurance, S.; Laurance, W.F.; Lewis, S.L.; Libalah, M.B.; Ligot, G.; Lloyd, J.; Lovejoy, T.E.; Malhi, Y.; Marimon, B.S.; Marimon Junior, B.H.; Martin, E.H.; Matius, P.; Meyer, V.; Mendoza Bautista, C.; Monteagudo-Mendoza, A.; Mtui, A.; Neill, D.; Parada Gutierrez, G.A.; Pardo, G.; Parren, M.; Parthasarathy, N.; Phillips, O.L.; Pitman, N.C.A.; Ploton, P.; Ponette, Q.; Ramesh, B.R.; Razafimahaimodison, J.-C.; Réjou-Méchain, M.; Rolim, S.G.; Saltos, H.R.; Rossi, L.M.B.; Spironello, W.R.; Rovero, F.; Saner, P.; Sasaki, D.; Schulze, M.; Silveira, M.; Singh, J.; Sist, P.; Sonke, B.; Soto, J.D.; de Souza, C.R.; Stropp, J.; Sullivan, M.J.P.; Swanepoel, B.; Steege, H. ter; Terborgh, J.; Texier, N.; Toma, T.; Valencia, R.; Valenzuela, L.; Ferreira, L.V.; Valverde, F.C.; Van Andel, T.R.; Vasque, R.; Verbeeck, H.; Vivek, P.; Vleminckx, J.; Vos, V.A.; Wagner, F.H.; Warsudi, P.P.; Wortel, V.; Zagt, R.J.; Zebaze, D. doi  openurl
  Title Pan-tropical prediction of forest structure from the largest trees Type Journal Article
  Year 2018 Publication Global Ecology and Biogeography Abbreviated Journal Global Ecol Biogeogr  
  Volume 27 Issue 11 Pages 1366-1383  
  Keywords carbon; climate change; forest structure; large trees; pan-tropical; Redd+; tropical forest ecology  
  Abstract Abstract Aim Large tropical trees form the interface between ground and airborne observations, offering a unique opportunity to capture forest properties remotely and to investigate their variations on broad scales. However, despite rapid development of metrics to characterize the forest canopy from remotely sensed data, a gap remains between aerial and field inventories. To close this gap, we propose a new pan-tropical model to predict plot-level forest structure properties and biomass from only the largest trees. Location Pan-tropical. Time period Early 21st century. Major taxa studied Woody plants. Methods Using a dataset of 867 plots distributed among 118 sites across the tropics, we tested the prediction of the quadratic mean diameter, basal area, Lorey's height, community wood density and aboveground biomass (AGB) from the ith largest trees. Results Measuring the largest trees in tropical forests enables unbiased predictions of plot- and site-level forest structure. The 20 largest trees per hectare predicted quadratic mean diameter, basal area, Lorey's height, community wood density and AGB with 12, 16, 4, 4 and 17.7% of relative error, respectively. Most of the remaining error in biomass prediction is driven by differences in the proportion of total biomass held in medium-sized trees (50?70 cm diameter at breast height), which shows some continental dependency, with American tropical forests presenting the highest proportion of total biomass in these intermediate-diameter classes relative to other continents. Main conclusions Our approach provides new information on tropical forest structure and can be used to generate accurate field estimates of tropical forest carbon stocks to support the calibration and validation of current and forthcoming space missions. It will reduce the cost of field inventories and contribute to scientific understanding of tropical forest ecosystems and response to climate change.  
  Address  
  Corporate Author Thesis  
  Publisher John Wiley & Sons, Ltd (10.1111) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1466-822x ISBN Medium  
  Area Expedition Conference  
  Notes doi: 10.1111/geb.12803 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 845  
Permanent link to this record
 

 
Author Marino, N.A.C.; Céréghino, R.; Gilbert, B.; Petermann, J.S.; Srivastava, D.S.; de Omena, P.M.; Bautista, F.O.; Guzman, L.M.; Romero, G.Q.; Trzcinski, M.K.; Barberis, I.M.; Corbara, B.; Debastiani, V.J.; Dézerald, O.; Kratina, P.; Leroy, C.; MacDonald, A.A.M.; Montero, G.; Pillar, V.D.; Richardson, B.A.; Richardson, M.J.; Talaga, S.; Gonçalves, A.Z.; Piccoli, G.C.O.; Jocqué, M.; Farjalla, V.F. doi  openurl
  Title Species niches, not traits, determine abundance and occupancy patterns: A multi-site synthesis Type Journal Article
  Year 2020 Publication Global Ecology and Biogeography Abbreviated Journal Global Ecol. Biogeogr.  
  Volume 29 Issue 2 Pages 295-308  
  Keywords abundance; environmental niche; functional distinctiveness; functional traits; metacommunity; niche breadth; niche position; occupancy; abundance; biodiversity; functional group; geographical distribution; invertebrate; Neotropical Region; niche breadth; Invertebrata  
  Abstract Aim: Locally abundant species are usually widespread, and this pattern has been related to properties of the niches and traits of species. However, such explanations fail to account for the potential of traits to determine species niches and often overlook statistical artefacts. Here, we examine how trait distinctiveness determines the abilities of species to exploit either common habitats (niche position) or a range of habitats (niche breadth) and how niche position and breadth, in turn, affect abundance and occupancy. We also examine how statistical artefacts moderate these relationships. Location: Sixteen sites in the Neotropics. Time period: 1993–2014. Major taxa studied: Aquatic invertebrates from tank bromeliads. Methods: We measured the environmental niche position and breadth of each species and calculated its trait distinctiveness as the average trait difference from all other species at each site. Then, we used a combination of structural equation models and a meta-analytical approach to test trait–niche relationships and a null model to control for statistical artefacts. Results: The trait distinctiveness of each species was unrelated to its niche properties, abundance and occupancy. In contrast, niche position was the main predictor of abundance and occupancy; species that used the most common environmental conditions found across bromeliads were locally abundant and widespread. Contributions of niche breadth to such patterns were attributable to statistical artefacts, indicating that effects of niche breadth might have been overestimated in previous studies. Main conclusions: Our study reveals the generality of niche position in explaining one of the most common ecological patterns. The robustness of this result is underscored by the geographical extent of our study and our control of statistical artefacts. We call for a similar examination across other systems, which is an essential task to understand the drivers of commonness across the tree of life. © 2019 John Wiley & Sons Ltd  
  Address Aquatic and Terrestrial Ecology, Royal Belgian Institute of Natural Sciences, Brussels, Belgium  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1466822x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 991  
Permanent link to this record
 

 
Author Marcon, E.; Puech, F. openurl 
  Title Measures of the geographic concentration of industries: improving distance-based methods Type Journal Article
  Year 2010 Publication Journal of Economic Geography Abbreviated Journal J. Econ. Geogr.  
  Volume 10 Issue 5 Pages 745-762  
  Keywords Geographic concentration; distance-based methods; K-density function; Ripley's K function; M function; C40; C60; R12; L60  
  Abstract We discuss a property of distance-based measures that has not been addressed with regard to evaluating the geographic concentration of economic activities. The article focuses on the choice between a probability density function of point-pair distances or a cumulative function. We begin by introducing a new cumulative function, M, for evaluating the relative geographic concentration and the co-location of industries in a non-homogeneous spatial framework. Secondly, some rigorous comparisons are made with the leading probability density function of Duranton and Overman (2005), Kd. The merits of the simultaneous use of Kd and M is proved, underlining the complementary nature of the results they provide.  
  Address [Marcon, Eric] AgroParisTech ENGREF, UMR EcoFoG, Kourou 97310, French Guiana, Email: Florence.Puech@univ-lyon2.fr  
  Corporate Author Thesis  
  Publisher OXFORD UNIV PRESS Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1468-2702 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000281183300009 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 43  
Permanent link to this record
 

 
Author Marcon, E.; Puech, F. openurl 
  Title Evaluating the geographic concentration of industries using distance-based methods Type Journal Article
  Year 2003 Publication Journal of Economic Geography Abbreviated Journal J. Econ. Geogr.  
  Volume 3 Issue 4 Pages 409-428  
  Keywords agglomeration; clustering; geographic concentration; location of firms  
  Abstract We propose new methods for evaluating the spatial distribution of firms. To assess whether firms are concentrated or dispersed, economists have traditionally used indices that analyse the heterogeneity of a spatial structure at a single geographic level. We introduce distance-based methods, Besag's L function (derived from Ripley's K function) and Diggle and Chetwynd's D function to describe simultaneously spatial distribution at different geographical scales. Our empirical applications consider the distribution of French manufacturing firms in the Paris area and in France generally. For some geographic levels, results show significant concentration or dispersion of firms according to their sector of activity.  
  Address ENGREF, Kourou 97310, French Guiana  
  Corporate Author Thesis  
  Publisher OXFORD UNIV PRESS Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1468-2702 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000185742500004 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 269  
Permanent link to this record
 

 
Author Céréghino, R.; Corbara, B.; Hénaut, Y.; Bonhomme, C.; Compin, A.; Dejean, A. url  doi
openurl 
  Title Ant and spider species as surrogates for functional community composition of epiphyte-associated invertebrates in a tropical moist forest Type Journal Article
  Year 2019 Publication Ecological Indicators Abbreviated Journal  
  Volume 96 Issue Pages 694-700  
  Keywords Functional traits; Indicator species; Phytotelmata; Rainforests; Surrogacy; Tank bromeliads  
  Abstract Epiphytes represent up to 50% of all plant species in rainforests, where they host a substantial amount of invertebrate biomass. Efficient surrogates for epiphyte invertebrate communities could reduce the cost of biomonitoring surveys while preventing destructive sampling of the plants. Here, we focus on the invertebrate communities associated to tank bromeliads. We ask whether the presence of particular ant and/or spider taxa (easily surveyed taxa) that use these plants as nesting and/or foraging habitats predicts functional trait combinations of aquatic invertebrate communities hosted by the plants. Functional community composition of invertebrates was predicted both by bromeliad habitat features and the presence of certain ant and spider species. The ant Azteca serica preferred wider bromeliad rosettes that trap large amount of detritus, indicating interstitial-like food webs dominated by deposit feeders that burrow in fine particulate organic matter. Leucauge sp. spiders preferred narrower bromeliad rosettes bearing smaller detrital loads, thereby indicating a dominance of pelagic filter-feeding and predatory invertebrates in the water-filled leaf axils. Both Neoponera villosa ants and Eriophora sp. spiders preferred rosettes at intermediate size bearing moderate amounts of detritus, indicating a benthic food web dominated by leaf shredders and gathering collectors. Owing to the animal diversity and biomass supported by rainforest epiphytes, our approach would deserve to be further tested on a range of epiphytes involved in tight interactions with invertebrates. In this context, surrogate species could serve both as indicators of functional diversity, and as early-warning indicators of network disassembly.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1470-160x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 841  
Permanent link to this record
 

 
Author Schimann, H.; Petit-Jean, C.; Guitet, S.; Reis, T.; Domenach, A.M.; Roggy, J.-C. url  openurl
  Title Microbial bioindicators of soil functioning after disturbance: The case of gold mining in tropical rainforests of French Guiana Type Journal Article
  Year 2012 Publication Ecological Indicators Abbreviated Journal Ecol. Indic.  
  Volume 20 Issue Pages 34-41  
  Keywords Bioindicators; DEA/SIR ratio; Denitrifying Enzyme Activity (DEA); Disturbance; Substrate Induced Respiration (SIR); Tropical rainforest  
  Abstract In the context of an ongoing monitoring study on the impacts of gold-mining activities on critical ecosystem processes, we explored the use of soil Denitrifying Enzyme Activity (DEA) and Substrate Induced Respiration (SIR) as ecosystem indicators in tropical rainforests of French Guiana. We also propose DEA/SIR ratio as ecosystem attribute able to describe the state of an ecosystem and to reflect changes in ecological processes. With this purpose, we measured SIR, DEA and DEA/SIR ratio in five gold-mining areas and five surrounding natural reference rainforests. We also measured indicators in two conditions of spontaneous regeneration of vegetation (stratified or not) and two conditions of soil rehabilitation (prior preparation of soils or not). We showed a high variability of DEA, SIR and DEA/SIR ratio in the natural reference forests. This pointed out the necessity to identify relevant reference systems – i.e. proving a close match in all relevant ecological dimensions – to compare with closed perturbed systems in order to assess the levels of alterations after disturbances. Results showed a high impact of gold mine on microbial processes with a strong decrease of DEA (10-fold lower), SIR (2-fold lower) and DEA/SIR ratio (8-fold lower) in perturbed areas in comparison with natural reference forests. The type of spontaneous vegetation (stratified or not) influenced the values of indicators as well as prior rehabilitation of soils, demonstrating the capacity of DEA, SIR and DEA/SIR ratio to respond in proportion to the perturbation (robustness) and to the different levels of restoration (sensitivity). The systematic decrease of the ratio DEA/SIR observed in the studied perturbed situations demonstrates clearly that the structure of microbial communities has been also modified. The ratio DEA/SIR proved to be robust and sensitive, and able to describe in fairly fine way changes of soil microbial communities in terms of structure and function in gold mine areas and during processes of restoration. We propose to use DEA, SIR and DEA/SIR ratio as bioindicators of both structural and functional aspects of C and N cycling in soils. Together with others bioindicators based on key supporting functions in soils, these indicators should accurately evaluate the ecological potential of natural ecosystems and the levels of degradation in case of land-use changes. © 2012 Elsevier Ltd.  
  Address SOLICAZ – Campus Agronomique, BP 76, 97389 Kourou Cedex, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1470160x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 2 May 2012; Source: Scopus; doi: 10.1016/j.ecolind.2012.01.021; Language of Original Document: English; Correspondence Address: Schimann, H.; INRA-Joint Research Unit Ecology of Guiana Forests (Ecofog), Campus Agronomique, BP 709, 97387 Kourou Cedex, France; email: heidy.schimann@ecofog.gf Approved no  
  Call Number EcoFoG @ webmaster @ Serial 396  
Permanent link to this record
 

 
Author Céréghino, R.; Françoise, L.; Bonhomme, C.; Carrias, J.-F.; Compin, A.; Corbara, B.; Jassey, V.; Leflaive, J.; Rota, T.; Farjalla, V.; Leroy, C. doi  openurl
  Title Desiccation resistance traits predict freshwater invertebrate survival and community response to drought scenarios in a Neotropical ecosystem Type Journal Article
  Year 2020 Publication Ecological Indicators Abbreviated Journal Ecol. Indic.  
  Volume 119 Issue 106839 Pages  
  Keywords Climate change; Functional traits; Lt50; Macroinvertebrates; Rainforests; Biodiversity; Climate change; Driers (materials); Drought; Environmental management; Population statistics; Tanks (containers); Water; Aquatic invertebrates; Climate change adaptation; Controlled conditions; Environmental managers; Freshwater biodiversity; Freshwater invertebrates; Future climate scenarios; Laboratory conditions; Aquatic organisms; aquatic community; biodiversity; climate change; cuticle; desiccation; drought stress; invertebrate; Neotropical Region; population size; survival; French Guiana; Invertebrata  
  Abstract The intensification of dry seasons is a major threat to freshwater biodiversity in Neotropical regions. Little is known about resistance to drying stress and the underpinning traits in Neotropical freshwater species, so we don't know whether desiccation resistance allows to anticipate shifts in biological diversity under future climate scenarios. Here, we used the aquatic invertebrates that live in the rainwater-filled leaves of tank bromeliads, to examine the extent to which desiccation resistance of species measured in the laboratory predicts community response to drought intensification in nature. We measured desiccation resistance in 17 invertebrate species (>90% of the biomass usually found in bromeliads of French Guiana) by recording the median lethal time (LT50) of experimental populations exposed to controlled conditions of residual moisture. In the field, we placed rainshelters above tank bromeliads to emulate drought scenarios ranging from the ambient norm to IPCC scenarios and extreme events, and we recorded the response of functional community structure. LT50 ranged from 4.18 to 19.06 days, and was related to cuticle content and dry body mass. Among other functional indicators that represent strategies to optimize resource use under stressful conditions (e.g., habitat use, trophic specialization), LT50 was the best predictor of community structure responses along a gradient of emulated drought intensities. Therefore, species’ LT50s measured under laboratory conditions can be used to forecast aquatic community response to drying stress in nature. Anticipating how species will cope with drought has never been more important for environmental managers to support climate change adaptation. We show that desiccation resistance in freshwater invertebrates is a key indicator of potential population size and local–global range shifts, and this could be especially true in the Neotropics where species have narrow physiological tolerances for climatic variation. © 2020 Elsevier Ltd  
  Address ECOFOG, AgroParisTech, CIRAD, CNRS, INRA, Université de Guyane, Université des Antilles, Campus Agronomique, Kourou, 97379, France  
  Corporate Author Thesis  
  Publisher Elsevier B.V. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1470160x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 941  
Permanent link to this record
 

 
Author Audigeos, D.; Buonamici, A.; Belkadi, L.; Rymer, P.; Boshier, D.; Scotti-Saintagne, C.; Vendramin, G.G.; Scotti, I. openurl 
  Title Aquaporins in the wild: natural genetic diversity and selective pressure in the PIP gene family in five Neotropical tree species Type Journal Article
  Year 2010 Publication BMC Evolutionary Biology Abbreviated Journal BMC Evol. Biol.  
  Volume 10 Issue Pages 18  
  Keywords  
  Abstract Background: Tropical trees undergo severe stress through seasonal drought and flooding, and the ability of these species to respond may be a major factor in their survival in tropical ecosystems, particularly in relation to global climate change. Aquaporins are involved in the regulation of water flow and have been shown to be involved in drought response; they may therefore play a major adaptive role in these species. We describe genetic diversity in the PIP sub-family of the widespread gene family of Aquaporins in five Neotropical tree species covering four botanical families. Results: PIP Aquaporin subfamily genes were isolated, and their DNA sequence polymorphisms characterised in natural populations. Sequence data were analysed with statistical tests of standard neutral equilibrium and demographic scenarios simulated to compare with the observed results. Chloroplast SSRs were also used to test demographic transitions. Most gene fragments are highly polymorphic and display signatures of balancing selection or bottlenecks; chloroplast SSR markers have significant statistics that do not conform to expectations for population bottlenecks. Although not incompatible with a purely demographic scenario, the combination of all tests tends to favour a selective interpretation of extant gene diversity. Conclusions: Tropical tree PIP genes may generally undergo balancing selection, which may maintain high levels of genetic diversity at these loci. Genetic variation at PIP genes may represent a response to variable environmental conditions.  
  Address [Audigeos, Delphine; Belkadi, Laurent; Scotti-Saintagne, Caroline; Scotti, Ivan] INRA, UMR EcoFoG Ecol Forets Guyane 0745, Kourou 97387, French Guiana, Email: ivan.scotti@cirad.fr  
  Corporate Author Thesis  
  Publisher BIOMED CENTRAL LTD Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1471-2148 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000280369200002 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 47  
Permanent link to this record
 

 
Author Le Guen, V.; Rodier-Goud, M.; Troispoux, V.; Xiong, T.C.; Brottier, P.; Billot, C.; Seguin, M. openurl 
  Title Characterization of polymorphic microsatellite markers for Microcyclus ulei, causal, agent of South American leaf blight of rubber trees Type Journal Article
  Year 2004 Publication Molecular Ecology Notes Abbreviated Journal Mol. Ecol. Notes  
  Volume 4 Issue 1 Pages 122-124  
  Keywords Hevea brasiliensis; Microcyclus ulei; microsatellite markers; phytopathogenic fungi; South American leaf blight  
  Abstract South American leaf blight caused by the ascomycete Microcyclus Wei is the most harmful disease of the rubber tree in Latin America and a potential threat to Asiatic and African natural rubber production. Until now, the variability of this fungus was assessed through observation of pathogenicity of isolates on a range of rubber tree clones with known resistance reactions. The present study describes the process used to design 11 microsatellite markers and evaluates their usefulness in detecting genetic polymorphism. Nine of these markers were polymorphic among six isolates from Brazil (with two to three alleles per locus) and five markers were polymorphic among four isolates from French Guiana (with two to four alleles per locus).  
  Address CIRAD, F-97387 Kourou, France, Email: vincent.le_guen@cirad.fr  
  Corporate Author Thesis  
  Publisher BLACKWELL PUBLISHING LTD Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1471-8278 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000189159500037 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 265  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: