toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Barriault, I.; Barabe, D.; Cloutier, L.; Gibernau, M. openurl 
  Title Pollination ecology and reproductive success in Jack-in-the-pulpit (Arisaema triphyllum) in Quebec (Canada) Type Journal Article
  Year 2010 Publication Plant Biology Abbreviated Journal Plant Biol.  
  Volume 12 Issue 1 Pages 161-171  
  Keywords Araceae; bisexual inflorescence; deceptive pollination; Mycetophilidae; pollen load; Thysanoptera; visitation rates  
  Abstract Pollination ecology and reproductive success of Jack-in-the-pulpit (Arisaema triphyllum) were studied in two natural populations in Quebec, Canada. Individual A. triphyllum plants can be of three types: male, female or bisexual. In both populations studied, the presence of bisexual inflorescences was not negligible (13%), where 'female' and 'male' bisexual plants were categorised according to the relative number of stamens and ovaries. 'Male bisexual' plants produce only pollen and 'female bisexual' plants produce only fruit. Hence, A. triphyllum is a true dioecious plant, as each plant only reproduces through either the male or the female function. 'Female bisexual' plants were equivalent to female plants in terms of visitation rate by insects, fructification rate and production of berries and seeds. Neither agamospermy in female plants nor self-pollination in 'female bisexual' plants was found, thus A. triphyllum relies on insects for cross-pollination. Despite the long flowering cycle, a low visitation rate was documented: only 20-40% of inflorescences were visited, according to gender, by a mean of 1.5 insects. In this study, Mycetophilidae represented the most generically diversified and abundant family, as well as the most efficient insect pollinator, especially the genera Docosia and Mycetophila.  
  Address [Gibernau, M.] Univ Toulouse 3, Lab Evolut & Divers Biol, UMR, CNRS, F-31062 Toulouse 9, France, Email: gibernau@cict.fr  
  Corporate Author Thesis  
  Publisher WILEY-BLACKWELL PUBLISHING, INC Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1435-8603 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000272589700017 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 89  
Permanent link to this record
 

 
Author Zhang, T.; Bai, S.-L.; Bardet, S.; Almeras, T.; Thibaut, B.; Beauchene, J. url  openurl
  Title Radial variations of vibrational properties of three tropical woods Type Journal Article
  Year 2011 Publication Journal of Wood Science Abbreviated Journal J. Wood Sci.  
  Volume 57 Issue 5 Pages 377-386  
  Keywords Damping coefficient; Dynamic modulus; Extractives; Microfibril angle; Tropical woods  
  Abstract The radial trends of vibrational properties, represented by the specific dynamic modulus (E′/ρ) and damping coefficient (tan δ), were investigated for three tropical rainforest hardwood species (Simarouba amara, Carapa procera, and Symphonia globulifera) using free-free flexural vibration tests. The microfibril angle (MFA) was estimated using X-ray diffraction. Consistent patterns of radial variations were observed for all studied properties. E′/ρ was found to decrease from pith to bark, which was strongly related to the increasing pith-bark trend of MFA. The variation of tan δ along the radius could be partly explained by MFA and partly by the gradient of extractives due to heartwood formation. The coupling effect of MFA and extractives could be separated through analysis of the log(tan δ) versus log(E′/ρ) diagram. For the species studied, the extractive content putatively associated with heartwood formation generally tends to decrease the wood damping coefficient. However, this weakening effect of extractives was not observed for the inner part of the heartwood, suggesting that the mechanical action of extractives was reduced during their chemical ageing. © 2011 The Japan Wood Research Society.  
  Address CIRAD, UMR Ecofog, BP 701, 97387 Kourou Cedex, Guyane Française, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 14350211 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 26 October 2011; Source: Scopus; Coden: Jwscf; doi: 10.1007/s10086-011-1189-7; Language of Original Document: English; Correspondence Address: Bai, S.-L.; Department of Advanced Materials and Nanotechnology, College of Engineering, Peking University, Beijing 100871, China; email: slbai@pku.edu.cn Approved no  
  Call Number EcoFoG @ webmaster @ Serial 363  
Permanent link to this record
 

 
Author Coq, S.; Weigel, J.; Bonal, D.; Hattenschwiler, S. url  openurl
  Title Litter mixture effects on tropical tree seedling growth – a greenhouse experiment Type Journal Article
  Year 2012 Publication Plant Biology Abbreviated Journal Plant Biol.  
  Volume 14 Issue 4 Pages 630-640  
  Keywords Amazonian lowland rain forest; Autotoxicity; Belowground/aboveground interactions; Litter decomposition; Plant nutrition; Plant-soil feedback  
  Abstract Decomposing litter provides critical nutrients for plants, particularly in nutrient-poor ecosystems such as tropical forests. We hypothesised that decomposing litter improves the performance of a variety of tropical tree seedlings, and that this litter effect varies depending on the species of litter present in litter mixtures. We addressed these hypotheses with a large pot experiment manipulating a range of different litter mixtures of contrasting quality and using seedlings of four tree species from the Amazonian forest of French Guiana. In contrast to our initial hypothesis, decomposing litter had either neutral or negative impacts on seedling growth, despite strongly different growth rates, biomass allocation patterns and leaf and root traits among tree species. Tree species varied in their responses to litter additions, which were further modified by species identity of the added litter. Our data show litter species-specific effects on growth, biomass allocation and leaf and root traits of tropical tree seedlings. These results suggest that a net nutrient release from decomposing litter does not necessarily improve tree seedling growth, even under nutrient-limiting conditions. In conclusion, litter layer composition may affect seedling establishment and recruitment success beyond litter-derived plant nutrient availability, which may contribute to tree species composition and dynamics in the studied tropical forest. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.  
  Address INRA, UMR, Écologie et Écophysiologie, Champenoux, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 14358603 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 27 June 2012; Source: Scopus; Coden: Pbiof; doi: 10.1111/j.1438-8677.2011.00534.x; Language of Original Document: English; Correspondence Address: Coq, S.; Laboratoire d'Ecologie Alpine (LECA), CNRS, Université Joseph Fourier, BP 53, F-38042 Grenoble, Cedex 09, France; email: sylvain.coq@gmail.com Approved no  
  Call Number EcoFoG @ webmaster @ Serial 407  
Permanent link to this record
 

 
Author Stahl, C.; Freycon, V.; Fontaine, S.; Dezecache, C.; Ponchant, L.; Picon-Cochard, C.; Klumpp, K.; Soussana, J.-F.; Blanfort, V. doi  openurl
  Title Soil carbon stocks after conversion of Amazonian tropical forest to grazed pasture: importance of deep soil layers Type Journal Article
  Year 2016 Publication Regional Environmental Change Abbreviated Journal  
  Volume 16 Issue 7 Pages 2059-2069  
  Keywords  
  Abstract Recent studies suggest that carbon (C) is stored in the topsoil of pastures established after deforestation. However, little is known about the long-term capacity of tropical pastures to sequester C in different soil layers after deforestation. Deep soil layers are generally not taken into consideration or are underestimated when C storage is calculated. Here we show that in French Guiana, the C stored in the deep soil layers contributes significantly to C stocks down to a depth of 100 cm and that C is sequestered in recalcitrant soil organic matter in the soil below a depth of 20 cm. The contribution of the 50–100 cm soil layer increased from 22 to 31 % with the age of the pasture. We show that long-term C sequestration in C4 tropical pastures is linked to the development of C3 species (legumes and shrubs), which increase both inputs of N into the ecosystem and the C:N ratio of soil organic matter. The deep soil under old pastures contained more C3 carbon than the native forest. If C sequestration in the deep soil is taken into account, our results suggest that the soil C stock in pastures in Amazonia would be higher with sustainable pasture management, in particular by promoting the development of legumes already in place and by introducing new species.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1436-378x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Stahl2016 Serial 721  
Permanent link to this record
 

 
Author Leroy, C.; Petitclerc, F.; Orivel, J.; Corbara, B.; Carrias, J.-F.; Dejean, A.; Céréghino, R. doi  openurl
  Title The influence of light, substrate and seed origin on the germination and establishment of an ant-garden bromeliad Type Journal Article
  Year 2017 Publication Plant Biology Abbreviated Journal Plant Biol J  
  Volume 19 Issue 1 Pages 70-78  
  Keywords Aechmea mertensii; bromeliad; French Guiana; germination; plant performance; survival  
  Abstract Plant germination and development depend upon a seed's successful dispersal into a suitable habitat and its ability to grow and survive within the surrounding biotic and abiotic environment. The seeds of Aechmea mertensii, a tank-bromeliad species, are dispersed by either Camponotus femoratus or Neoponera goeldii, two ant species that initiate ant gardens (AGs). These two mutualistic ant species influence the vegetative and reproductive traits of the bromeliad through their divergent ecological preferences (i.e. light and substrate). We hypothesised that the seeds dispersed by these two ant species have underlying genetic differences affecting germination, growth and survival of A. mertensii seedlings in different ways. To test this, we used an experimental approach consisting of sowing seeds of A. mertensii: (i) taken from the two AG–ant associations (i.e. seed origin), (ii) in two contrasting light conditions, and (iii) on three different substrates. Light and substrate had significant effects on germination, survival and on eight key leaf traits reflecting plant performance. Seed origin had a significant effect only on germination and on two leaf traits (total dry mass and relative growth rate). Overall, this bromeliad performs better (i.e. high growth and survival rates) when growing both in the shade and in the carton nest developed by C. femoratus ants. These results suggest that the plasticity of the tank bromeliad A. mertensii is mainly due to environment but also to genetic differences related to seed origin, as some traits are heritable. Thus, these two ant species may play contrasting roles in shaping plant evolution and speciation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1438-8677 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 712  
Permanent link to this record
 

 
Author Carrias, J.-F.; Céréghino, R.; Brouard, O.; Pélozuelo, L.; Dejean, A.; Couté, A.; Corbara, B.; Leroy, C. url  openurl
  Title Two coexisting tank bromeliads host distinct algal communities on a tropical inselberg Type Journal Article
  Year 2014 Publication Plant Biology Abbreviated Journal Plant Biol.  
  Volume 16 Issue 5 Pages 997-1004  
  Keywords Algae; Bromeliaceae; Inselberg; Neotropics; Phytotelmata; Aechmea; algae; Bromeliaceae; Bumilleriopsis; Catopsis berteroniana; Chlorella (unclassified Chlorophyceae); Chlorella (unclassified Trebouxiophyceae); Chlorella sp.; Cyanobacteria; Eukaryota; Invertebrata; Protozoa  
  Abstract The tank bromeliads Aechmea aquilega (Salisb.) and Catopsis berteroniana (Schultes f.) coexist on a sun-exposed Neotropical inselberg in French Guiana, where they permit conspicuous freshwater pools to form that differ in size, complexity and detritus content. We sampled the algal communities (both eukaryotic and cyanobacterial taxa, including colourless forms) inhabiting either A. aquilega (n = 31) or C. berteroniana (n = 30) and examined differences in community composition and biomass patterns in relation to several biotic and abiotic variables. Chlorella sp. and Bumilleriopsis sp. were the most common taxa and dominated the algal biomass in A. aquilega and C. berteroniana, respectively. Using a redundancy analysis, we found that water volume, habitat complexity and the density of phagotrophic protozoa and collector-gatherer invertebrates were the main factors explaining the distribution of the algal taxa among the samples. Hierarchical clustering procedures based on abundance and presence/absence data clearly segregated the samples according to bromeliad species, revealing that the algal communities in the smaller bromeliad species were not a subset of the communities found in the larger bromeliad species. We conclude that, even though two coexisting tank bromeliad populations create adjacent aquatic habitats, each population hosts a distinct algal community. Hence, bromeliad diversity is thought to promote the local diversity of freshwater algae in the Neotropics. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.  
  Address IRD, UMR AMAP (botAnique et bioinforMatique de l'Architecture des Plantes), Montpellier, France  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 14388677 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 2 September 2014; Coden: Pbiof; Correspondence Address: Carrias, J.-F.; Clermont Université, Université Blaise Pascal, BP 10448, F-63000 Clermont-Ferrand, France; email: j-francois.carrias@univ-bpclermont.fr; Funding Details: LQ13C020005, NSFC, National Natural Science Foundation of China Approved no  
  Call Number EcoFoG @ webmaster @ Serial 560  
Permanent link to this record
 

 
Author Dejean, A.; Djieto-Lordon, C.; Cereghino, R.; Leponce, M. openurl 
  Title Ontogenetic succession and the ant mosaic: An empirical approach using pioneer trees Type Journal Article
  Year 2008 Publication Basic and Applied Ecology Abbreviated Journal Basic Appl. Ecol.  
  Volume 9 Issue 3 Pages 316-323  
  Keywords ant-plant relationships; dynamics of associations; myrmecophytes; species turnover; tropical rainforests  
  Abstract Arboreal ant mosaics have been intensively investigated, but what generates these mosaics remains poorly understood. In this paper, we hypothesize that the dynamics of arboreal ant mosaics could be better understood by examining the ontogenetic succession of ants in tropical trees. We used three African pioneer tree species as biological models. Lophira alata (Ochnaceae) is a long-lived species that does not furnish any reward (i.e., extra-floral nectaries [EFNs], shelter) to ants, Anthocleista vogelii (Gentianaceae) bears extremely well-developed EFNs, and Barteria fistulosa (Passifloraceae) is a long-lived myrmecophyte providing both EFNs and domatia. For both L. alata and A. vogelii, we noted a succession of different associated ants as the plants grew and aged. Ground-nesting, arborealforaging ant species were the first associates, followed by arboreal species that build nests with the leaves of their host trees, together with some species nesting opportunistically in pre-existing cavities. Carton-building Crematogaster species were the last in this succession. The presence of EFNs on A. vogelii slows species turnover, demonstrating that the plant exerts some control over its ant associates. The comparison with B. fistulosa, which generally remains associated with the same plant-ant species during its entire ontogeny, highlights the importance of the selective attractiveness of the trees for their associated ants – or, perhaps, the existence of plant filters that screen arriving ants. (C) 2007 Gesellschaft fur Okologie. Published by Elsevier GmbH. All rights reserved.  
  Address [Dejean, Alain] CNRS Guyane, UPS 2561, F-97300 Cayenne, France, Email: alain.dejean@wanadoo.fr  
  Corporate Author Thesis  
  Publisher ELSEVIER GMBH, URBAN & FISCHER VERLAG Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1439-1791 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000256734600013 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 138  
Permanent link to this record
 

 
Author Duplais, C.; Estevez, Y. doi  openurl
  Title Tandem Biocatalysis Unlocks the Challenging de Novo Production of Plant Natural Products Type Journal Article
  Year 2017 Publication ChemBioChem Abbreviated Journal ChemBioChem  
  Volume 18 Issue 22 Pages 2192-2195  
  Keywords alkaloids; biosynthesis; enzyme catalysis; protein engineering; terpenes  
  Abstract Intimate partnership: Knowledge of the biocatalytic cascades in different cellular compartments is limited, but deciphering these systems in nature can be used to inspire synthetic strategies. Two studies report new insights into the biosynthesis of alkaloids and sesterterpenoids in plants. This highlight presents these novel biotransformations to illustrate how tandem biocatalysis can impact the future of natural product production.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1439-7633 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 780  
Permanent link to this record
 

 
Author Fromin, N.; Porte, B.; Lensi, R.; Hamelin, J.; Domenach, A.-M.; Buatois, B.; Roggy, J.-C. url  openurl
  Title Spatial variability of the functional stability of microbial respiration process: A microcosm study using tropical forest soil Type Journal Article
  Year 2012 Publication Journal of Soils and Sediments Abbreviated Journal J. Soils Sed.  
  Volume 12 Issue 7 Pages 1030-1039  
  Keywords Disturbance; Diversity-stability relationship; Microbial diversity; Substrate-induced respiration  
  Abstract Purpose: Understanding the ability of ecosystem processes to resist to and to recover from disturbances is critical to sustainable land use. However, the spatial variability of the stability has rarely been addressed. Here, we investigated the functional stability of a soil microbial process for 24 soils collected from adjacent locations from a 0. 3 ha tropical rainforest plot in Paracou, French Guiana. Materials and methods: The 24 locations were characterized regarding soil chemical and biological (microbial diversity) parameters and forest structure. The corresponding soils were submitted to an experimental transient heat disturbance during a microcosm experiment. The response of the respiration process was followed using substrate-induced respiration (SIR). Results and discussion: The response of soil SIR to heat disturbance varied widely between samples. The variability of the SIR response increased just after the disturbance, and a global rather homogeneous decrease in SIR rates was observed 15 and 30 days after. The stability of SIR in response to heat disturbance could not be related to either the genetic or the metabolic diversity of the microbial community. The initial level of SIR before the disturbance was the soil variable that best correlated with the impact of the disturbance: the soil locations with the highest initial SIR rates were the most affected 15 and 30 days after the heat disturbance. Conclusions: Such a heterogeneous response suggests that the response of soil processes to a disturbance will be difficult to assess from only local-scale analyses and highlights the need for spatial explicitness in understanding biogeochemical processes. © 2012 Springer-Verlag.  
  Address UMR EcoFoG, BP 709, 97387 Kourou, French Guiana  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 14390108 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 30 July 2012; Source: Scopus; doi: 10.1007/s11368-012-0528-7; Language of Original Document: English; Correspondence Address: Fromin, N.; CEFE, CNRS UMR 5175, 1919 Route de Mende, 34293 Montpellier cedex 5, France; email: nathalie.fromin@cefe.cnrs.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 415  
Permanent link to this record
 

 
Author Coste, S.; Roggy, J.C.; Sonnier, G.; Dreyer, E. openurl 
  Title Similar irradiance-elicited plasticity of leaf traits in saplings of 12 tropical rainforest tree species with highly different leaf mass to area ratio Type Journal Article
  Year 2010 Publication Functional Plant Biology Abbreviated Journal Funct. Plant Biol.  
  Volume 37 Issue 4 Pages 342-355  
  Keywords functional diversity; light availability; photosynthetic nitrogen use efficiency; photosynthetic capacity; tropical rainforest  
  Abstract Leaf traits of tropical tree species display an important inter-specific diversity, as detected for instance in the large range of values of leaf mass : area ratio (LMA). They also demonstrate a large irradiance-elicited plasticity, but there is still debate whether this plasticity differs among species. To address this question, leaf traits were recorded on saplings from 12 rainforest tree species in French Guiana, grown under approximately 5, 10 and 20% relative irradiance. Fifteen structural and physiological leaf traits related to photosynthesis were measured. The irradiance-elicited plasticity was quantified using a relative distance plasticity index. A large inter-specific diversity was detected for all leaf traits. A principal component analysis opposed species with a large mass-based photosynthesis, respiration, N content and photosynthetic nitrogen use efficiency, to species with a large leaf mass : area ratio, LMA. The two pioneer species used in this study displayed the largest photosynthetic capacity (and lowest LMA) and ranked at one end of the species continuum. Relative irradiance affected almost all traits with the exception of mass-based photosynthesis. A weak interaction was found between species and relative irradiance and the species ranking was maintained among relative irradiance treatments for the majority of the traits. A principal component analysis of the values of relative-distance plasticity index failed to reveal any consistent patterns of traits or species. We concluded that irradiance-elicited plasticity of leaf traits was similar among species irrespective of LMA and successional status, despite the occurrence of a large inter-specific diversity for the investigated traits.  
  Address [Dreyer, Erwin] Nancy Univ, INRA, UMR Ecol & Ecophysiol Forestieres 1137, IFR Ecosyst Forestiers Agroressources Biomol & Al, F-54280 Champenoux, France, Email: dreyer@nancy.inra.fr  
  Corporate Author Thesis  
  Publisher CSIRO PUBLISHING Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1445-4408 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000275979100009 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 63  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: