toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Quéméré, Erwan ; Aucourt, Marie ; Troispoux, Valérie ; Brosse, Sébastien ; Murienne, Jérôme ; Covain, Raphael ; Le Bail, Pierre-Yves ; Olivier, Jean ; Tysklind, Niklas ; Galan, Maxime doi  openurl
  Title Unraveling the dietary diversity of Neotropical top predators using scat DNA metabarcoding: A case study on the elusive Giant Otter Type Journal Article
  Year 2021 Publication Environmental DNA Abbreviated Journal  
  Volume 3 Issue 5 Pages (up) 889-900  
  Keywords  
  Abstract Large carnivores play a pivotal regulating role in maintaining healthy and balanced ecosystems; however, most of them are rare and elusive, and knowledge about their resource consumption is scarce. Traditional methods based on morphological identification of undigested remains are labor intensive and often not sufficiently accurate, leading to errors and biased ecological inferences. Here, we developed a multi-marker DNA metabarcoding approach to analyze the dietary diversity of giant otters (Pteronura brasiliensis) from fecal DNA while controlling predator species identity. We combined two mitochondrial markers, 12S rRNA and cytochrome c oxidase 1 (COI) gene, that target the full range of potential vertebrate and invertebrate prey. We compiled a local reference database of DNA barcodes for most potentially ingested fish, which were used to evaluate the specificity of the metabarcoding primers in silico. Most prey are identified at the species level (>90%) and the dietary profiles provided independently by the two markers are highly similar, whether in terms of list of prey or frequency of occurrences, hence validating the approach. We detected a higher number of rare fish prey with the 12S primers that amplified solely Teleost species while the degenerate COI primers revealed non-fish prey (e.g., amphibians, snakes, birds, and earthworms) and confirmed predator species identity. This study demonstrated that scat DNA metabarcoding is particularly useful to provide in-depth information on elusive carnivorous dietary profile. Our methodology opens up new opportunities to understand how top carnivores diet cope with the effects of anthropogenic alteration of ecosystems and identify conflicts with humans and livestock.  
  Address  
  Corporate Author Thesis  
  Publisher Wiley Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1054  
Permanent link to this record
 

 
Author Baraloto, C.; Forget, P.M. openurl 
  Title Seed size, seedling morphology, and response to deep shade and damage in neotropical rain forest trees Type Journal Article
  Year 2007 Publication American Journal of Botany Abbreviated Journal Am. J. Bot.  
  Volume 94 Issue 6 Pages (up) 901-911  
  Keywords cotyledons; French Guiana; functional morphology; herbivory; life history; phylogeny; regeneration strategy; shade tolerance  
  Abstract To investigate the existence of coordinated sets of seedling traits adapted to contrasting establishment conditions, we examined evolutionary convergence in seedling traits for 299 French Guianan woody plant species and the stress response in a shadehouse of species representing seed size gradients within five major cotyledon morphology types. The French Guianan woody plant community has larger seeds than other tropical forest communities and the largest proportion of hypogeal cotyledon type (59.2%) reported for tropical forests. Yet the community includes many species with intermediate size seeds that produce seedlings with different cotyledonal morphologies. A split-plot factorial design with two light levels (0.8% and 16.1% PAR) and four damage treatments (control, seed damage, leaf damage, stem damage) was used in the shadehouse experiment. Although larger-seeded species had higher survival and slower growth, these patterns were better explained by cotyledon type than by seed mass. Even larger-seeded species with foliar cotyledons grew faster than species with reserve-type cotyledons, and survival after stem grazing was five times higher in seedlings with hypogeal cotyledons than with epigeal cotyledons. Thus, to predict seedling performance using seed size, seedling morphology must also be considered.  
  Address Inst Natl Rech Agronom, UMR, Ecol Forets Guyane, Kourou, France, Email: baraloto.c@kourou.cirad.fr  
  Corporate Author Thesis  
  Publisher BOTANICAL SOC AMER INC Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-9122 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000249830600001 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 159  
Permanent link to this record
 

 
Author Roux, O.; Martin, J.M.; Ghomsi, N.T.; Dejean, A. openurl 
  Title A Non-lethal Water-based Removal-reapplication Technique for Behavioral Analysis of Cuticular Compounds of Ants Type Journal Article
  Year 2009 Publication Journal of Chemical Ecology Abbreviated Journal J. Chem. Ecol.  
  Volume 35 Issue 8 Pages (up) 904-912  
  Keywords Ants; Behavioral assay; Behavioral ecology; Camponotus blandus; Chemical composition; Chemical ecology; Cuticular hydrocarbons; Gas chromatography-mass spectrometry; Live dummies; Solenopsis saevissima; Methods  
  Abstract Interspecific relationships among insects are often mediated by chemical cues, including non-volatile cuticular compounds. Most of these compounds are hydrocarbons that necessitate the use of solvents for their extraction, identification, and manipulation during behavioral assays. The toxicity of these solvents often precludes the removal and reapplication of hydrocarbons from and to live insects. As a consequence, dummies often are used in behavioral assays, but their passivity can bias the behavior of the responding insects. To overcome these limitations, we propose a method where cuticular compounds are extracted from live ants by placing them into glass vials half-filled with tepid water (ca. 34A degrees C) and vigorously shaking the vials to form an emulsion whose supernatant can be analyzed and/or reapplied to other ants. We demonstrate that cuticular compounds can be extracted from workers of the red fire ant, Solenopsis saevissima, and reapplied to the cuticle of workers from a sympatric species, Camponotus blandus (both Hymenoptera: Formicidae), while keeping the ants alive. Gas chromatographic-mass spectrometric analysis and behavioral assays were used to confirm the successful transfer of the behaviorally active compounds.  
  Address [Roux, Olivier; Martin, Jean-Michel; Dejean, Alain] Ecol Forets Guyane, CNRS, UMR 8172, F-97379 Kourou, France, Email: oroux@cict.fr  
  Corporate Author Thesis  
  Publisher SPRINGER Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0098-0331 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000269954400006 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 104  
Permanent link to this record
 

 
Author Grangier, J.; Dejean, A.; Male, P.J.G.; Orivel, J. openurl 
  Title Indirect defense in a highly specific ant-plant mutualism Type Journal Article
  Year 2008 Publication Naturwissenschaften Abbreviated Journal Naturwissenschaften  
  Volume 95 Issue 10 Pages (up) 909-916  
  Keywords Allomerus decemarticulatus; Hirtella physophora; indirect defense; myrmecophytes; optimal defense theory  
  Abstract Although associations between myrmecophytes and their plant ants are recognized as a particularly effective form of protective mutualism, their functioning remains incompletely understood. This field study examined the ant-plant Hirtella physophora and its obligate ant associate Allomerus decemarticulatus. We formulated two hypotheses on the highly specific nature of this association: (1) Ant presence should be correlated with a marked reduction in the amount of herbivory on the plant foliage; (2) ant activity should be consistent with the “optimal defense” theory predicting that the most vulnerable and valuable parts of the plant are the best defended. We validated the first hypothesis by demonstrating that for ant-excluded plants, expanding leaves, but also newly matured ones in the long term, suffered significantly more herbivore damage than ant-inhabited plants. We showed that A. decemarticulatus workers represent both constitutive and inducible defenses for their host, by patrolling its foliage and rapidly recruiting nestmates to foliar wounds. On examining how these activities change according to the leaves' developmental stage, we found that the number of patrolling ants dramatically decreased as the leaves matured, while leaf wounds induced ant recruitment regardless of the leaf's age. The resulting level of these indirect defenses was roughly proportional to leaf vulnerability and value during its development, thus validating our second hypothesis predicting optimal protection. This led us to discuss the factors influencing ant activity on the plant's surface. Our study emphasizes the importance of studying both the constitutive and inducible components of indirect defense when evaluating its efficacy and optimality.  
  Address [Grangier, Julien; Dejean, Alain; Male, Pierre-Jean G.; Orivel, Jerome] Univ Toulouse 3, Lab Evolut & Diversite Biol, CNRS, UMR 5174, F-31062 Toulouse 9, France, Email: grangier@cict.fr  
  Corporate Author Thesis  
  Publisher SPRINGER Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-1042 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000259737600002 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 207  
Permanent link to this record
 

 
Author Groc, S.; Delabie, J.H.C.; Cereghino, R.; Orivel, J.; Jaladeau, F.; Grangier, J.; Mariano, C.S.F.; Dejean, A. openurl 
  Title Ant species diversity in the 'Grands Causses' (Aveyron, France): In search of sampling methods adapted to temperate climates RID C-4034-2011 Type Journal Article
  Year 2007 Publication Comptes Rendus Biologies Abbreviated Journal C. R. Biol.  
  Volume 330 Issue 12 Pages (up) 913-922  
  Keywords ant diversity; Grands Causses; sampling methods; temperate climate  
  Abstract This study aimed at showing the applicability of using a combination of four sampling methods (i.e., Winkler extractors, pitfall traps, baiting and manual collection), something most often conducted in the tropics, to create an inventory of ant species diversity in temperate environments. We recorded a total of 33 ant species in the Grands Causses by comparing three vegetal formations: a steppic lawn ('causse' sensu stricto), which was the most species-rich (29 species), followed by an oak grove (22 species) and a pine forest (17 species). No sampling method alone is efficient enough to provide an adequate sampling, but their combination permits one to make a suitable inventory of the myrmecofauna and to obtain information on the ecology of these ant species.  
  Address [Groc, S; Orivel, J; Grangier, J; Dejean, A] Univ Toulouse 3, CNRS, UMR 5174, Lab Evolut & Diversite Biol, F-31062 Toulouse, France, Email: alain.dejean@wanadoo.fr  
  Corporate Author Thesis  
  Publisher Elsevier France-Editions Scientifiques Medicales Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1631-0691 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000251852800009 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 359  
Permanent link to this record
 

 
Author Dejean, A.; Revel, M.; Azémar, F.; Roux, O. url  openurl
  Title Altruism during predation in an assassin bug Type Journal Article
  Year 2013 Publication Naturwissenschaften Abbreviated Journal Naturwissenschaften  
  Volume 100 Issue 10 Pages (up) 913-922  
  Keywords Conspecific tolerance; Predation; Prey sharing; Reduviidae; Zelus annulosus  
  Abstract Zelus annulosus is an assassin bug species mostly noted on Hirtella physophora, a myrmecophyte specifically associated with the ant Allomerus decemarticulatus known to build traps on host tree twigs to ambush insect preys. The Z. annulosus females lay egg clutches protected by a sticky substance. To avoid being trapped, the first three instars of nymphs remain grouped in a clutch beneath the leaves on which they hatched, yet from time to time, they climb onto the upper side to group ambush preys. Long-distance prey detection permits these bugs to capture flying or jumping insects that alight on their leaves. Like some other Zelus species, the sticky substance of the sundew setae on their forelegs aids in prey capture. Group ambushing permits early instars to capture insects that they then share or not depending on prey size and the hunger of the successful nymphs. Fourth and fifth instars, with greater needs, rather ambush solitarily on different host tree leaves, but attract siblings to share large preys. Communal feeding permits faster prey consumption, enabling small nymphs to return sooner to the shelter of their leaves. By improving the regularity of feeding for each nymph, it likely regulates nymphal development, synchronizing molting and subsequently limiting cannibalism. © 2013 Springer-Verlag Berlin Heidelberg.  
  Address IRD, Maladies Infectieuses et Vecteurs, Ecologie, Genetique, Evolution et Controle (UMR-IRD 224), IRD 01, BP 171, Bobo-Dioulasso, Burkina Faso  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00281042 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 30 October 2013; Source: Scopus; Coden: Natwa; doi: 10.1007/s00114-013-1091-9; Language of Original Document: English; Correspondence Address: Dejean, A.; Écologie des Forêts de Guyane, Campus Agronomique, BP 316, 97379 Kourou cedex, France; email: alain.dejean@wanadoo.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 508  
Permanent link to this record
 

 
Author Delnatte, C.; Meyer, J.-Y. url  openurl
  Title Plant introduction, naturalization, and invasion in French Guiana (South America) Type Journal Article
  Year 2012 Publication Biological Invasions Abbreviated Journal Biol. Invasions  
  Volume 14 Issue 5 Pages (up) 915-927  
  Keywords Acacia mangium; French Guiana; Invasive plant; Melaleuca quinquenervia; Naturalization; Savanna  
  Abstract Continental tropical ecosystems are generally viewed as less vulnerable to biological invasions than island ones. Their apparent resistance to invasive alien species is often attributed to their higher native biota diversity and complexity. However, with the increase of human activities and disturbances and the accelerate rate of introductions of plant species, these apparently resilient continental ecosystems are now experiencing alien plant naturalization and invasion events. In order to illustrate this emergent phenomenon, we compiled a list of all known introduced and naturalized plant species in French Guiana (Guiana Shield, South America). A total of 490 alien plants were recorded, about 34% of which are currently naturalized, mainly species belonging to the Acanthaceae and Fabaceae (Faboideae) in the Eudicotyledons, and Poaceae (grasses) and Arecaceae (palms) in the Monocotyledons. The coastal dry and wet savannas appears to be vulnerable to plant invasion (with 165 naturalized species, about 34% of the alien flora), especially by Acacia mangium (Mimosaceae) and Melaleuca quinquenervia (Myrtaceae) which are forming localized but dense monotypic stands. Both tree species, intentionnally introduced for reforestation, rehabilitation, and as garden ornamentals and have the potential to spread with increasing human disturbances The number and abundance of naturalized alien plants in the relatively undisturbed tropical lowland rainforests and savannas remains still very low. Therefore, surveillance, early detection, and eradication of potential plant invaders are crucial; moreover collaboration with neighbouring countries of the Guiana Shield is essential to prevent the introduction of potentially invasive species which are still not present in French Guiana. © 2011 Springer Science+Business Media B.V.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 13873547 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 2 May 2012; Source: Scopus; Coden: Blinf; doi: 10.1007/s10530-011-0129-1; Language of Original Document: English; Correspondence Address: Delnatte, C.; Herbier de Guyane, Institut de Recherche pour le Développement, B.P. 165, Cayenne, French Guiana; email: cesar_delnatte@yahoo.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 399  
Permanent link to this record
 

 
Author Leroy, C.; Carrias, J.-F.; Corbara, B.; Pélozuelo, L.; Dezerald, O.; Brouard, O.; Dejean, A.; Céréghino, R. url  openurl
  Title Mutualistic ants contribute to tank-bromeliad nutrition Type Journal Article
  Year 2013 Publication Annals of Botany Abbreviated Journal Ann. Bot.  
  Volume 112 Issue 5 Pages (up) 919-926  
  Keywords δ15N; Algae; ants; Bromeliaceae; food webs; Formicinae; French Guiana; mutualistic interactions; nitrogen; phytotelmata; stable isotopes; tank bromeliad  
  Abstract Background and AimsEpiphytism imposes physiological constraints resulting from the lack of access to the nutrient sources available to ground-rooted plants. A conspicuous adaptation in response to that lack is the phytotelm (plant-held waters) of tank-bromeliad species that are often nutrient-rich. Associations with terrestrial invertebrates also result in higher plant nutrient acquisition. Assuming that tank-bromeliads rely on reservoir-assisted nutrition, it was hypothesized that the dual association with mutualistic ants and the phytotelm food web provides greater nutritional benefits to the plant compared with those bromeliads involved in only one of these two associations.MethodsQuantitative (water volume, amount of fine particulate organic matter, predator/prey ratio, algal density) and qualitative variables (ant-association and photosynthetic pathways) were compared for eight tank- and one tankless-bromeliad morphospecies from French Guiana. An analysis was also made of which of these variables affect nitrogen acquisition (leaf N and δ15N).Key ResultsAll variables were significantly different between tank-bromeliad species. Leaf N concentrations and leaf δ15N were both positively correlated with the presence of mutualistic ants. The amount of fine particulate organic matter and predator/prey ratio had a positive and negative effect on leaf δ15N, respectively. Water volume was positively correlated with leaf N concentration whereas algal density was negatively correlated. Finally, the photosynthetic pathway (C3 vs. CAM) was positively correlated with leaf N concentration with a slightly higher N concentration for C 3-Tillandsioideae compared with CAM-Bromelioideae.ConclusionsThe study suggests that some of the differences in N nutrition between bromeliad species can be explained by the presence of mutualistic ants. From a nutritional standpoint, it is more advantageous for a bromeliad to use myrmecotrophy via its roots than to use carnivory via its tank. The results highlight a gap in our knowledge of the reciprocal interactions between bromeliads and the various trophic levels (from bacteria to large metazoan predators) that intervene in reservoir-assisted nutrition. © The Author 2013.  
  Address CNRS, UMR 8172, Écologie des Forêts de Guyane, Campus Agronomique, F-97379 Kourou cedex, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 03057364 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 9 September 2013; Source: Scopus; Coden: Anboa; doi: 10.1093/aob/mct147; Language of Original Document: English; Correspondence Address: Leroy, C.; IRD, UMR AMAP (BotAnique et BioinforMatique de l'Architecture des Plantes), Boulevard de la Lironde, TA A-51/PS2, F-34398 Montpellier Cedex 5, France; email: celine.leroy@ird.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 501  
Permanent link to this record
 

 
Author Roy, M.; Vasco-Palacios, A.; Geml, J.; Buyck, B.; Delgat, L.; Giachini, A.; Grebenc, T.; Harrower, E.; Kuhar, F.; Magnago, A.; Rinaldi, A.C.; Schimann, H.; Selosse, M.-A.; Sulzbacher, M.A.; Wartchow, F.; Neves, M.-A. url  doi
openurl 
  Title The (re)discovery of ectomycorrhizal symbioses in Neotropical ecosystems sketched in Florianópolis Type Journal Article
  Year 2017 Publication New Phytologist Abbreviated Journal New Phytologist  
  Volume 214 Issue 3 Pages (up) 920-923  
  Keywords barcoding; biodiversity; ectomycorrhizal fungi; ectomycorrhizal roots; ectomycorrhizal symbioses; fruitbodies; Neotropical ecosystems  
  Abstract  
  Address Departamento de Sistemática e Ecologia/CCEN, Laboratório de Morfo-Taxonomia Fúngica, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Cited By :1; Export Date: 23 April 2017 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 749  
Permanent link to this record
 

 
Author Dejean, A.; Leroy, C.; Corbara, B.; Cereghino, R.; Roux, O.; Herault, B.; Rossi, V.; Guerrero, R.J.; Delabie, J.H.C.; Orivel, J.; Boulay, R. openurl 
  Title A temporary social parasite of tropical plant-ants improves the fitness of a myrmecophyte Type Journal Article
  Year 2010 Publication Naturwissenschaften Abbreviated Journal Naturwissenschaften  
  Volume 97 Issue 10 Pages (up) 925-934  
  Keywords Ant-plant relationships; Biotic defense; Parasites of mutualisms; Temporary social parasites; Azteca; Cecropia  
  Abstract Myrmecophytes offer plant-ants a nesting place in exchange for protection from their enemies, particularly defoliators. These obligate ant-plant mutualisms are common model systems for studying factors that allow horizontally transmitted mutualisms to persist since parasites of ant-myrmecophyte mutualisms exploit the rewards provided by host plants whilst providing no protection in return. In pioneer formations in French Guiana, Azteca alfari and Azteca ovaticeps are known to be mutualists of myrmecophytic Cecropia (Cecropia ants). Here, we show that Azteca andreae, whose colonies build carton nests on myrmecophytic Cecropia, is not a parasite of Azteca-Cecropia mutualisms nor is it a temporary social parasite of A. alfari; it is, however, a temporary social parasite of A. ovaticeps. Contrarily to the two mutualistic Azteca species that are only occasional predators feeding mostly on hemipteran honeydew and food bodies provided by the host trees, A. andreae workers, which also attend hemipterans, do not exploit the food bodies. Rather, they employ an effective hunting technique where the leaf margins are fringed with ambushing workers, waiting for insects to alight. As a result, the host trees' fitness is not affected as A. andreae colonies protect their foliage better than do mutualistic Azteca species resulting in greater fruit production. Yet, contrarily to mutualistic Azteca, when host tree development does not keep pace with colony growth, A. andreae workers forage on surrounding plants; the colonies can even move to a non-Cecropia tree.  
  Address [Dejean, Alain; Leroy, Celine; Roux, Olivier; Orivel, Jerome] CNRS, F-97379 Kourou, France, Email: alain.dejean@wanadoo.fr  
  Corporate Author Thesis  
  Publisher SPRINGER Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-1042 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000282094100006 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 77  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: