|   | 
Details
   web
Records
Author Fournier, M.; Dlouhá, J.; Jaouen, G.; Almeras, T.
Title Integrative biomechanics for tree ecology: Beyond wood density and strength Type Journal Article
Year 2013 Publication Journal of Experimental Botany Abbreviated Journal J. Exp. Bot.
Volume 64 Issue 15 Pages 4793-4815
Keywords Biomechanics; Ecological strategy; Gravitropism; Shape; Size; Trees; Wood
Abstract Functional ecology has long considered the support function as important, but its biomechanical complexity is only just being elucidated. We show here that it can be described on the basis of four biomechanical traits, two safety traits against winds and self-buckling, and two motricity traits involved in sustaining an upright position, tropic motion velocity (MV) and posture control (PC). All these traits are integrated at the tree scale, combining tree size and shape together with wood properties. The assumption of trait constancy has been used to derive allometric scaling laws, but it was more recently found that observing their variations among environments and functional groups, or during ontogeny, provides more insights into adaptive syndromes of tree shape and wood properties. However, oversimpli-fed expressions have often been used, possibly concealing key adaptive drivers. An extreme case of oversimplification is the use of wood basic density as a proxy for safety. Actually, as wood density is involved in stiffiness, loads, and construction costs, the impact of its variations on safety is non-trivial. Moreover, other wood features, especially the microfibril angle (MFA), are also involved. Furthermore, wood is not only stiff and strong, but it also acts as a motor for MV and PC. The relevant wood trait for this is maturation strain asymmetry. Maturation strains vary with cell-wall characteristics such as MFA, rather than with wood density. Finally, the need for further studies about the ecological relevance of branching patterns, motricity traits, and growth responses to mechanical loads is discussed. © The Author 2013.
Address CNRS, Université de Montpellier 2, Laboratoire de Mécanique et Génie Civil, 34095 Montpellier, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 00220957 (Issn) ISBN Medium
Area Expedition Conference
Notes Cited By (since 1996):1; Export Date: 2 December 2013; Source: Scopus; Coden: Jeboa; doi: 10.1093/jxb/ert279; Language of Original Document: English; Correspondence Address: Fournier, M.; AgroParisTech, UMR 1092 LERFOB, 54000 Nancy, France; email: meriem.fournier@agroparistech.fr; References: Achim, A., Ruel, J.C., Gardiner, B.A., Lafamme, G., Meunier, S., Modelling the vulnerability of balsam fr forests to wind damage (2005) Forest Ecology and Management, 204, pp. 35-50; Almeras, T., Costes, E., Salles, J.C., Identification of biomechanical factors involved in stem shape variability between apricot-tree varieties (2004) Annals of Botany, 93, pp. 1-14; Almeras, T., Derycke, M., Jaouen, G., Beauchene, J., Fournier, M., Functional diversity in gravitropic reaction among tropical seedlings in relation to ecological and developmental traits (2009) Journal of Experimental Botany, 60, pp. 4397-4410; Almeras, T., Fournier, M., Biomechanical design and longterm stability of trees: Morphological and wood traits involved in the balance between weight increase and the gravitropic reaction (2009) Journal of Theoretical Biology, 256, pp. 370-381; Almeras, T., Gril, J., Costes, E., Bending of apricot tree branches under the weight of axillary growth: Test of a mechanical model with experimental data (2002) Trees – Structure and Function, 16, pp. 5-15; Almeras, T., Thibaut, A., Gril, J., Effect of circumferential heterogeneity of wood maturation strain, modulus of elasticity and radial growth on the regulation of stem orientation in trees (2005) Trees – Structure and Function, 19, pp. 457-467; Anten, N.P.R., Schieving, F., The role of wood mass density and mechanical constraints in the economy of tree architecture (2010) American Naturalist, 175, pp. 250-260; Archer, R.R., Wilson, B.F., Mechanics of the compression wood response II. On the location, action, and distribution of compression wood formation (1973) Plant Physiology, 51, pp. 777-782; Auclair, D., Nepveu, G., The CAQ network in France: 15 years of brainstorming and cooperative work to connect forest resources and wood quality through modelling approaches and simulation software (2012) Annals of Forest Science, 69, pp. 119-123; Baltunis, B.S., Wu, H.X., Powell, M.B., Inheritance of density, microfibril angle, and modulus of elasticity in juvenile wood of pinus radiata at two locations in Australia (2007) Canadian Journal of Forest Research, 37, pp. 2164-2174; Banin, L., Fieldpausch, T.R., Phillips, O.L., What controls tropical forest architecture? Testing environmental, structural and foristic drivers (2012) Global Ecology and Biogeography, 21, pp. 1179-1190; Baskin, T.I., Jensen, O.E., On the role of stress anisotropy in the growth of stems (2013) Journal of Experimental Botany, 64, pp. 4697-4707; Bastien, R., Bohr, T., Moulia, B., Douady, S., Unifying model of shoot gravitropism reveals proprioception as a central feature of posture control in plants (2013) Proceedings of the National Academy of Sciences, USA, 110, pp. 755-760; Boiffin, J., (2008) Variabilité de Traits Anatomiques, Mécaniques et Hydrauliques Ches les Juvéniles de Vingt-deux Espèces D'arbres de Sous-bois en Forêt Tropicales Humide, , Masters thesis, Université Henri Poincaré, Nancy, France; Boudaoud, A., An introduction to the mechanics of morphogenesis for plant biologists (2010) Trends in Plant Science, 15, pp. 353-360; Burgert, I., Frühmann, K., Keckes, J., Fratzl, P., Stanzl-Tschegg, S., Structure-function relationships of four compression wood types: Micromechanical properties at the tissue and fibre (2004) Trees – Structure and Function, 18, pp. 480-485; Burgert, I., Exploring the micromechanical design of plant cell walls (2006) American Journal of Botany, 93, pp. 1391-1401; Butler, D.W., Gleason, S.M., Davidson, I., Onoda, Y., Westoby, M., Safety and streamlining of woody shoots in wind: An empirical study across 39 species in tropical Australia (2012) New Phytologist, 193, pp. 137-149; Cao, J., Tamura, Y., Yoshida, A., Wind tunnel study on aerodynamic characteristics of shrubby specimens of three tree species (2012) Urban Forestry & Urban Greening, 11, pp. 465-476; Carlquist, S., (2001) Comparative Wood Anatomy: Systematic, Ecological, and Evolutionary Aspects of Dicotyledon Wood, , Berlin: Springer; Chapman, C.A., Kaufman, L., Chapman, L.J., Buttress formation and directional stress experienced during critical phases of tree development (1998) Journal of Tropical Ecology, 14, pp. 341-349; Chapotin, S.M., Razanameharizaka, J.H., Holbrook, N.M., Abiomechanical perspective on the role of large stem volume and high water content in baobab trees (Adansonia spp.; bombacaceae) (2006) American Journal of Botany, 93, pp. 1251-1264; Chave, J., Coomes, D., Jansen, S., Lewis, S.L., Swenson, N.G., Zanne, A.E., Towards a worldwide wood economics spectrum (2009) Ecology Letters, 12, pp. 351-366; Chevolot, M., Louisanna, E., Azri, W., Leblanc-Fournier, N., Roeckel-Drevet, P., Scotti-Saintagne, C., Scotti, I., Isolation of primers for candidate genes for mechano-sensing in five neotropical tree species (2011) Tree Genetics & Genomes, 7, pp. 655-661; Clair, B., Almeras, T., Pilate, G., Jullien, D., Sugiyama, J., Riekel, C., Maturation stress generation in poplar tension wood studied by synchrotron radiation microdiffraction (2011) Plant Physiology, 155, pp. 562-570; Clair, B., Almeras, T., Ruelle, J., Fournier, M., Reaction mechanisms for the shape control in angiosperms tension wood: Diversity, efficiency, limits and alternatives (2006) Proceedings of the Fifth Plant Biomechanics Conference, pp. 467-472. , 28 August-1 September 2006, Stockholm, Sweden. Stockholm, Suède: STFI-Packforsk AB; Clair, B., Fournier, M., Prévost, M.F., Beauchêne, J., Bardet, S., Biomechanics of buttressed trees: Bending strains and stresses (2003) American Journal of Botany, 90, pp. 1349-1356; Collet, C., Fournier, M., Ningre, F., Hounzandji, A.P.I., Constant, T., Growth and posture control strategies in fagus sylvatica and acer pseudoplatanus saplings in response to canopy disturbance (2011) Annals of Botany, 107, pp. 1345-1353; Coutand, C., Fournier, M., Moulia, B., The gravitropic response of poplar trunks: Key roles of prestressed wood regulation and the relative kinetics of cambial growth versus wood maturation (2007) Plant Physiology, 144, pp. 1166-1180; Darwin, C., Darwin, F.E., (1880) The Power of Movement in Plants, , London: Murray; Dassot, M., Constant, T., Fournier, M., The use of terrestrial LiDAR technology in forest science: Application fields, benefts and challenges (2011) Annals of Forest Science, 68, pp. 959-974; Dassot, M., Fournier, M., Ningre, F., Constant, T., Effect of tree size and competition on tension wood production over time in beech plantations and assessing relative gravitropic response with a biomechanical model (2012) American Journal of Botany, 99, pp. 1427-1435; De Langre, E., Effects of wind on plants (2008) Annual Review of Fluid Mechanics, 40, pp. 141-168; Dean, T.J., Long, J.N., Validity of constant stress and elastic-principles of stem formation in pinus contorta and trifolium pratense (1986) Annals of Botany, 58, pp. 833-740; Delcamp, M., Gourlet-Fleury, S., Flores, O., Gamier, E., Can functional classification of tropical trees predict population dynamics after disturbance? (2008) Journal of Vegetation Science, 19, pp. 209-220; Donaldson, L., Microfibril angle: Measurement, variation and relationship – A review (2008) IAWA Bulletin, 29, pp. 345-386; Duchateau, E., (2008) Diversité des Capacités de Réaction Gravitropique de Jeunes Arbres en Forêt Tropicale Humide, , Masters thesis, Université Henri Poincaré, Nancy, France; Eloy, C., Leonardo's rule, self-similarity, and wind-induced stresses in trees (2011) Physical Review Letters, 107, p. 258101; Ennos, A.R., The mechanics of root anchorage (2000) Advances in Botanical Research Incorporating Advances in Plant Pathology, 33, pp. 133-157; Evans, R., Ilic, J., Rapid prediction of wood stiffiness from microfibril angle and density (2001) Forest Products Journal, 51, pp. 53-57; Favrichon, V., Classification des especes arborees en groupes fonctionnels en vue de la realisation d'un modele de dynamique de peuplement en foret guyanaise (1994) Revue de Ecologie (Terre et Vie), 49, pp. 379-403; Fengel, D., Wegener, G., (1984) Wood. Chemistry, Ultrastructure, Reactions, , Berlin/New York: de Gruyter; Ferrand, J.C., Study of growth stresses: 1. Measurement method on increment cores (1982) Annales des Sciences Forestieres, 39, pp. 109-142; Fortunel, C., Fine, P.V.A., Baraloto, C., Leaf, stem and root tissue strategies across 758 neotropical tree species (2012) Functional Ecology, 26, pp. 1153-1161; Fournier, M., Baillères, H., Chanson, B., Tree biomechanics: Growth, cumulative prestresses, and reorientations (1994) Biomimetics, 2, pp. 229-251; Fournier, M., Chanson, B., Thibaut, B., Guitard, D., Measurement of residual growth strains at the stem surface. Observations on different species (1994) Annales des Sciences Forestieres, 51, pp. 249-266; Fournier, M., Stokes, A., Coutand, C., Fourcaud, T., Moulia, B., Tree biomechanics and growth strategies in the context of forest functional ecology (2006) Ecology and Biomechanics: A Mechanical Approach to the Ecology of Animals and Plants, pp. 1-34. , Herrel A, Speck T, Rowe N, eds. Boca Raton, FL: CRC Press; Gardiner, B., Byrne, K., Hale, S., Kamimura, K., Mitchell, S.J., Peltola, H., Ruel, J.-C., A review of mechanistic modelling of wind damage risk to forests (2008) Forestry, 81, pp. 447-463; Gibson, L.J., Ashby, M.F., (1997) Cellular Solids; Structure and Properties, , Cambridge: Cambridge University Press; Givnish, T.J., Ecological constraints on the evolution of plasticity in plants (2002) Evolutionary Ecology, 16, pp. 213-242; Gordon, J.E., (1978) Structures or Why Things do Not Fall Down, , Harmondsworth: Penguin Books; Greenhill, A., Determination of the greatest height consistent with stability that a vertical pole or mast can be made, and of the greatest height to which a tree of given proportions can grow (1881) Proceedings of the Cambridge Philosophical Society, 4, pp. 65-73; Grime, J.P., (2001) Plant Strategies, Vegetation Processes, and Ecosystem Properties, , Chichester; UK: John Wiley & Sons; Hamilton, J.R., Thomas, C.K., Carvell, K.L., Tension wood formation following release of upland oak advance reproduction (1985) Wood and Fiber Science, 17, pp. 382-390; Hejnowicz, Z., Graviresponses in herbs and trees: A major role for the redistribution of tissue and growth stresses (1997) Planta, 203, pp. S136-S146; Herault, B., Bachelot, B., Poorter, L., Rossi, V., Bongers, F., Chave, J., Paine, C.E.T., Baraloto, C., Functional traits shape ontogenetic growth trajectories of rain forest tree species (2011) Journal of Ecology, 99, pp. 1431-1440; Holbrook, N.M., Putz, F.E., Influence of neighbors on tree form: Effects of lateral shade and prevention of sway on the allometry of liquidambar styracifua (sweet gum) (1989) American Journal of Botany, 76, pp. 1740-1749; Huang, Y.S., Hung, L.F., Kuo-Huang, L.L., Biomechanical modeling of gravitropic response of branches: Roles of asymmetric periphery growth strain versus self-weight bending effect (2010) Trees – Structure and Function, 24, pp. 1151-1161; Iino, M., Toward understanding the ecological functions of tropisms: Interactions among and effects of light on tropisms (2006) Current Opinion in Plant Biology, 9, pp. 89-93; James, K.R., Haritos, N., Ades, P.K., Mechanical stability of trees under dynamic loads (2006) American Journal of Botany, 93, pp. 1522-1530; Jaouen, G., Almeras, T., Coutand, C., Fournier, M., How to determine sapling buckling risk with only a few measurements (2007) American Journal of Botany, 94, pp. 1583-1593; Jaouen, G., Fournier, M., Almeras, T., Thigmomorphogenesis versus light in biomechanical growth strategies of saplings of two tropical rain forest tree species (2010) Annals of Forest Science, 67, p. 211; Jaouen, G., (2007) Etude des Stratégies Biomécaniques de Croissance des Jeunes Arbres en Peuplement Hétérogène Tropical Humide, , Thèse de doctorat, Université Henri Poincaré, Nancy, France; Johnson, E.A., Miyanishi, K., (2007) Plant Disturbance Ecology: The Process and the Response, , New York: Academic Press; Jullien, D., Widmann, R., Loup, C., Thibaut, B., Relationship between tree morphology and growth stress in mature european beech stands (2013) Annals of Forest Science, 70, pp. 133-142; Jungnikl, K., Goebbels, J., Burgert, I., Fratzl, P., The role of material properties for the mechanical adaptation at branch junctions (2009) Trees – Structure and Function, 23, pp. 605-610; Kellogg, R.M., Wangaard, F.F., Variation in the cell-wall density of wood (1969) Wood and Fiber Science, 1, pp. 180-204; King, D., Loucks, O.L., Theory of tree bole and branch form (1978) Radiation and Environmental Biophysics, 15, pp. 141-165; King, D.A., Davies, S.J., Tan, S., Noor, N.S.M., The role of wood density and stem support costs in the growth and mortality of tropical trees (2006) Journal of Ecology, 94, pp. 670-680; King, D.A., Davies, S.J., Tan, S., Noor, N.S.M., Trees approach gravitational limits to height in tall lowland forests of Malaysia (2009) Functional Ecology, 23, pp. 284-291; Kooyman, R.M., Westoby, M., Costs of height gain in rainforest saplings: Main-stem scaling, functional traits and strategy variation across 75 species (2009) Annals of Botany, 104, pp. 987-993; Lachenbruch, B., Johnson, G.R., Downes, G.M., Evans, R., Relationships of density, microfibril angle, and sound velocity with stiffiness and strength in mature wood of douglas-fr (2010) Canadian Journal of Forest Research, 40, pp. 55-64; Lachenbruch, B., Moore, J.R., Evans, R., Radial variation in wood structure and function in woody plants, and hypotheses for its occurrence (2011) Size-and Age-related Changes in Tree Structure and Function, pp. 121-164. , Meinzer FC, Lachenbruch B, Dawson TE, eds. Netherlands: Springer; Lang, A.C., Haerdtle, W., Bruelheide, H., Geissler, C., Nadrowski, K., Schuldt, A., Yu, M., Von Oheimb, G., Tree morphology responds to neighbourhood competition and slope in species-rich forests of subtropical China (2010) Forest Ecology and Management, 260, pp. 1708-1715; Larjavaara, M., Maintenance cost, toppling risk and size of trees in a self-thinning stand (2010) Journal of Theoretical Biology, 265, pp. 63-67; Larjavaara, M., Muller-Landau, H.C., Rethinking the value of high wood density (2010) Functional Ecology, 24, pp. 701-705; Larjavaara, M., Muller-Landau, H.C., Still rethinking the value of high wood density (2012) American Journal of Botany, 99, pp. 165-168; Lens, F., Smets, E., Melzer, S., Stem anatomy supports arabidopsis thaliana as a model for insular woodiness (2012) New Phytologist, 193, pp. 12-17; Lopez, D., Michelin, S., De Langre, E., Flow-induced pruning of branched systems and brittle reconfguration (2011) Journal of Theoretical Biology, 284, pp. 117-124; Makela, A., Grace, J.C., Deckmyn, G., Kantola, A., Campioli, M., Simulating wood quality in forest management models (2010) Forest Systems, 19, pp. 48-68; Martínez-Cabrera, H.I., Schenk, H.J., Cevallos-Ferriz, S.R.S., Jones, C.S., Integration of vessel traits, wood density, and height in angiosperm shrubs and trees (2011) American Journal of Botany, 98, pp. 915-922; Martone, P.T., Boller, M., Burgert, I., Dumais, J., Edwards, J., Mach, K., Rowe, N., Speck, T., Mechanics without muscle: Biomechanical inspiration from the plant world (2010) Integrative and Comparative Biology, 50, pp. 888-907; Matsuzaki, J., Masumori, M., Tange, T., Stem phototropism of trees: A possible significant factor in determining stem inclination on forest slopes (2006) Annals of Botany, 98, pp. 573-581; McMahon, T.A., Size and shape in biology (1973) Science, 179, pp. 1202-1204; Medhurst, J., Downes, G., Ottenschlaeger, M., Harwood, C., Evans, R., Beadle, C., Intra-specific competition and the radial development of wood density, microfibril angle and modulus of elasticity in plantation-grown eucalyptus nitens (2012) Trees – Structure and Function, 26, pp. 1771-1780; Menard, L., McKey, D., Rowe, N., Developmental plasticity and biomechanics of treelets and lianas in manihot aff. Quinquepartita (Euphorbiaceae): A branch-angle climber of french guiana (2009) Annals of Botany, 103, pp. 1249-1259; Moulia, B., Plant biomechanics and mechanobiology are convergent paths to fourishing interdisciplinary research (2013) Journal of Experimental Botany, 64, pp. 4617-4633; Moulia, B., Coutand, C., Lenne, C., Posture control and skeletal mechanical acclimation in terrestrial plants: Implications for mechanical modeling of plant architecture (2006) American Journal of Botany, 93, pp. 1477-1489; Moulia, B., Der Loughian, C., Bastien, R., Integrative mechanobiology of growth and architectural development in changing mechanical environments (2011) Mechanical Integration of Plant Cells and Plants, 9, pp. 269-302. , Wojtaszek P, ed. Berlin/Heidelberg: Springer; Moulia, B., Fournier, M., The power and control of gravitropic movements in plants: A biomechanical and systems biology view (2009) Journal of Experimental Botany, 60, pp. 461-486; Moulia, B., Fournier-Djimbi, M., Optimal mechanical design of plant stems: The models behind the allometric power laws (1997) Proceedings of the First Plant Biomechanics Conference, , Vincent JFV, Jeronimidis G, eds. Reading: Centre for Biomimetics; Niklas, K.J., Dependency of the tensile modulus on transverse dimensions, water potential, and cell number of pith parenchyma (1988) American Journal of Botany, 75, pp. 1286-1292; Niklas, K.J., Plant biomechanics (1992) An Engineering Approach to Plant Form and Function, , Chicago: University of Chicago Press; Niklas, K.J., Plant allometry (1994) The Scaling of Form and Process, , Chicago: University of Chicago Press; Niklas, K.J., Mechanical properties of black locust (Robinia pseudoacacia L.) wood. Size- and age-dependent variations in sap-and heartwood (1997) Annals of Botany, 79, pp. 265-272; Niklas, K.J., Computing factors of safety against wind-induced tree stem damage (2000) Journal of Experimental Botany, 51, pp. 797-806; Niklas, K.J., Maximum plant height and the biophysical factors that limit it (2007) Tree Physiology, 27, pp. 433-440; Niklas, K.J., Cobb, E.D., Marler, T., A comparison between the record height-to-stem diameter allometries of pachycaulis and leptocaulis species (2006) Annals of Botany, 97, pp. 79-83; Niklas, K.J., Spatz, H.C., Vincent, J., Plant biomechanics: An overview and prospectus (2006) American Journal of Botany, 93, pp. 1369-1378; Niklas, K.J., Spatz, H.-C., Response to klaus mattheck's letter (2000) Trees – Structure and Function, 15, pp. 64-65; Niklas, K.J., Spatz, H.C., Growth and hydraulic (not mechanical) constraints govern the scaling of tree height and mass (2004) Proceedings of the National Academy of Sciences, USA, 101, pp. 15661-15663; Niklas, K.J., Spatz, H.C., Worldwide correlations of mechanical properties and green wood density (2010) American Journal of Botany, 97, pp. 1587-1594; Osunkoya, O.O., Omar-Ali, K., Amit, N., Dayan, J., Daud, D.S., Sheng, T.K., Comparative height-crown allometry and mechanical design in 22 tree species of kuala belalong rainforest, brunei, borneo (2007) American Journal of Botany, 94, pp. 1951-1962; Plucinski, M., Plucinski, S., Rodriguez-Iturbe, I., Consequences of the fractal architecture of trees on their structural measures (2008) Journal of Theoretical Biology, 251, pp. 82-92; Pretzsch, H., Forest dynamics, growth and yield (2009) From Measurement to Model, , Heidelberg: Springer; Read, J., Evans, R., Sanson, G.D., Kerr, S., Jaffre, T., Wood properties and trunk allometry of co-occurring rainforest canopy trees in a cyclone-prone environment (2011) American Journal of Botany, 98, pp. 1762-1772; Read, J., Stokes, A., Plant biomechanics in an ecological context (2006) American Journal of Botany, 93, pp. 1546-1565; Rodriguez, M., Langre, E., Moulia, B., A scaling law for the effects of architecture and allometry on tree vibration modes suggests a biological tuning to modal compartmentalization (2008) American Journal of Botany, 95, pp. 1523-1537; Rowe, N., Speck, T., Plant growth forms: An ecological and evolutionary perspective (2005) New Phytologist, 166, pp. 61-72; Salmen, L., Burgert, I., Cell wall features with regard to mechanical performance. A review COST action E35 2004-2008: Wood machining – Micromechanics and fracture (2009) Holzforschung, 63, pp. 121-129; Saren, M.P., Serimaa, R., Andersson, S., Saranpaa, P., Keckes, J., Fratzl, P., Effect of growth rate on mean microfibril angle and cross-sectional shape of tracheids of Norway spruce (2004) Trees – Structure and Function, 18, pp. 354-362; Schindler, D., Bauhus, J., Mayer, H., Wind effects on trees (2012) European Journal of Forest Research, 131, pp. 159-163; Scurfield, G., Reaction wood: Its structure and function (1973) Science, 179, pp. 647-655; Sellier, D., Fourcaud, T., Crown structure and wood properties: Influence on tree sway and response to high winds (2009) American Journal of Botany, 96, pp. 885-896; Siau, J.F., (1984) Transport Processes in Wood, , Berlin/Heidelberg: Springer; Sierra-De-Grado, R., Pando, V., Martinez-Zurimendi, P., Penalvo, A., Bascones, E., Moulia, B., Biomechanical differences in the stem straightening process among pinus pinaster provenances. A new approach for early selection of stem straightness (2008) Tree Physiology, 28, pp. 835-846; Sterck, F.J., Bongers, F., Ontogenetic changes in size, allometry, and mechanical design of tropical rain forest trees (1998) American Journal of Botany, 85, pp. 266-272; Stokes, A., (2000) The Supporting Roots of Trees and Woody Plants: Form, Function and Physiology, , Dordrecht, The Netherlands: Kluwer Academic Publishers; Sultan, S.E., Phenotypic plasticity for plant development, function and life history (2000) Trends in Plant Science, 5, pp. 537-542; Swenson, N.G., Enquist, B.J., Ecological and evolutionary determinants of a key plant functional trait: Wood density and its community-wide variation across latitude and elevation (2007) American Journal of Botany, 94, pp. 451-459; Taneda, H., Tateno, M., The criteria for biomass partitioning of the current shoot: Water transport versus mechanical support (2004) American Journal of Botany, 91, pp. 1949-1959; Tateno, M., Increase in lodging safety factor on thigmomorphogenetically dwarfed shoots of mulberry tree (1991) Physiologia Plantarum, 81, pp. 239-243; Tobin, B., Cermak, J., Chiatante, D., Towards developmental modelling of tree root systems (2007) Plant Biosystems, 141, pp. 481-501; Turner, I.M., (2001) The Ecology of Trees in the Tropical Rain Forest, , Cambridge: Cambridge University Press; Van Gelder, H.A., Poorter, L., Sterck, F.J., Wood mechanics, allometry, and life-history variation in a tropical rain forest tree community (2006) New Phytologist, 171, pp. 367-378; Violle, C., Navas, M.-L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., Garnier, E., Let the concept of trait be functional! (2007) Oikos, 116, pp. 882-892; Waghorn, M.J., Watt, M.S., Stand variation in pinus radiata and its relationship with allometric scaling and critical buckling height (2013) Annals of Botany, 111, pp. 675-680; Watt, M.S., Moore, J.R., Facon, J.-P., Modelling environmental variation in young's modulus for pinus radiata and implications for determination of critical buckling height (2006) Annals of Botany, 98, pp. 765-775; Westoby, M., Falster, D.S., Moles, A.T., Vesk, P.A., Wright, I.J., Plant ecological strategies: Some leading dimensions of variation between species (2002) Annual Review of Ecology and Systematics, 33, pp. 125-159; Wright, I.J., Reich, P.B., Westoby, M., The worldwide leaf economics spectrum (2004) Nature, 428, pp. 821-827; Wright, S.D., McConnaughay, K.D.M., Interpreting phenotypic plasticity: The importance of ontogeny (2002) Plant Species Biology, 17, pp. 119-131; Xu, P., Liu, H., Models of microfibril elastic modulus parallel to the cell axis (2004) Wood Science and Technology, 38, pp. 363-374; Yang, J.L., Bailleres, H., Evans, R., Downes, G., Evaluating growth strain of eucalyptus globulus labill. From SilviScan measurements (2006) Holzforschung, 60, pp. 574-579; Yang, J.L., Evans, R., Prediction of MOE of eucalypt wood from microfibril angle and density (2003) Holz Als Roh und Werkstoff, 61, pp. 449-452; Yoshida, M., Okuyama, T., Techniques for measuring growth stress on the xylem surface using strain and dial gauges (2002) Holzforschung, 56, pp. 461-467; Zhang, S.-B., Slik, J.W.F., Zhang, J.-L., Cao, K.-F., Spatial patterns of wood traits in China are controlled by phylogeny and the environment (2011) Global Ecology and Biogeography, 20, pp. 241-250 Approved no
Call Number EcoFoG @ webmaster @ Serial 513
Permanent link to this record
 

 
Author Herault, B.; Bachelot, B.; Poorter, L.; Rossi, V.; Bongers, F.; Chave, J.; Paine, C.E.T.; Wagner, F.; Baraloto, C.
Title Functional traits shape ontogenetic growth trajectories of rain forest tree species Type Journal Article
Year 2011 Publication Journal of Ecology Abbreviated Journal J. Ecol.
Volume 99 Issue 6 Pages 1431-1440
Keywords Bayesian modelling; Functional traits; Growth modelling; Leaf economics; Leaf-height-seed strategy; Plant development and life-history traits; Plant strategy; Stem economics; Tropical rain forest
Abstract 1.Functional traits are posited to explain interspecific differences in performance, but these relationships are difficult to describe for long-lived organisms such as trees, which exhibit strong ontogenetic changes in demographic rates. Here, we use a size-dependent model of tree growth to test the extent to which of 17 functional traits related to leaf and stem economics, adult stature and seed size predict the ontogenetic trajectory of tree growth. 2.We used a Bayesian modelling framework to parameterize and contrast three size-dependent diameter growth models using 16years of census data from 5524 individuals of 50 rain forest tree species: a size-dependent model, a size-dependent model with species-specific parameters and a size-dependent model based on functional traits. 3.Most species showed clear hump-shaped ontogenetic growth trajectories and, across species, maximum growth rate varied nearly tenfold, from 0.58 to 5.51mmyear-1. Most species attained their maximum growth at 60% of their maximum size, whereas the magnitude of ontogenetic changes in growth rate varied widely among species. 4.The Trait-Model provided the best compromise between explained variance and model parsimony and needed considerably fewer parameters than the model with species terms. 5.Stem economics and adult stature largely explained interspecific differences in growth strategy. Maximum absolute diameter growth rates increased with increasing adult stature and leaf δ13C and decreased with increasing wood density. Species with light wood had the greatest potential to modulate their growth, resulting in hump-shaped ontogenetic growth curves. Seed size and leaf economics, generally thought to be of paramount importance for plant performance, had no significant relationships with the growth parameters. 6.Synthesis. Our modelling approach offers a promising way to link demographic parameters to their functional determinants and hence to predict growth trajectories in species-rich communities with little parameter inflation, bridging the gap between functional ecology and population demography. © 2011 The Authors. Journal of Ecology © 2011 British Ecological Society.
Address Department of Biology, University of Florida, Gainesville, FL 32611, United States
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 00220477 (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 21 October 2011; Source: Scopus; Coden: Jecoa; doi: 10.1111/j.1365-2745.2011.01883.x; Language of Original Document: English; Correspondence Address: Hérault, B.; Université des Antilles et de la Guyane, UMR Ecologie des Forêts de Guyane, 97387 Kourou Cedex, France; email: bruno.herault@ecofog.gf Approved no
Call Number EcoFoG @ webmaster @ Serial 342
Permanent link to this record
 

 
Author Gourlet-Fleury, S.; Rossi, V.; Rejou-Mechain, M.; Freycon, V.; Fayolle, A.; Saint-André, L.; Cornu, G.; Gérard, J.; Sarrailh, J.-M.; Flores, O.; Baya, F.; Billand, A.; Fauvet, N.; Gally, M.; Henry, M.; Hubert, D.; Pasquier, A.; Picard, N.
Title Environmental filtering of dense-wooded species controls above-ground biomass stored in African moist forests Type Journal Article
Year 2011 Publication Journal of Ecology Abbreviated Journal J. Ecol.
Volume 99 Issue 4 Pages 981-990
Keywords Basal area; Central African Republic; Determinants of plant community diversity and structure; Life-history strategy; Soil fertility; Species sorting; Vital rates; Water reserve; Wood density; aboveground biomass; basal area; climate change; data set; database; diameter; forest ecosystem; forest inventory; life history trait; nutrient availability; physical property; plant community; resource availability; soil fertility; soil nutrient; soil texture; soil type; stem; tropical forest; wood; Central African Republic
Abstract 1.Regional above-ground biomass estimates for tropical moist forests remain highly inaccurate mostly because they are based on extrapolations from a few plots scattered across a limited range of soils and other environmental conditions. When such conditions impact biomass, the estimation is biased. The effect of soil types on biomass has especially yielded controversial results. 2.We investigated the relationship between above-ground biomass and soil type in undisturbed moist forests in the Central African Republic. We tested the effects of soil texture, as a surrogate for soil resources availability and physical constraints (soil depth and hydromorphy) on biomass. Forest inventory data were collected for trees ≥20cm stem diameter in 2754 0.5ha plots scattered over 4888km2. The plots contained 224 taxons, of which 209 were identified to species. Soil types were characterized from a 1:1000000 scale soil map. Species-specific values for wood density were extracted from the CIRAD's data base of wood technological properties. 3.We found that basal area and biomass differ in their responses to soil type, ranging from 17.8m2ha-1 (217.5tha-1) to 22.3m2ha-1 (273.3tha-1). While shallow and hydromorphic soils support forests with both low stem basal area and low biomass, forests on deep resource-poor soils are typically low in basal area but as high in biomass as forests on deep resource-rich soils. We demonstrated that the environmental filtering of slow growing dense-wooded species on resource-poor soils compensates for the low basal area, and we discuss whether this filtering effect is due to low fertility or to low water reserve. 4.Synthesis. We showed that soil physical conditions constrained the amount of biomass stored in tropical moist forests. Contrary to previous reports, our results suggest that biomass is similar on resource-poor and resource-rich soils. This finding highlights both the importance of taking into account soil characteristics and species wood density when trying to predict regional patterns of biomass. Our findings have implications for the evaluation of biomass stocks in tropical forests, in the context of the international negotiations on climate change. © 2011 The Authors. Journal of Ecology © 2011 British Ecological Society.
Address CIRAD, BP 4035, Libreville, Gabon
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 00220477 (Issn) ISBN Medium
Area Expedition Conference
Notes Cited By (since 1996): 1; Export Date: 23 October 2011; Source: Scopus; Coden: Jecoa; doi: 10.1111/j.1365-2745.2011.01829.x; Language of Original Document: English; Correspondence Address: Gourlet-Fleury, S.; Cirad, UR BandSEF, Biens et Services des Ecosystèmes Forestiers tropicaux, Campus International de Baillarguet, TA C-105/D, F-34398, Montpellier, France; email: sylvie.gourlet-fleury@cirad.fr Approved no
Call Number EcoFoG @ webmaster @ Serial 361
Permanent link to this record
 

 
Author Baraloto, C.; Hardy, O.J.; Paine, C.E.T.; Dexter, K.G.; Cruaud, C.; Dunning, L.T.; Gonzalez, M.-A.; Molino, J.-F.; Sabatier, D.; Savolainen, V.; Chave, J.
Title Using functional traits and phylogenetic trees to examine the assembly of tropical tree communities Type Journal Article
Year 2012 Publication Journal of Ecology Abbreviated Journal J. Ecol.
Volume 100 Issue 3 Pages 690-701
Keywords Competition; Determinants of plant community diversity and structure; Environmental filtering; French Guiana; Functional traits; Limiting similarity; Niche; Phylogenetic signal; Tropical forests
Abstract Niche theory proposes that species differences underlie both coexistence within communities and the differentiation in species composition among communities via limiting similarity and environmental filtering. However, it has been difficult to extend niche theory to species-rich communities because of the empirical challenge of quantifying niches for many species. This has motivated the development of functional and phylogeny-based approaches in community ecology, which represent two different means of approximating niche attributes. Here, we assess the utility of plant functional traits and phylogenetic relationships in predicting community assembly processes using the largest trait and phylogenetic data base to date for any set of species-rich communities. We measured 17 functional traits for all 4672 individuals of 668 tree species co-occurring in nine tropical rain forest plots in French Guiana. Trait variation was summarized into two ordination axes that reflect species niche overlap. We also generated a dated molecular phylogenetic tree based on DNA sequencing of two plastid loci (rbcL and matK) comprising 97% of the individuals and 91% of the species in the plots. We found that, on average, co-occurring species had greater functional and, to a lesser extent, phylogenetic similarity than expected by chance. We also found that functional traits and their ordination loadings showed significant, albeit weak, phylogenetic signal, suggesting that phylogenetic distance provides pertinent information on niche overlap in tropical tree communities. Synthesis. We provide the most comprehensive examination to date of the relative importance of environmental filtering and limiting similarity in structuring tropical tree communities. Our results confirm that environmental filtering is the overriding influence on community assembly in these species-rich systems. © 2012 The Authors. Journal of Ecology © 2012 British Ecological Society.
Address Royal Botanic Gardens, Kew, Richmond TW9 3DS, United Kingdom
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 00220477 (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 24 April 2012; Source: Scopus; Coden: Jecoa; doi: 10.1111/j.1365-2745.2012.01966.x; Language of Original Document: English; Correspondence Address: Chave, J.; Université Paul Sabatier, CNRS, UMR 5174 Laboratoire Evolution et Diversité Biologique, 31062 Toulouse, France; email: chave@cict.fr Approved no
Call Number EcoFoG @ webmaster @ Serial 393
Permanent link to this record
 

 
Author Ferry, B.; Bontemps, J.-D.; Blanc, L.; Baraloto, C.
Title Is climate a stronger driver of tree growth than disturbance? A comment on Toledo et al. (2011) Type Journal Article
Year 2012 Publication Journal of Ecology Abbreviated Journal J. Ecol.
Volume 100 Issue 5 Pages 1065-1068
Keywords Basal area change; Bolivia; Climate; Disturbance; Logging; Plant-climate interactions; Tree growth; Tropical forest
Abstract 1.A recent article published by Toledo (2011b) investigates the effects of spatial variations in climate and soil, and of logging disturbance, on tree and forest growth in Bolivia. It concludes that climate is the strongest driver of tree and forest growth and that climate change may therefore have large consequences for forest productivity and carbon sequestration. However, serious methodological and conceptual discrepancies have been found that challenge these conclusions. 2.Because of an errant coding of 'time after logging' in the regression analysis, and because floristic changes induced by logging could not be incorporated into the analysis, the effect of logging on the average diameter growth is likely to have been strongly underestimated. 3.Basal area growth was improperly calculated as basal area change, and it displayed surprisingly high values, even among unlogged plots. We hypothesize that either these plots may be actually located in secondary forests recovering from past logging, or measurement biases may have hampered the data set. 4.Regardless of climate-growth relationships established across these plots, any inference concerning the potential effects of climate change on forest growth would require a specific quantitative assessment. 5.Synthesis. It is critical to re-assess the relative weight of climate and logging disturbance as driving factors of tree and forest growth, and to find an explanation for the very high basal area increment reported among the unlogged plots. We provide specific recommendations for further analyses of this and similar data sets. © 2012 British Ecological Society.
Address INRA, UMR Ecologie des Forêts de Guyane, 97379 Kourou, French Guiana
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 00220477 (Issn) ISBN Medium
Area Expedition Conference
Notes Cited By (since 1996): 1; Export Date: 4 September 2012; Source: Scopus; Coden: Jecoa; doi: 10.1111/j.1365-2745.2011.01895.x; Language of Original Document: English; Correspondence Address: Ferry, B.; AgroParisTech, ENGREF-Nancy, UMR 1092, F-54000 Nancy, France; email: bruno.ferry@engref.agroparistech.fr Approved no
Call Number EcoFoG @ webmaster @ Serial 426
Permanent link to this record
 

 
Author Laurans, M.; Martin, O.; Nicolini, E.; Vincent, G.
Title Functional traits and their plasticity predict tropical trees regeneration niche even among species with intermediate light requirements Type Journal Article
Year 2012 Publication Journal of Ecology Abbreviated Journal J. Ecol.
Volume 100 Issue 6 Pages 1440-1452
Keywords Canopy disturbance; Determinants of plant community diversity and structure; Growth rate; Irradiance; Leaf life span; Leaf mass per area; Niche differentiation; Phenotypic plasticity; Shade tolerance; Tropical moist forest
Abstract Niche differentiation is a key issue in the current debate on community assembly mechanisms. In highly diverse moist tropical forests, tree species sensitivity to canopy openness is thought to be a major axis in niche differentiation. In the past, the syndrome of traits driving the demographic trade-off involved in the niche-based theory of coexistence has always been established among species situated at the two extremities of the shade-tolerance gradient, even though most tropical tree species have intermediate light requirements. In addition, trait plasticity has seldom been linked to tropical tree species distribution along environmental gradients. This article examines covariations between leaf traits, whole-plant traits and niche parameters among 14 tree species with intermediate light requirements in French Guiana and across a range of canopy openness. Each functional trait measured under field conditions was characterized by a median value and a degree of plasticity expressed under contrasting light regimes. Niche differentiation was characterized in terms of spatial light gradient. We first examined covariations between functional traits then explored to what degree the median value and plasticity in functional traits could predict light niche characteristics at the sapling stage and the ontogenetic change in light availability estimated by adult stature. Leaf mass per area (LMA) was positively correlated with leaf life span (LLS); species with higher LMA and higher LLS displayed lower diameter growth rates (GRs) and lower responsiveness to canopy gap at both whole-plant and population levels. This proved that the relationships previously established over a broader range of species held true within the narrow range of the light requirements covered. Height GR plasticity accounted for 49% of the variation in light niche optimum. LMA plasticity, unlike LLS plasticity, was significantly correlated with light niche breadth and adult stature. Synthesis. This study demonstrates the relevance of considering the phenotypic plasticity in functional traits in community ecology, particularly for quantifying breadth of species distribution over environmental gradients. Our findings did not support Hubbell's hypothesis of functional equivalence and suggest that even a rather subtle variation in forest canopy disturbance promotes the coexistence of tropical tree species. © 2012 The Authors. Journal of Ecology © 2012 British Ecological Society.
Address UMR AMAP, IRD, TA A-51/PS2, Bd de la Lironde, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 00220477 (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 7 November 2012; Source: Scopus; Coden: Jecoa; doi: 10.1111/j.1365-2745.2012.02007.x; Language of Original Document: English; Correspondence Address: Laurans, M.; UMR, AMAP, CIRAD TA A-51/PS1, Bd de la Lironde, 34398 Montpellier Cedex 5, France; email: laurans@cirad.fr Approved no
Call Number EcoFoG @ webmaster @ Serial 445
Permanent link to this record
 

 
Author Fortunel, C.; Paine, C.E.T.; Fine, P.V.A.; Kraft, N.J.B.; Baraloto, C.
Title Environmental factors predict community functional composition in Amazonian forests Type Journal Article
Year 2014 Publication Journal of Ecology Abbreviated Journal J. Ecol.
Volume 102 Issue 1 Pages 145-155
Keywords Amazonian landscape; Climatic and soil gradients; Determinants of plant community diversity and structure; Environmental filtering; Functional traits; Tree communities; Tropical forests
Abstract The consequences of biodiversity loss for ecosystem services largely depend on the functional identities of extirpated species. However, poor descriptions of spatial patterns of community functional composition across landscapes hamper accurate predictions, particularly in highly diverse tropical regions. Therefore, understanding how community functional composition varies across environmental gradients remains an important challenge. We sampled 15 functional traits in 800 Neotropical tree species across 13 forest plots representative of the broad climatic and soil gradients encompassed by three widespread lowland forest habitats (terra firme forests on clay-rich soils, seasonally flooded forests and white-sand forests) at opposite ends of Amazonia (Peru and French Guiana). We combined univariate and multivariate approaches to test the magnitude and predictability of environmental filtering on community leaf and wood functional composition. Directional shifts in community functional composition correlated with environmental changes across the 13 plots, with denser leaves, stems and roots in forests occurring in environments with limited water and soil-nutrient availability. Critically, these relationships allowed us to accurately predict the functional composition of 61 additional forest plots from environmental data alone. Synthesis. Environmental filtering consistently shapes the functional composition of highly diverse tropical forests at large scales across the terra firme, seasonally flooded and white-sand forests of lowland Amazonia. Environmental factors drive and allow the prediction of variation in community functional composition among habitat types in Amazonian forests. © 2013 British Ecological Society.
Address Department of Biology, University of Florida, Gainesville, FL, 32611, United States
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 00220477 (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 31 December 2013; Source: Scopus; Coden: Jecoa; doi: 10.1111/1365-2745.12160; Language of Original Document: English; Correspondence Address: Fortunel, C.; INRA, UMR Ecologie des Forêts de Guyane, BP 709, Kourou Cedex, 97387, France; email: claire.fortunel@ecofog.gf; Funding Details: DEB-0743103/0743800, NSF, National Science Foundation; References: Agrawal, A.A., Fishbein, M., Plant defense syndromes (2006) Ecology, 87, pp. S132-S149; Anderson, L.O., Malhi, Y., Ladle, R.J., Aragao, L., Shimabukuro, Y., Phillips, O.L., Influence of landscape heterogeneity on spatial patterns of wood productivity, wood specific density and above ground biomass in Amazonia (2009) Biogeosciences, 6, pp. 1883-1902; Asner, G.P., Alencar, A., Drought impacts on the Amazon forest: the remote sensing perspective (2010) New Phytologist, 187, pp. 569-578; Asner, G.P., Loarie, S.R., Heyder, U., Combined effects of climate and land-use change on the future of humid tropical forests (2010) Conservation Letters, 3, pp. 395-403; Baraloto, C., Paine, C.E.T., Patiño, S., Bonal, D., Herault, B., Chave, J., Functional trait variation and sampling strategies in species-rich plant communities (2010) Functional Ecology, 24, pp. 208-216; Baraloto, C., Paine, C.E.T., Poorter, L., Beauchene, J., Bonal, D., Domenach, A.M., Hérault, B., Chave, J., Decoupled leaf and stem economics in rain forest trees (2010) Ecology Letters, 13, pp. 1338-1347; Baraloto, C., Rabaud, S., Molto, Q., Blanc, L., Fortunel, C., Hérault, B., Davila, N., Fine, P.V.A., Disentangling stand and environmental correlates of aboveground biomass in Amazonian forests (2011) Global Change Biology, 17, pp. 2677-2688; Baraloto, C., Molto, Q., Rabaud, S., Hérault, B., Valencia, R., Blanc, L., Fine, P.V.A., Thompson, J., Rapid simultaneous estimation of aboveground biomass and tree diversity across Neotropical forests: a comparison of field inventory methods (2013) Biotropica, 45, pp. 288-298; Belyea, L.R., Lancaster, J., Assembly rules within a contingent ecology (1999) Oikos, 86, pp. 402-416; Berry, S.L., Roderick, M.L., Estimating mixtures of leaf functional types using continental-scale satellite and climatic data (2002) Global Ecology and Biogeography, 11, pp. 23-39; Brando, P.M., Nepstad, D.C., Balch, J.K., Bolker, B., Christman, M.C., Coe, M., Putz, F.E., Fire-induced tree mortality in a neotropical forest: the roles of bark traits, tree size, wood density and fire behavior (2012) Global Change Biology, 18, pp. 630-641; Burnham, K.P., Anderson, D.R., Multimodel inference – understanding AIC and BIC in model selection (2004) Sociological Methods & Research, 33, pp. 261-304; Calcagno, V., de Mazancourt, C., glmulti: an R package for easy automated model selection with (generalized) linear models (2010) Journal of Statistical Software, 34, pp. 1-29; Chapin, F.S., BretHarte, M.S., Hobbie, S.E., Zhong, H.L., Plant functional types as predictors of transient responses of arctic vegetation to global change (1996) Journal of Vegetation Science, 7, pp. 347-358; Chaturvedi, R.K., Raghubanshi, A.S., Singh, J.S., Leaf attributes and tree growth in a tropical dry forest (2011) Journal of Vegetation Science, 22, pp. 917-931; Chave, J., Coomes, D., Jansen, S., Lewis, S.L., Swenson, N.G., Zanne, A.E., Towards a worldwide wood economics spectrum (2009) Ecology Letters, 12, pp. 351-366; Cingolani, A.M., Cabido, M., Gurvich, D.E., Renison, D., Diaz, S., Filtering processes in the assembly of plant communities: are species presence and abundance driven by the same traits? (2007) Journal of Vegetation Science, 18, pp. 911-920; Coates, K.D., Lilles, E.B., Astrup, R., Competitive interactions across a soil fertility gradient in a multispecies forest (2013) Journal of Ecology, 101, pp. 806-818; Cornwell, W.K., Ackerly, D.D., Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California (2009) Ecological Monographs, 79, pp. 109-126; Cornwell, W.K., Schwilk, D.W., Ackerly, D.D., A trait-based test for habitat filtering: convex hull volume (2006) Ecology, 87, pp. 1465-1471; Craine, J.M., Reconciling plant strategy theories of Grime and Tilman (2005) Journal of Ecology, 93, pp. 1041-1052; de Deyn, G.B., Cornelissen, J.H.C., Bardgett, R.D., Plant functional traits and soil carbon sequestration in contrasting biomes (2008) Ecology Letters, 11, pp. 516-531; Dray, S., Dufour, A.B., The ade4 package: implementing the duality diagram for ecologists (2007) Journal of Statistical Software, 22, pp. 1-20; Engelbrecht, B.M.J., Comita, L.S., Condit, R., Kursar, T.A., Tyree, M.T., Turner, B.L., Hubbell, S.P., Drought sensitivity shapes species distribution patterns in tropical forests (2007) Nature, 447, pp. 80-82; Farquhar, G.D., Ehleringer, J.R., Hubick, K.T., Carbon isotope discrimination and photosynthesis (1989) Annual Review of Plant Physiology and Plant Molecular Biology, 40, pp. 503-537; Ferry, B., Morneau, F., Bontemps, J.D., Blanc, L., Freycon, V., Higher treefall rates on slopes and waterlogged soils result in lower stand biomass and productivity in a tropical rain forest (2010) Journal of Ecology, 98, pp. 106-116; Fine, P.V.A., Mesones, I., Coley, P.D., Herbivores promote habitat specialization by trees in Amazonian forests (2004) Science, 305, pp. 663-665; Fine, P.V.A., Miller, Z.J., Mesones, I., Irazuzta, S., Appel, H.M., Stevens, M.H.H., Saaksjarvi, I., Coley, P.D., The growth-defense trade-off and habitat specialization by plants in Amazonian forests (2006) Ecology, 87, pp. S150-S162; Fortunel, C., Fine, P.V.A., Baraloto, C., Leaf, stem and root tissue strategies across 758 Neotropical tree species (2012) Functional Ecology, 26, pp. 1153-1161; Fyllas, N.M., Patino, S., Baker, T.R., Nardoto, G.B., Martinelli, L.A., Quesada, C.A., Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate (2009) Biogeosciences, 6, pp. 2677-2708; Grime, J.P., Vegetation classification by reference to strategies (1974) Nature, 250, pp. 26-31; Harrison, S.P., Prentice, I.C., Barboni, D., Kohfeld, K.E., Ni, J., Sutra, J.P., Ecophysiological and bioclimatic foundations for a global plant functional classification (2010) Journal of Vegetation Science, 21, pp. 300-317; Huston, M.A., Precipitation, soils, NPP, and biodiversity: resurrection of Albrecht's curve (2012) Ecological Monographs, 82, pp. 277-296; Ingram, T., Shurin, J.B., Trait-based assembly and phylogenetic structure in northeast Pacific rockfish assemblages (2009) Ecology, 90, pp. 2444-2453; Kadane, J.B., Lazar, N.A., Methods and criteria for model selection (2004) Journal of the American Statistical Association, 99, pp. 279-290; Katabuchi, M., Kurokawa, H., Davies, S.J., Tan, S., Nakashizuka, T., Soil resource availability shapes community trait structure in a species-rich dipterocarp forest (2012) Journal of Ecology, 100, pp. 643-651; Keddy, P.A., Assembly and response rules – two goals for predictive community ecology (1992) Journal of Vegetation Science, 3, pp. 157-164; Keith, D.A., Holman, L., Rodoreda, S., Lemmon, J., Bedward, M., Plant functional types can predict decade-scale changes in fire-prone vegetation (2007) Journal of Ecology, 95, pp. 1324-1337; Kitajima, K., Poorter, L., Tissue-level leaf toughness, but not lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species (2010) New Phytologist, 186, pp. 708-721; Kraft, N.J.B., Valencia, R., Ackerly, D.D., Functional traits and niche-based tree community assembly in an Amazonian forest (2008) Science, 322, pp. 580-582; Landsberg, J., Modelling forest ecosystems: state of the art, challenges, and future directions (2003) Canadian Journal of Forest Research, 33, pp. 385-397; Laughlin, D.C., Fulé, P.Z., Huffman, D.W., Crouse, J., Laliberté, E., Climatic constraints on trait-based forest assembly (2011) Journal of Ecology, 99, pp. 1489-1499; Lavergne, S., Mouquet, N., Thuiller, W., Ronce, O., Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities (2010) Annual Review of Ecology, Evolution, and Systematics, 41, pp. 321-350; Lavorel, S., Grigulis, K., McIntyre, S., Williams, N.S.G., Garden, D., Dorrough, J., Berman, S., Bonis, A., Assessing functional diversity in the field: methodology matters! (2008) Functional Ecology, 22, pp. 134-147; Lebrija-Trejos, E., Perez-Garcia, E.A., Meave, J.A., Bongers, F., Poorter, L., Functional traits and environmental filtering drive community assembly in a species-rich tropical system (2010) Ecology, 91, pp. 386-398; Liu, X., Swenson, N.G., Wright, S.J., Zhang, L., Song, K., Du, Y., Zhang, J., Ma, K., Covariation in plant functional traits and soil fertility within two species-rich forests (2012) PLoS ONE, 7, pp. e34767; Lortie, C.J., Brooker, R.W., Choler, P., Kikvidze, Z., Michalet, R., Pugnaire, F.I., Callaway, R.M., Rethinking plant community theory (2004) Oikos, 107, pp. 433-438; Malhi, Y., Roberts, J.T., Betts, R.A., Killeen, T.J., Li, W.H., Nobre, C.A., Climate change, deforestation, and the fate of the Amazon (2008) Science, 319, pp. 169-172; Muller-Landau, H.C., Interspecific and inter-site variation in wood specific gravity of tropical trees (2004) Biotropica, 36, pp. 20-32; Niinemets, U., Components of leaf dry mass per area – thickness and density – alter leaf photosynthetic capacity in reverse directions in woody plants (1999) New Phytologist, 144, pp. 35-47; Oksanen, J.F., Blanchet, G., Kindt, R., Legendre, P., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Wagner, H., (2012), http://CRAN.R-project.org/package=vegan, vegan: Community Ecology Package. R package version 2.0-3Onoda, Y., Westoby, M., Adler, P.B., Choong, A.M.F., Clissold, F.J., Cornelissen, J.H.C., Global patterns of leaf mechanical properties (2011) Ecology Letters, 14, pp. 301-312; Ordonez, J.C., van Bodegom, P.M., Witte, J.P.M., Wright, I.J., Reich, P.B., Aerts, R., A global study of relationships between leaf traits, climate and soil measures of nutrient fertility (2009) Global Ecology and Biogeography, 18, pp. 137-149; Paine, C.E.T., Stahl, C., Courtois, E.A., Patino, S., Sarmiento, C., Baraloto, C., Functional explanations for variation in bark thickness in tropical rain forest trees (2010) Functional Ecology, 24, pp. 1202-1210; Paine, C.E.T., Baraloto, C., Chave, J., Herault, B., Functional traits of individual trees reveal ecological constraints on community assembly in tropical rain forests (2011) Oikos, 120, pp. 720-727; Parolin, P., Morphological and physiological adjustments to waterlogging and drought in seedlings of Amazonian floodplain trees (2001) Oecologia, 128, pp. 326-335; Parolin, P., De Simone, O., Haase, K., Waldhoff, D., Rottenberger, S., Kuhn, U., Kesselmeier, J., Junk, W.J., Central Amazonian floodplain forests: tree adaptations in a pulsing system (2004) Botanical Review, 70, pp. 357-380; Phillips, O.L., Vasquez Martinez, R., Nunez Vargas, P., Lorenzo Monteagudo, A., Chuspe Zans, M.E., Galiano Sanchez, W., Pena Cruz, A., Rose, S., Efficient plot-based floristic assessment of tropical forests (2003) Journal of Tropical Ecology, 19, pp. 629-645; Poorter, L., Wright, S.J., Paz, H., Ackerly, D.D., Condit, R., Ibarra-Manriques, G., Are functional traits good predictors of demographic rates? Evidence from five neotropical forests (2008) Ecology, 89, pp. 1908-1920; Quesada, C.A., Lloyd, J., Anderson, L.O., Fyllas, N.M., Schwarz, M., Czimczik, C.I., Soils of Amazonia with particular reference to the RAINFOR sites (2011) Biogeosciences, 8, pp. 1415-1440; Quesada, C.A., Phillips, O.L., Schwarz, M., Czimczik, C.I., Baker, T.R., Patino, S., Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate (2012) Biogeosciences, 9, pp. 2203-2246; (2011), http://www.R-project.org, R Development Core TeamReich, P.B., Walters, M.B., Ellsworth, D.S., From tropics to tundra: global convergence in plant functioning (1997) Proceedings of the National Academy of Sciences of the United States of America, 94, pp. 13730-13734; Reu, B., Zaehle, S., Proulx, R., Bohn, K., Kleidon, A., Pavlick, R., Schmidtlein, S., The role of plant functional trade-offs for biodiversity changes and biome shifts under scenarios of global climatic change (2011) Biogeosciences, 7, pp. 7449-7473; Ryan, C.M., Hill, T., Woollen, E., Ghee, C., Mitchard, E., Cassells, G., Grace, J., Williams, M., Quantifying small-scale deforestation and forest degradation in African woodlands using radar imagery (2012) Global Change Biology, 18, pp. 243-257; Smith, M.J., Sibly, R.M., Identification of trade-offs underlying the primary strategies of plants (2008) Evolutionary Ecology Research, 10, pp. 45-60; ter Steege, H., Sabatier, D., Castellanos, H., Van Andel, T., Duivenvoorden, J., De Oliveira, A.A., Ek, R., Mori, S., An analysis of the floristic composition and diversity of Amazonian forests including those of the Guiana Shield (2000) Journal of Tropical Ecology, 16, pp. 801-828; ter Steege, H., Pitman, N.C.A., Phillips, O.L., Chave, J., Sabatier, D., Duque, A., Molino, J.F., Vasquez, R., Continental-scale patterns of canopy tree composition and function across Amazonia (2006) Nature, 443, pp. 444-447; Suding, K.N., Goldstein, L.J., Testing the Holy Grail framework: using functional traits to predict ecosystem change (2008) New Phytologist, 180, pp. 559-562; Swenson, N.G., Anglada-Cordero, P., Barone, J.A., Deterministic tropical tree community turnover: evidence from patterns of functional beta diversity along an elevational gradient (2010) Proceedings of the Royal Society of London. Series B, Biological Sciences, 278, pp. 877-884; Swenson, N.G., Enquist, B.J., Opposing assembly mechanisms in a neotropical dry forest: implications for phylogenetic and functional community ecology (2009) Ecology, 90, pp. 2161-2170; Swenson, N.G., Stegen, J.C., Davies, S.J., Erickson, D.L., Forero-Montaña, J., Hurlbert, A.H., Kress, W.J., Zimmerman, J.K., Temporal turnover in the composition of tropical tree communities: functional determinism and phylogenetic stochasticity (2012) Ecology, 93, pp. 490-499; Tilman, D., Constraints and tradeoffs – toward a predictive theory of competition and succession (1990) Oikos, 58, pp. 3-15; Wagner, F., Herault, B., Stahl, C., Bonal, D., Rossi, V., Modeling water availability for trees in tropical forests (2011) Agricultural and Forest Meteorology, 151, pp. 1202-1213; Wand, M.P., Fast computation of multivariate kernel estimators (1994) Journal of Computational and Graphical Statistics, 3, pp. 433-445; Warton, D.I., Wright, I.J., Falster, D.S., Westoby, M., Bivariate line-fitting methods for allometry (2006) Biological Reviews, 81, pp. 259-291; Webb, C.T., Hoeting, J.A., Ames, G.M., Pyne, M.I., Poff, N.L., A structured and dynamic framework to advance traits-based theory and prediction in ecology (2010) Ecology Letters, 13, pp. 267-283; Williamson, G.B., Wiemann, M.C., Measuring wood specific gravity ... correctly (2010) American Journal of Botany, 97, pp. 519-524; Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., The worldwide leaf economics spectrum (2004) Nature, 428, pp. 821-827; Wright, I.J., Reich, P.B., Cornelissen, J.H.C., Falster, D.S., Garnier, E., Hikosaka, K., Assessing the generality of global leaf trait relationships (2005) New Phytologist, 166, pp. 485-496; Wright, I.J., Falster, D.S., Pickup, M., Westoby, M., Cross-species patterns in the coordination between leaf and stem traits, and their implications for plant hydraulics (2006) Physiologia Plantarum, 127, pp. 445-456; Wright, I.J., Ackerly, D.D., Bongers, F., Harms, K.E., Ibarra-Manriquez, G., Martinez-Ramos, M., Relationships among ecologically important dimensions of plant trait variation in seven Neotropical forests (2007) Annals of Botany, 99, pp. 1003-1015; Wright, S.J., Kitajima, K., Kraft, N.J.B., Reich, P.B., Wright, I.J., Bunker, D.E., Functional traits and the growth-mortality trade-off in tropical trees (2010) Ecology, 91, pp. 3664-3674 Approved no
Call Number EcoFoG @ webmaster @ Serial 520
Permanent link to this record
 

 
Author Almeras, T.; Fournier, M.
Title Biomechanical design and long-term stability of trees: Morphological and wood traits involved in the balance between weight increase and the gravitropic reaction Type Journal Article
Year 2009 Publication Journal of Theoretical Biology Abbreviated Journal J. Theor. Biol.
Volume 256 Issue 3 Pages 370-381
Keywords Mechanical design; Gravitropism; Bending stresses; Allometry; Reaction wood
Abstract Studies on tree biomechanical design usually focus on stem stiffness, resistance to breakage or uprooting, and elastic stability. Here we consider another biomechanical constraint related to the interaction between growth and gravity. Because stems are slender structures and are never perfectly symmetric, the increase in tree mass always causes bending movements. Given the current mechanical design of trees, integration of these movements over time would ultimately lead to a weeping habit unless some gravitropic correction occurs. This correction is achieved by asymmetric internal forces induced during the maturation of new wood. The long-term stability of a growing stem therefore depends on how the gravitropic correction that is generated by diameter growth balances the disturbance due to increasing self weight. General mechanical formulations based on beam theory are proposed to model these phenomena. The rates of disturbance and correction associated with a growth increment are deduced and expressed as a function of elementary traits of stem morphology, cross-section anatomy and wood properties. Evaluation of these traits using previously published data shows that the balance between the correction and the disturbance strongly depends on the efficiency of the gravitropic correction, which depends on the asymmetry of wood maturation strain, eccentric growth, and gradients in wood stiffness. By combining disturbance and correction rates, the gravitropic performance indicates the dynamics of stem bending during growth. It depends on stem biomechanical traits and dimensions. By analyzing dimensional effects, we show that the necessity for gravitropic correction might constrain stem allometric growth in the long-term. This constraint is compared to the requirement for elastic stability, showing that gravitropic performance limits the increase in height of tilted stem and branches. The performance of this function may thus limit the slenderness and lean of stems, and therefore the ability of the tree to capture light in a heterogeneous environment. (c) 2008 Elsevier Ltd. All rights reserved.
Address [Almeras, T.; Fournier, M.] INRA, UMR Ecol Forets Guyane, F-97310 Kourou, France, Email: t_almeras@hotmail.com
Corporate Author Thesis
Publisher ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0022-5193 ISBN Medium
Area Expedition Conference
Notes ISI:000263077100008 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 123
Permanent link to this record
 

 
Author Conte, D.E.; Aboulaich, A.; Robert, F.; Olivier-Fourcade, J.; Jumas, J.C.; Jordy, C.; Willmann, P.
Title Sn-x[BPO4](1-x) composites as negative electrodes for lithium ion cells: Comparison with amorphous SnB0.6P0.4O2.9 and effect of composition Type Journal Article
Year 2010 Publication Journal of Solid State Chemistry Abbreviated Journal J. Solid State Chem.
Volume 183 Issue 1 Pages 65-75
Keywords Sn-based composites; Lithium-ion batteries; Negative electrodes; Mossbauer spectroscopy; LixSn alloys
Abstract A comparative study of two Sn-based composite materials as negative electrode for Li-ion accumulators is presented. The former SnB0.6P0.4O2.9 obtained by in-situ dispersion of SnO in an oxide matrix is shown to be an amorphous tin composite oxide (ATCO). The latter Sn-0.72[BPO4](0.28) obtained by ex-situ dispersion of Sri in a borophosphate matrix consists of Sri particles embedded in a crystalline BPO4 matrix. The electrochemical responses of ATCO and Sn-0.72.[BPO4](0.28) composite in galvanostatic mode show reversible capacities of about 450 and 530 mAhg(-1), respectively, with different irreversible capacities (60% and 29%). Analysis of these composite materials by Sn-119 Mossbauer spectroscopy in transmission (TMS) and emission (CEMS) modes confirms that ATCO is an amorphous Sn-II composite oxide and shows that in the case of Sn-0.72[BPO4](0.28), the Surface of the tin clusters is mainly formed by Sn-II in an amorphous interface whereas the bulk of the clusters is mainly formed by Sn-0. The determination of the recoilless free fractions f (Lamb-Mossbauer factors) leads to the effective fraction of both Sn-0 and Sn-II species in such composites. The influence of chemical composition and especially of the surface-to-bulk tin species ratio oil the electrochemical behaviour has been analysed for several Sn-x[BPO4](1-x) composite materials (0.17 < x < 0.91). The cell using the compound Sn-0.72[BPO4](0.28) as active material exhibits interesting electrochemical performances (reversible capacity of 500 mAh g(-1) at C/5 rate). (C) 2009 Elsevier Inc. All rights reserved.
Address [Conte, Donato Ercole; Aboulaich, Abdelmaula; Robert, Florent; Olivier-Fourcade, Josette; Jumas, Jean-Claude] Univ Montpellier 2, CNRS, UMR 5253,Inst Charles Gerhardt, Equipe Agregats Interfaces & Mat Energie, F-34095 Montpellier, France, Email: iguanasornione@libero.it
Corporate Author Thesis
Publisher ACADEMIC PRESS INC ELSEVIER SCIENCE Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0022-4596 ISBN Medium
Area Expedition Conference
Notes ISI:000273834600010 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 83
Permanent link to this record
 

 
Author Stien, D.; Gastaldi, S.
Title Design of polyaromatic hydrocarbon-supported tin reagents: A new family of tin reagents easily removable from reaction mixtures Type Journal Article
Year 2004 Publication Journal of Organic Chemistry Abbreviated Journal J. Org. Chem.
Volume 69 Issue 13 Pages 4464-4470
Keywords
Abstract We report in this paper the preparation and use of stannanes 11, 12a, and 12b, compounds whose 3-pyrenylpropyl side chain affinity for activated carbon simplifies tin removal and product isolation. Our pyrene-supported reagents can be used for radical reductions and cyclizations (11), radical and cationic allylations (12a), and Stille couplings (12b) in much the same way as tributyltin derivatives.
Address CNRS UPS 2561, Cayenne 97300, French Guiana, Email: didier.stien@guyane.cnrs.fr
Corporate Author Thesis
Publisher AMER CHEMICAL SOC Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0022-3263 ISBN Medium
Area Expedition Conference
Notes ISI:000222187200022 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 263
Permanent link to this record