toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Leroy, C.; Maes, A.Q.; Louisanna, E.; Séjalon-Delmas, N. url  doi
openurl 
  Title How significant are endophytic fungi in bromeliad seeds and seedlings? Effects on germination, survival and performance of two epiphytic plant species Type Journal Article
  Year 2019 Publication Fungal Ecology Abbreviated Journal Fungal Ecol.  
  Volume 39 Issue Pages (down) 296-306  
  Keywords Aechmea; Bromeliads; Endophytic fungi; Fusarium spp.; Germination; Survival; Trichoderma spp.; Vertical transmission  
  Abstract In bromeliads, nothing is known about the associations fungi form with seeds and seedling roots. We investigated whether fungal associations occur in the seeds and seedling roots of two epiphytic Aechmea species, and we explored whether substrate and fungal associations contribute to seed germination, and seedling survival and performance after the first month of growth. We found a total of 21 genera and 77 species of endophytic fungi in the seeds and seedlings for both Aechmea species by Illumina MiSeq sequencing. The fungal associations in seeds were found in the majority of corresponding seedlings, suggesting that fungi are transmitted vertically. Substrate quality modulated the germination and growth of seedlings, and beneficial endophytic fungi were not particularly crucial for germination but contributed positively to survival and growth. Overall, this study provides the first evidence of an endophytic fungal community in both the seeds and seedlings of two epiphytic bromeliads species that subsequently benefit plant growth. © 2019 Elsevier Ltd and British Mycological Society  
  Address INRA, UMR Ecologie des Forêts de Guyane (AgroParisTech, CIRAD, CNRS, INRA, Université de Guyane, Université des Antilles), Campus Agronomique, BP 316, Kourou cedex, F-97379, France  
  Corporate Author Thesis  
  Publisher Elsevier Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 17545048 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 867  
Permanent link to this record
 

 
Author Marino, N.A.C.; Céréghino, R.; Gilbert, B.; Petermann, J.S.; Srivastava, D.S.; de Omena, P.M.; Bautista, F.O.; Guzman, L.M.; Romero, G.Q.; Trzcinski, M.K.; Barberis, I.M.; Corbara, B.; Debastiani, V.J.; Dézerald, O.; Kratina, P.; Leroy, C.; MacDonald, A.A.M.; Montero, G.; Pillar, V.D.; Richardson, B.A.; Richardson, M.J.; Talaga, S.; Gonçalves, A.Z.; Piccoli, G.C.O.; Jocqué, M.; Farjalla, V.F. doi  openurl
  Title Species niches, not traits, determine abundance and occupancy patterns: A multi-site synthesis Type Journal Article
  Year 2020 Publication Global Ecology and Biogeography Abbreviated Journal Global Ecol. Biogeogr.  
  Volume 29 Issue 2 Pages (down) 295-308  
  Keywords abundance; environmental niche; functional distinctiveness; functional traits; metacommunity; niche breadth; niche position; occupancy; abundance; biodiversity; functional group; geographical distribution; invertebrate; Neotropical Region; niche breadth; Invertebrata  
  Abstract Aim: Locally abundant species are usually widespread, and this pattern has been related to properties of the niches and traits of species. However, such explanations fail to account for the potential of traits to determine species niches and often overlook statistical artefacts. Here, we examine how trait distinctiveness determines the abilities of species to exploit either common habitats (niche position) or a range of habitats (niche breadth) and how niche position and breadth, in turn, affect abundance and occupancy. We also examine how statistical artefacts moderate these relationships. Location: Sixteen sites in the Neotropics. Time period: 1993–2014. Major taxa studied: Aquatic invertebrates from tank bromeliads. Methods: We measured the environmental niche position and breadth of each species and calculated its trait distinctiveness as the average trait difference from all other species at each site. Then, we used a combination of structural equation models and a meta-analytical approach to test trait–niche relationships and a null model to control for statistical artefacts. Results: The trait distinctiveness of each species was unrelated to its niche properties, abundance and occupancy. In contrast, niche position was the main predictor of abundance and occupancy; species that used the most common environmental conditions found across bromeliads were locally abundant and widespread. Contributions of niche breadth to such patterns were attributable to statistical artefacts, indicating that effects of niche breadth might have been overestimated in previous studies. Main conclusions: Our study reveals the generality of niche position in explaining one of the most common ecological patterns. The robustness of this result is underscored by the geographical extent of our study and our control of statistical artefacts. We call for a similar examination across other systems, which is an essential task to understand the drivers of commonness across the tree of life. © 2019 John Wiley & Sons Ltd  
  Address Aquatic and Terrestrial Ecology, Royal Belgian Institute of Natural Sciences, Brussels, Belgium  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1466822x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 991  
Permanent link to this record
 

 
Author Ponton, S.; Flanagan, L.B.; Alstad, K.P.; Johnson, B.G.; Morgenstern, K.; Kljun, N.; Black, T.A.; Barr, A.G. openurl 
  Title Comparison of ecosystem water-use efficiency among Douglas-fir forest, aspen forest and grassland using eddy covariance and carbon isotope techniques Type Journal Article
  Year 2006 Publication Global Change Biology Abbreviated Journal Glob. Change Biol.  
  Volume 12 Issue 2 Pages (down) 294-310  
  Keywords boreal forest; conifer forest; eddy covariance; grassland; stable isotopes  
  Abstract Comparisons were made among Douglas-fir forest, aspen (broad leaf deciduous) forest and wheatgrass (C-3) grassland for ecosystem-level water-use efficiency (WUE). WUE was defined as the ratio of photosynthetic CO2 assimilation rate and evapotranspiration (ET) rate. The ET data measured by eddy covariance were screened so that they overwhelmingly represented transpiration. The three sites used in this comparison spanned a range of vegetation (plant functional) types and environmental conditions within western Canada. When compared in the relative order Douglas-fir (located on Vancouver Island, BC), aspen (northern Saskatchewan), grassland (southern Alberta), the sites demonstrated a progressive decline in precipitation and a general increase in maximum air temperature and atmospheric saturation deficit (D-max) during the mid-summer. The average (+/- SD) WUE at the grassland site was 2.6 +/- 0.7 mmol mol(-1), which was much lower than the average values observed for the two other sites (aspen: 5.4 +/- 2.3, Douglas-fir: 8.1 +/- 2.4). The differences in WUE among sites were primarily because of variation in ET. The highest maximum ET rates were approximately 5, 3.2 and 2.7 mm day(-1) for the grassland, aspen and Douglas-fir sites, respectively. There was a strong negative correlation between WUE and D-max for all sites. We also made seasonal measurements of the carbon isotope ratio of ecosystem respired CO2 (delta(R)) in order to test for the expected correlation between shifts in environmental conditions and changes to the ecosystem-integrated ratio of leaf intercellular to ambient CO2 concentration (c(i)/c(a)). There was a consistent increase in delta(R) values in the grassland, aspen forest and Douglas-fir forest associated with a seasonal reduction in soil moisture. Comparisons were made between WUE measured using eddy covariance with that calculated based on D and delta(R) measurements. There was excellent agreement between WUE values calculated using the two techniques. Our delta(R) measurements indicated that c(i)/c(a) values were quite similar among the Douglas-fir, aspen and grassland sites, despite large variation in environmental conditions among sites. This implied that the shorter-lived grass species had relatively high c(i)/c(a) values for the D of their habitat. By contrast, the longer-lived Douglas-fir trees were more conservative in water-use with lower c(i)/c(a) values relative to their habitat D. This illustrates the interaction between biological and environmental characteristics influencing ecosystem-level WUE. The strong correlation we observed between the two independent measurements of WUE, indicates that the stable isotope composition of respired CO2 is a useful ecosystem-scale tool to help study constraints to photosynthesis and acclimation of ecosystems to environmental stress.  
  Address Univ Lethbridge, Dept Biol Sci, Lethbridge, AB T1K 3M4, Canada, Email: larry.flanagan@uleth.ca  
  Corporate Author Thesis  
  Publisher BLACKWELL PUBLISHING Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1354-1013 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000234974900013 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 226  
Permanent link to this record
 

 
Author Tindo, M.; Kenne, M.; Dejean, A. openurl 
  Title Advantages of multiple foundress colonies in Belonogaster juncea juncea L.: greater survival and increased productivity Type Journal Article
  Year 2008 Publication Ecological Entomology Abbreviated Journal Ecol. Entomol.  
  Volume 33 Issue 2 Pages (down) 293-297  
  Keywords colony development; evolution of eusociality; fitness; Polistinae; productivity  
  Abstract 1. The ecological hypothesis predicts that multiple foundress colonies of social wasps may have a better survival rate and produce more brood per capita than single foundress colonies. With the aim of verifying if these characteristics exist in the primitively eusocial wasp species Belonogaster juncea juncea (L.), we monitored 49 foundations, including 13 single and 36 multiple foundress colonies, in Cameroon. 2. Multiple foundress colonies were significantly more successful than single foundress colonies in producing at least one adult. 3. The total productivity of the colonies increased significantly with the number of associated foundresses, but the productivity per capita did not. No single foundress colony reached the sexual phase, while eight (21.6%) multiple foundress colonies did. Males were produced in only five colonies, so that the sex ratio was biased in favour of females. 4. These results suggest that because of the strong ecological constraints on solitary nesting, survival and high colony productivity are two advantages of multiple foundress colonies in B. j. juncea. 5. The decreasing per capita productivity concomitant with an increasing number of females noted in this study illustrates once again Michener's paradox. The coefficient of variance of the per capita productivity significantly decreased with group size, as Wenzel and Pickering suggested in the model they created to explain the paradox. 6. Ecological factors may act in conjunction with other factors, such as genetic relatedness between associated foundresses, to promote joining behaviour in B. j. juncea.  
  Address [Tindo, Maurice; Kenne, Martin] Univ Douala, Fac Sci, BP Douala, Cameroon, Email: jtindo2000@yahoo.fr  
  Corporate Author Thesis  
  Publisher BLACKWELL PUBLISHING Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0307-6946 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000253710000017 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 142  
Permanent link to this record
 

 
Author Bréchet, L.; Ponton, S.; Alméras, T.; Bonal, D.; Epron, D. url  openurl
  Title Does spatial distribution of tree size account for spatial variation in soil respiration in a tropical forest? Type Journal Article
  Year 2011 Publication Plant and Soil Abbreviated Journal Plant Soil  
  Volume 347 Issue 1 Pages (down) 293-303  
  Keywords Forest structure; Litterfall; Root mass; Soil respiration; Spatial variation; Tropical forest; aboveground production; forest inventory; litterfall; range size; size distribution; soil respiration; spatial distribution; spatial variation; stand dynamics; tropical forest  
  Abstract We explored the relationship between soil processes, estimated through soil respiration (Rsoil), and the spatial variation in forest structure, assessed through the distribution of tree size, in order to understand the determinism of spatial variations in Rsoil in a tropical forest. The influence of tree size was examined using an index (Ic) calculated for each tree as a function of (1) the trunk cross section area and (2) the distance from the measurement point. We investigated the relationships between Ic and litterfall, root mass and Rsoil, respectively. Strong significant relationships were found between Ic and both litterfall and root mass. Rsoil showed a large range of variations over the 1-ha experimental plot, from 1. 5 to 12. 6 gC m-2 d-1. The best relationship between Ic and Rsoil only explained 17% of the spatial variation in Rsoil. These results support the assumption that local spatial patterns in litter production and root mass depend on tree distribution in tropical forests. Our study also emphasizes the modest contribution of tree size distribution-which is mainly influenced by the presence of the biggest trees (among the large range size of the inventoried trees greater than 10 cm diameter at 1. 30 m above ground level or at 0. 5 m above the buttresses)-in explaining spatial variations in Rsoil. © 2011 Springer Science+Business Media B.V.  
  Address Nancy Université, Université Henri Poincaré, UMR 1137, Ecologie et Ecophysiologie Forestières, Faculté des Sciences, 54500 Vandoeuvre les Nancy, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0032079x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 21 October 2011; Source: Scopus; Coden: Plsoa; doi: 10.1007/s11104-011-0848-1; Language of Original Document: English; Correspondence Address: Bréchet, L.; INRA, UMR Ecologie des Forêts de Guyane, Campus Agronomique, BP 709, 97387 Kourou cedex, French Guiana; email: laetitiabrechet@yahoo.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 345  
Permanent link to this record
 

 
Author Fu, Z.; Gerken, T.; Bromley, G.; Araújo, A.; Bonal, D.; Burban, B.; Ficklin, D.; Fuentes, J.D.; Goulden, M.; Hirano, T.; Kosugi, Y.; Liddell, M.; Nicolini, G.; Niu, S.; Roupsard, O.; Stefani, P.; Mi, C.; Tofte, Z.; Xiao, J.; Valentini, R.; Wolf, S.; Stoy, P.C. url  doi
openurl 
  Title The surface-atmosphere exchange of carbon dioxide in tropical rainforests: Sensitivity to environmental drivers and flux measurement methodology Type Journal Article
  Year 2018 Publication Agricultural and Forest Meteorology Abbreviated Journal Agric. For. Meterol.  
  Volume 263 Issue Pages (down) 292-307  
  Keywords Climate variability; Ecosystem respiration; Eddy covariance; Gross primary productivity; Net ecosystem carbon dioxide exchange; Tropical rainforest; acclimation; air temperature; anthropogenic effect; atmosphere-biosphere interaction; biodiversity; carbon flux; climate change; Cmip; eddy covariance; environmental change; flux measurement; methodology; net ecosystem exchange; net ecosystem production; radiative forcing; rainforest; sensitivity analysis; tropical environment  
  Abstract Tropical rainforests play a central role in the Earth system by regulating climate, maintaining biodiversity, and sequestering carbon. They are under threat by direct anthropogenic impacts like deforestation and the indirect anthropogenic impacts of climate change. A synthesis of the factors that determine the net ecosystem exchange of carbon dioxide (NEE) at the site scale across different forests in the tropical rainforest biome has not been undertaken to date. Here, we study NEE and its components, gross ecosystem productivity (GEP) and ecosystem respiration (RE), across thirteen natural and managed forests within the tropical rainforest biome with 63 total site-years of eddy covariance data. Our results reveal that the five ecosystems with the largest annual gross carbon uptake by photosynthesis (i.e. GEP > 3000 g C m−2 y-1) have the lowest net carbon uptake – or even carbon losses – versus other study ecosystems because RE is of a similar magnitude. Sites that provided subcanopy CO2 storage observations had higher average magnitudes of GEP and RE and lower average magnitudes of NEE, highlighting the importance of measurement methodology for understanding carbon dynamics in ecosystems with characteristically tall and dense vegetation. A path analysis revealed that vapor pressure deficit (VPD) played a greater role than soil moisture or air temperature in constraining GEP under light saturated conditions across most study sites, but to differing degrees from -0.31 to -0.87 μmol CO2 m−2 s-1 hPa-1. Climate projections from 13 general circulation models (CMIP5) under the representative concentration pathway that generates 8.5 W m−2 of radiative forcing suggest that many current tropical rainforest sites on the lower end of the current temperature range are likely to reach a climate space similar to present-day warmer sites by the year 2050, warmer sites will reach a climate not currently experienced, and all forests are likely to experience higher VPD. Results demonstrate the need to quantify if and how mature tropical trees acclimate to heat and water stress, and to further develop flux-partitioning and gap-filling algorithms for defensible estimates of carbon exchange in tropical rainforests. © 2018 Elsevier B.V.  
  Address Department of Environmental Systems Science, ETH Zurich, Zurich, 8092, Switzerland  
  Corporate Author Thesis  
  Publisher Elsevier B.V. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 01681923 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 12 November 2018; Coden: Afmee; Correspondence Address: Stoy, P.C.; Department of Land Resources and Environmental Sciences, Montana State UniversityUnited States; email: paul.stoy@montana.edu; Funding details: ANR-10-LABX-25-01; Funding details: U.S. Department of Energy, DOE, SC0011097; Funding details: Agence Nationale de la Recherche, ANR; Funding details: 1702029; Funding details: 1552976; Funding details: Graduate School, Ohio State University; Funding details: National Natural Science Foundation of China, NSFC, 31625006; Funding text 1: PCS and JDF acknowledges funding support from the U.S. Department of Energy as part of the GoAmazon project (Grant SC0011097 ). PCS additionally acknowledges the U.S. National Science Foundation grants 1552976 and 1702029 , and The Graduate School at Montana State University . ZF is supported by the China Scholarship Council and National Natural Science Foundation of China ( 31625006 ). This work used eddy covariance data acquired and shared by the FLUXNET community, including the AmeriFlux, AfriFlux, AsiaFlux, CarboAfrica, LBA, and TERN- OzFlux networks. The FLUXNET eddy covariance data processing and harmonization was carried out by the ICOS Ecosystem Thematic Center, AmeriFlux Management Project and Fluxdata project of FLUXNET, with the support of CDIAC, and the OzFlux, ChinaFlux and AsiaFlux offices. The Guyaflux program belongs to the SOERE F-ORE-T which is supported annually by Ecofor, Allenvi and the French national research infrastructure ANAEE-F. The Guyaflux program also received support from the “Observatoire du Carbone en Guyane” and an “investissement d'avenir” grant from the Agence Nationale de la Recherche (CEBA, ref ANR-10-LABX-25-01). Funding for the site PA-SPn was provided by the North-South Centre of ETH Zurich. We acknowledge the World Climate Research Programme's Working Group on Coupled Modeling for the CMIP and thank the climate modeling groups for producing and making available their model output. For CMIP, the U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. Angela Tang and Taylor Rodenburg provided valuable comments to earlier drafts of this manuscript. We thank Dr. Tim Hill and two anonymous reviewers for their constructive comments on the manuscript.; References: Acevedo, O.C., Moraes, O.L.L., Degrazia, G.A., Fitzjarrald, D.R., Manzi, A.O., Campos, J.G., Is friction velocity the most appropriate scale for correcting nocturnal carbon dioxide fluxes? (2009) Agric. For. Meteorol., 149, pp. 1-10; Aguilos, M., Hérault, B., Burban, B., Wagner, F., Bonal, D., What drives long-term variations in carbon flux and balance in a tropical rainforest in French Guiana? Agric (2018) For. Meteorol., 253-254, pp. 114-123; Ahlström, A., Raupach, M.R., Schurgers, G., Smith, B., Arneth, A., Jung, M., Reichstein, M., Jain, A.K., The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink (2015) Science, 348 (80), pp. 895-899; Aiba, S.I., Kitayama, K., Structure, composition and species diversity in an altitude-substrate matrix of rain forest tree communities on Mount Kinabalu (1999) Borneo. Plant Ecol., 140, pp. 139-157; Andreae, M.O., Artaxo, P., Brandão, C., Carswell, F.E., Ciccioli, P., da Costa, A.L., Culf, A.D., Waterloo, M.J., Biogeochemical cycling of carbon, water, energy, trace gases, and aerosols in Amazonia: the LBA-EUSTACH experiments (2002) J. Geophys. Res., 107, p. 8066; Andreae, M.O., Acevedo, O.C., Araùjo, A., Artaxo, P., Barbosa, C.G.G., Barbosa, H.M.J., Brito, J., Yáñez-Serrano, A.M., The Amazon Tall Tower Observatory (ATTO): overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols (2015) Atmos. Chem. Phys., 15, pp. 10723-10776; Araújo, A.C., Nobre, A.D., Kruijt, B., Elbers, J.A., Dallarosa, R., Stefani, P., Von Randow, C., Kabat, P., Comparative measurements of carbon dioxide fluxes from two nearby towers in a central Amazonian rainforest: The Manaus LBA site (2002) J. Geophys. Res., 107, p. 8090; Asner, G.P., Anderson, C.B., Martin, R.E., Tupayachi, R., Knapp, D.E., Sinca, F., Landscape biogeochemistry reflected in shifting distributions of chemical traits in the Amazon forest canopy (2015) Nat. Geosci., 8, pp. 567-573; Asner, G.P., Martin, R.E., Knapp, D.E., Tupayachi, R., Anderson, C.B., Sinca, F., Vaughn, N.R., Llactayo, W., Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation (2017) Science, 355 (80), pp. 385-389; Avissar, R., Werth, D., Global hydroclimatological teleconnections resulting from tropical deforestation (2005) J. Hydrometeorol., 6, pp. 134-145; Baccini, A., Walker, W., Carvalho, L., Farina, M., Sulla-Menashe, D., Houghton, R.A., Tropical forests are a net carbon source based on aboveground measurements of gain and loss (2017) Science, 358 (80), pp. 230-234; Belelli Marchesini, L., Bombelli, A., Chiti, T., Consalvo, C., Forgione, A., Grieco, E., Mazzenga, F., Valentini, R., Ankasa flux tower: a new research facility for the study of the carbon cycle in a primary tropical forest in Africa (2008) Proceedings of the Open Science Conference on Africa and Carbon Cycle: The CarboAfrica Project; Beringer, J., Hutley, L.B., McHugh, I., Arndt, S.K., Campbell, D., Cleugh, H.A., Cleverly, J., Wardlaw, T., An introduction to the Australian and New Zealand flux tower network – OzFlux (2016) Biogeosciences, 13, pp. 5895-5916; Bonal, D., Bosc, A., Ponton, S., Goret, J.-Y.J.Y., Burban, B.T., Gross, P., Bonnefond, J.M.J.-M., Granier, A., Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana (2008) Glob. Chang. Biol., 14, pp. 1917-1933; Borma, L.S., da Rocha, H.R., Cabral, O.M., von Randow, C., Collicchio, E., Kurzatkowski, D., Brugger, P.J., Artaxo, P., Atmosphere and hydrological controls of the evapotranspiration over a floodplain forest in the Bananal Island region, Amazonia (2009) J. Geophys. Res. Biogeosci., 114; Bradford, M.G., Metcalfe, D.J., Ford, A., Liddell, M.J., McKeown, A., Floristics, stand structure and aboveground biomass of a 25-ha rainforest plot in the Wet Tropics of Australia (2014) J. Trop. For. Sci., pp. 543-553; Braga, N., da, S., Vitória, A.P., Souza, G.M., Barros, C.F., Freitas, L., Weak relationships between leaf phenology and isohydric and anisohydric behavior in lowland wet tropical forest trees (2016) Biotropica, 48, pp. 453-464; Carswell, F.E., Costa, A.L., Palheta, M., Malhi, Y., Meir, P., Costa, J.D.P.R., Ruivo, M.D.L., Grace, J., Seasonality in CO2 and H2O flux at an eastern Amazonian rain forest (2002) J. Geophys. Res. D Atmos., p. 107; Chambers, J.Q., Tribuzy, E.S., Toledo, L.C., Crispim, B.F., Higuchi, N., dos Santos, J., Araújo, A.C., Trumbore, S.E., Respiration from a tropical forest ecosystem: partitioning of sources and low carbon use efficiency (2004) Ecol. Appl., 14, pp. 72-88; Chambers, J., Davies, S., Koven, C., Kueppers, L., Leung, R., McDowell, N., Norby, R., Rogers, A., Next Generation Ecosystem Experiment (NGEE) Tropics. US DOE NGEE Trop. white paper. (2014); Chiti, T., Certini, G., Grieco, E., Valentini, R., The role of soil in storing carbon in tropical rainforests: the case of Ankasa Park, Ghana (2010) Plant Soil, 331, pp. 453-461; Cleveland, C.C., Wieder, W.R., Reed, S.C., Townsend, A.R., Experimental drought in a tropical rain forest increases soil carbon dioxide losses to the atmosphere (2010) Ecology, 91, pp. 2313-2323; Cleveland, C.C., Townsend, A.R., Taylor, P., Alvarez-Clare, S., Bustamante, M.M.C., Chuyong, G., Dobrowski, S.Z., Wieder, W.R., Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis (2011) Ecol. Lett.; Cusack, D.F., Chou, W.W., Yang, W.H., Harmon, M.E., Silver, W.L., Controls on long-term root and leaf litter decomposition in neotropical forests (2009) Glob. Chang. Biol., 15, pp. 1339-1355; da Rocha, H.R., Manzi, A.O., Cabral, O.M., Miller, S.D., Goulden, M.L., Saleska, S.R., Coupe, N.R., Maia, J.F., Patterns of water and heat flux across a biome gradient from tropical forest to savanna in Brazil (2009) J. Geophys. Res. Biogeosci., 114. , G00B12; Dargie, G.C., Lewis, S.L., Lawson, I.T., Mitchard, E.T.A., Page, S.E., Bocko, Y.E., Ifo, S.A., Age, extent and carbon storage of the central Congo Basin peatland complex (2017) Nature, 542, pp. 86-89; de Araújo, A.C., Dolman, A.J., Waterloo, M.J., Gash, J.H.C., Kruijt, B., Zanchi, F.B., de Lange, J.M.E., Backer, J., The spatial variability of CO2 storage and the interpretation of eddy covariance fluxes in central Amazonia (2010) Agric. For. Meteorol., 150, pp. 226-237; Dixon, R.K., Solomon, A.M., Brown, S., Houghton, R.A., Trexier, M.C., Wisniewski, J., Carbon pools and flux of global forest ecosystems (1994) Science, 263 (80), pp. 185-190; Fisher, R.A., Williams, M., Do Vale, R.L., Da Costa, A.L., Meir, P., Evidence from Amazonian forests is consistent with isohydric control of leaf water potential (2006) Plant Cell Environ., 29, pp. 151-165; Foley, J.A., DeFries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Chapin, F.S., Snyder, P.K., Global consequences of land use (2005) Science, 309, pp. 570-574; Fu, Z., Dong, J., Zhou, Y., Stoy, P.C., Niu, S., Long term trend and interannual variability of land carbon uptake—the attribution and processes (2017) Environ. Res. Lett., 12, p. 14018; Fuentes, J.D., Chamecki, M., dos Santos, R.M.N., Von Randow, C., Stoy, P.C., Katul, G., Fitzjarrald, D., Yañez-Serrano, A.M., Linking meteorology, turbulence, and air chemistry in the amazon rain forest (2016) Bull. Am. Meteorol. Soc., 97, pp. 2329-2342; Gerken, T., Chamecki, M., Fuentes, J.D., Air-parcel residence times within forest canopies (2017) Boundary-Layer Meteorol., 165, pp. 29-54; Giardina, F., Konings, A.G., Kennedy, D., Alemohammad, S.H., Oliveira, R.S., Uriarte, M., Gentine, P., Tall Amazonian forests are less sensitive to precipitation variability (2018) Nat. Geosci., 11, pp. 405-409; Gibson, L., Lee, T.M., Koh, L.P., Brook, B.W., Gardner, T.A., Barlow, J., Peres, C.A., Sodhi, N.S., Primary forests are irreplaceable for sustaining tropical biodiversity (2011) Nature, 478, pp. 378-381; Goulden, M.L., Miller, S.D., Da Rocha, H.R., Nocturnal cold air drainage and pooling in a tropical forest (2006) J. Geophys. Res. Atmos., p. 111; Grace, J., Lloyd, J., Mcintyre, J., Miranda, A., Meir, P., Miranda, H., Moncrieff, J., Gash, J., Fluxes of carbon dioxide and water vapour over an undisturbed tropical forest in south-west Amazonia (1995) Glob. Chang. Biol., 1, pp. 1-12; Grace, J., Malhi, Y., Lloyd, J., McIntyre, J., Miranda, A.C., Meir, P., Miranda, H.S., The use of eddy covariance to infer the net carbon dioxide uptake of Brazilian rain forest (1996) Glob. Chang. Biol., 2, pp. 209-217; Grace, J., Nagy, L., Forsberg, B.R., Artaxo, P., The Amazon carbon balance: an evaluation of methods and results (2016) Interactions Between Biosphere, Atmosphere and Human Land Use in the Amazon Basin., pp. 79-100. , Springer Berlin Heidelberg; Hall, C.A.S., Tian, H., Qi, Y., Pontius, G., Cornell, J., Modelling spatial and temporal patterns of tropical land use change (1995) J. Biogeogr., 22, pp. 753-757; Hayek, M.N., Wehr, R., Longo, M., Hutyra, L.R., Wiedemann, K., Munger, J.W., Bonal, D., Wofsy, S.C., A novel correction for biases in forest eddy covariance carbon balance (2018) Agric. For. Meteorol., 250-251, pp. 90-101; Hirano, T., Segah, H., Harada, T., Limin, S., June, T., Hirata, R., Osaki, M., Carbon dioxide balance of a tropical peat swamp forest in Kalimantan, Indonesia (2007) Glob. Chang. Biol., 13, pp. 412-425; Hirano, T., Jauhiainen, J., Inoue, T., Takahashi, H., Controls on the carbon balance of tropical peatlands (2008) Ecosystems, 12, pp. 873-887; Hirano, T., Segah, H., Kusin, K., Limin, S., Takahashi, H., Osaki, M., Effects of disturbances on the carbon balance of tropical peat swamp forests (2012) Glob. Change Biol., 18, pp. 3410-3422; Huete, A.R., Didan, K., Shimabukuro, Y.E., Ratana, P., Saleska, S.R., Hutyra, L.R., Yang, W., Myneni, R., Amazon rainforests green‐up with sunlight in dry season (2006) Geophys. Res. Lett., 33. , L06405; Huete, A.R., Restrepo-Coupe, N., Ratana, P., Didan, K., Saleska, S.R., Ichii, K., Panuthai, S., Gamo, M., Multiple site tower flux and remote sensing comparisons of tropical forest dynamics in Monsoon Asia (2008) Agric. For. Meteorol., 148, pp. 748-760; Hutyra, L.R., Munger, J.W., Saleska, S.R., Gottlieb, E., Daube, B.C., Dunn, A.L., Amaral, D.F., Wofsy, S.C., Seasonal controls on the exchange of carbon and water in an Amazonian rain forest (2007) J. Geophys. Res. Biogeosci., 112; Hutyra, L.R., Munger, J.W., Hammond-Pyle, E., Saleska, S.R., Restrepo-Coupe, N., Daube, B.C., de Camargo, P.B., Wofsy, S.C., Resolving systematic errors in estimates of net ecosystem exchange of CO2 and ecosystem respiration in a tropical forest biome (2008) Agric. For. Meteorol., 148, pp. 1266-1279; Inoue, Y., Ichie, T., Kenzo, T., Yoneyama, A., Kumagai, T., Nakashizuka, T., Effects of rainfall exclusion on leaf gas exchange traits and osmotic adjustment in mature canpopy trees of Dryobalanops aromatica (Sipterocarpaceae) in a Malaysian tropical rain forest (2016) J. Trop. Pediatr., pp. 1-11; Jocher, G., Ottosson Löfvenius, M., De Simon, G., Hörnlund, T., Linder, S., Lundmark, T., Marshall, J., Peichl, M., Apparent winter CO2 uptake by a boreal forest due to decoupling (2017) Agric. For. Meteorol., 232, pp. 23-34; Kiew, F., Hirata, R., Hirano, T., Wong, G.X., Aeries, E.B., Musin, K.K., Waili, J.W., Melling, L., CO2 balance of a secondary tropical peat swamp forest in Sarawak, Malaysia (2018) Agric. For. Meteorol., 248, pp. 494-501; Kim, D.-H., Sexton, J.O., Townshend, J.R., Accelerated deforestation in the humid tropics from the 1990s to the 2000s (2015) Geophys. Res. Lett., 42, pp. 3495-3501; Klein, T., The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours (2014) Funct. Ecol., 28, pp. 1313-1320; Konings, A.G., Gentine, P., Global variations in ecosystem‐scale isohydricity (2016) Glob. Change Biol.; Körner, C., Leaf diffusive conductances in the major vegetation types of the globe (1995) Ecophysiology of Photosynthesis, pp. 463-490. , Springer; Kosugi, Y., Takanashi, S., Ohkubo, S., Matsuo, N., Tani, M., Mitani, T., Tsutsumi, D., Nik, A.R., CO2 exchange of a tropical rainforest at Pasoh in Peninsular Malaysia (2008) Agric. For. Meteorol., 148, pp. 439-452; Kosugi, Y., Takanashi, S., Tani, M., Ohkubo, S., Matsuo, N., Itoh, M., Noguchi, S., Nik, A.R., Effect of inter-annual climate variability on evapotranspiration and canopy CO2 exchange of a tropical rainforest in Peninsular Malaysia (2012) J. For. Res., 17, pp. 227-240; Kruijt, B., Elbers, J.A., Von Randow, C., Araujo, A.C., Oliveira, P.J., Culf, A., Manzi, A.O., Moors, E.J., The robustness of eddy correlation fluxes for Amazon rain forest conditions (2004) Ecol. Appl., 14, pp. 101-113; Kumagai, T., Porporato, A., Strategies of a Bornean tropical rainforest water use as a function of rainfall regime: isohydric or anisohydric? (2012) Plant Cell Environ., 35, pp. 61-71; Kutsch, W.L., Herbst, M., Vanselow, R., Hummelshøj, P., Jensen, N.O., Kappen, L., Stomatal acclimation influences water and carbon fluxes of a beech canopy in northern Germany (2001) Basic Appl. Ecol., 2, pp. 265-281; Lasslop, G., Reichstein, M., Papale, D., Richardson, A.D., Arneth, A., Barr, A.G., Stoy, P.C., Wohlfahrt, G., Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation (2010) Glob. Chang. Biol., 16, pp. 187-208; Levine, N.M., Zhang, K., Longo, M., Baccini, A., Phillips, O.L., Lewis, S.L., Alvarez-Dávila, E., Moorcroft, P.R., Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change (2016) Proc. Natl. Acad. Sci., 113, pp. 793-797; Lewis, S.L., Brando, P.M., Phillips, O.L., van der Heijden, G.M.F., Nepstad, D., The 2010 amazon drought (2011) Science, 331 (80), p. 554; Loescher, H.W., Oberbauer, S.F., Gholz, H.L., Clark, D.B., Environmental controls on net ecosystem-level carbon exchange and productivity in a Central American tropical wet forest (2003) Glob. Chang. Biol., 9, p. 396; Lopes, A.P., Nelson, B.W., Wu, J., Graça, P.M.L., de, A., Tavares, J.V., Prohaska, N., Saleska, S.R., Leaf flush drives dry season green-up of the Central Amazon (2016) Remote Sens. Environ., 182, pp. 90-98; Malhi, Y., Nobre, A.D., Grace, J., Kruijt, B., Pereira, M.G.P., Culf, A., Scott, S., Carbon dioxide transfer over a Central Amazonian rain forest (1998) J. Geophys. Res., 103, pp. 31593-31612; Marchin, R.M., Broadhead, A.A., Bostic, L.E., Dunn, R.R., Hoffmann, W.A., Stomatal acclimation to vapour pressure deficit doubles transpiration of small tree seedlings with warming (2016) Plant Cell Environ., 39, pp. 2221-2234; Martens, C.S., Shay, T.J., Mendlovitz, H.P., Matross, D.M., Saleska, S.R., Wofsy, S.C., Stephen Woodward, W., Crill, P.M., Radon fluxes in tropical forest ecosystems of Brazilian Amazonia: night‐time CO2 net ecosystem exchange derived from radon and eddy covariance methods (2004) Glob. Chang. Biol., 10, pp. 618-629; Martinez-Vilalta, J., Poyatos, R., Aguade, D., Retana, J., Mencuccini, M., A new look at water transport regulation in plants (2014) New Phytol., 204, pp. 105-115; Matheny, A.M., Mirfenderesgi, G., Bohrer, G., Trait-based representation of hydrological functional properties of plants in weather and ecosystem models (2017) Plant Divers., 39, pp. 1-12; Meir, P., Grace, J., Miranda, A.C., Leaf respiration in two tropical rainforests: constraints on physiology by phosphorus, nitrogen and temperature (2001) Funct. Ecol., 15, pp. 378-387; Miller, S.D., Goulden, M.L., Menton, M.C., da Rocha, H.R., de Freitas, H.C., Silva, E., Figueira, A.M., de Sousa, C.A.D., Biometric and micrometeorological measurements of tropical forest carbon balance (2004) Ecol. Appl., 14, pp. 114-126; Mitchard, E.T.A., The tropical forest carbon cycle and climate change (2018) Nature, 559, pp. 527-534; Navarro, M.N.V., Jourdan, C., Sileye, T., Braconnier, S., Mialet-Serra, I., Saint-Andre, L., Dauzat, J., Roupsard, O., Fruit development, not GPP, drives seasonal variation in NPP in a tropical palm plantation (2008) Tree Physiol., 28, pp. 1661-1674; Nepstad, D.C., Moutinho, P., Dias‐Filho, M.B., Davidson, E., Cardinot, G., Markewitz, D., Figueiredo, R., Schwalbe, K., The effects of partial throughfall exclusion on canopy processes, aboveground production, and biogeochemistry of an Amazon forest (2002) J. Geophys. Res., 107. , 8085; Norby, R.J., De Kauwe, M.G., Domingues, T.F., Duursma, R.A., Ellsworth, D.S., Goll, D.S., Lapola, D.M., Zaehle, S., Model – data synthesis for the next generation of forest free-air CO2 enrichment (FACE) experiments (2015) New Phytol., pp. 17-28; Novick, K., Oren, R., Stoy, P.C., Juang, J.Y., Siqueira, M., Katul, G., The relationship between reference canopy conductance and simplified hydraulic architecture (2009) Adv. Water Resour., 32, pp. 809-819; Novick, K.A., Ficklin, D.L., Stoy, P.C., Williams, C.A., Bohrer, G., Oishi, A.C., Papuga, S.A., Phillips, R.P., The increasing importance of atmospheric demand for ecosystem water and carbon fluxes (2016) Nat. Clim. Change, 6, pp. 1023-1027; Oberbauer, S.F., Loescher, H.W., Clark, D.B., Effects of climate factors on daytime carbon exchange from an old growth forest in Costa rica (2000) Selbyana, pp. 66-73; Oren, R., Sperry, J.S., Katul, G.G., Pataki, D.E., Ewers, B.E., Phillips, N., Schäfer, K.V.R., Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit (1999) Plant Cell Environ., 22, pp. 1515-1526; Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., Hayes, D., A large and persistent carbon sink in the world's forests (2011) Science, 333 (80). , 988 LP-993; Paoli, G.D., Curran, L.M., Slik, J.W.F., Soil nutrients affect spatial patterns of aboveground biomass and emergent tree density in southwestern Borneo (2008) Oecologia, 155, pp. 287-299; Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W., Longdoz, B., Yakir, D., Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation (2006) Biogeosciences, 3, pp. 571-583; Pau, S., Detto, M., Kim, Y., Still, C.J., Tropical forest temperature thresholds for gross primary productivity (2018) Ecosphere, 9; Pavlick, R., Drewry, D.T., Bohn, K., Reu, B., Kleidon, A., The Jena Diversity-Dynamic Global Vegetation Model (JeDi-DGVM): a diverse approach to representing terrestrial biogeography and biogeochemistry based on plant functional trade-offs (2013) Biogeosciences, 10, pp. 4137-4177; Phillips, O.L., Malhi, Y., Higuchi, N., Laurance, W.F., Núñez, P.V., Vásquez, R.M., Laurance, S.G., Grace, J., Changes in the carbon balance of tropical forests: Evidence from long-term plots (1998) Science, 282 (80). , 439 LP-442; Phillips, O.L., Aragão, L.E.O.C., Lewis, S.L., Fisher, J.B., Lloyd, J., López-González, G., Malhi, Y., Torres-Lezama, A., Drought sensitivity of the Amazon Rainforest (2009) Science, 323 (80), pp. 1344-1347; Powell, T.L., Wheeler, J.K., de Oliveira, A.A.R., da Costa, A.C.L., Saleska, S.R., Meir, P., Moorcroft, P.R., Differences in xylem and leaf hydraulic traits explain differences in drought tolerance among mature Amazon rainforest trees (2017) Glob. Change Biol.; Raich, J.W., Russell, A.E., Vitousek, P.M., Primary productivity and ecosystem development along an elevational gradient on Mauna Loa, Hawai'i (1997) Ecology, 78, pp. 707-721; Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Valentini, R., On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm (2005) Glob. Change Biol., 11, pp. 1424-1439; Restrepo-Coupe, N., da Rocha, H.R., Hutyra, L.R., da Araujo, A.C., Borma, L.S., Christoffersen, B., Cabral, O.M.R., Saleska, S.R., What drives the seasonality of photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower measurements from the Brasil flux network (2013) Agric. For. Meteorol.; Rice, W.R., Analyzing tables of statistical tests (1989) Evolution (N. Y.), 43, pp. 223-225; Richardson, A.D., Braswell, B.H., Hollinger, D.Y., Jenkins, J.P., Ollinger, S.V., Near-surface remote sensing of spatial and temporal variation in canopy phenology (2009) Ecol. Appl., 19, pp. 1417-1428; Roderick, M.L., Farquhar, G.D., The cause of decreased Pan evaporation over the past 50 years (2002) Science, 298 (80), pp. 1410-1411; Roupsard, O., Bonnefond, J.-M., Irvine, M., Berbigier, P., Nouvellon, Y., Dauzat, J., Taga, S., Bouillet, J.-P., Partitioning energy and evapo-transpiration above and below a tropical palm canopy (2006) Agric. For. Meteorol., 139, pp. 252-268; Saleska, S.R., Miller, S.D., Matross, D.M., Goulden, M., Wofsy, S., da Rocha, H.R., de Camargo, P.B., Silva, H., Carbon in Amazon forests: unexpected seasonal fluxes and disturbance-induced losses (2003) Science, 302 (80), pp. 1554-1557; Saleska, S.R., Didan, K., Huete, A.R., Da Rocha, H.R., Amazon forests green-up during 2005 drought (2007) Science, 318 (80), p. 612; Saleska, S., Da Rocha, H., Kruijt, B., Nobre, A., Ecosystem carbon fluxes and Amazonian forest metabolism (2009) Amazonia Glob. Change, pp. 389-407; Saleska, S.R., Wu, J., Guan, K., Araujo, A.C., Huete, A., Nobre, A.D., Restrepo-Coupe, N., Dry-season greening of Amazon forests (2016) Nature, 531, pp. E4-E5; Salinas, N., Malhi, Y., Meir, P., Silman, M., Roman Cuesta, R., Huaman, J., Salinas, D., Farfan, F., The sensitivity of tropical leaf litter decomposition to temperature: results from a large-scale leaf translocation experiment along an elevation gradient in Peruvian forests (2011) New Phytol., 189, pp. 967-977; Santana, R.A., Dias-Júnior, C.Q., da Silva, J.T., Fuentes, J.D., do Vale, R.S., Alves, E.G., dos Santos, R.M.N., Manzi, A.O., Air turbulence characteristics at multiple sites in and above the Amazon rainforest canopy (2018) Agric. For. Meteorol., 260-261, pp. 41-54; Santos, D.M., Acevedo, O.C., Chamecki, M., Fuentes, J.D., Gerken, T., Stoy, P.C., Temporal scales of the nocturnal flow within and above a forest canopy in Amazonia (2016) Boundary-Layer Meteorol., pp. 1-26; Siddiq, Z., Chen, Y.-J., Zhang, Y.-J., Zhang, J.-L., Cao, K.-F., More sensitive response of crown conductance to VPD and larger water consumption in tropical evergreen than in deciduous broadleaf timber trees (2017) Agric. For. Meteorol., 247, pp. 399-407; Sulman, B.N., Roman, D.T., Yi, K., Wang, L., Phillips, R.P., Novick, K.A., High atmospheric demand for water can limit forest carbon uptake and transpiration as severely as dry soil (2016) Geophys. Res. Lett., 43, pp. 9686-9695; Swann, A.L.S., Hoffman, F.M., Koven, C.D., Randerson, J.T., Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity (2016) Proc. Natl. Acad. Sci. U. S. A., 113, pp. 10019-10024; Taylor, K.E., Stouffer, R.J., Meehl, G.A., An overview of CMIP5 and the experiment design (2012) Bull. Am. Meteorol. Soc.; Taylor, P.G., Cleveland, C.C., Wieder, W.R., Sullivan, B.W., Doughty, C.E., Dobrowski, S.Z., Townsend, A.R., Temperature and rainfall interact to control carbon cycling in tropical forests (2017) Ecol. Lett., 20, pp. 779-788; Thomas, C.K., Martin, J.G., Law, B.E., Davis, K., Toward biologically meaningful net carbon exchange estimates for tall, dense canopies: multi-level eddy covariance observations and canopy coupling regimes in a mature Douglas-fir forest in Oregon (2013) Agric. For. Meteorol., 173, pp. 14-27; Tóta, J., Fitzjarrald, D.R., da Silva Dias, M.A.F., Amazon rainforest exchange of carbon and subcanopy air flow: manaus LBA Site—a complex terrain condition (2012) Transfus. Apher. Sci., , 165067; Tyukavina, A., Baccini, A., Hansen, M.C., Potapov, P.V., Stehman, S.V., Houghton, R.A., Krylov, A.M., Goetz, S.J., Aboveground carbon loss in natural and managed tropical forests from 2000 to 2012 (2015) Environ. Res. Lett., 10, p. 74002; van Marle, M.J.E., Field, R.D., van der Werf, G.R., Estrada de Wagt, I.A., Houghton, R.A., Rizzo, L.V., Artaxo, P., Tsigaridis, K., Fire and deforestation dynamics in Amazonia (1973-2014) (2017) Glob. Biogeochem. Cycles, 31, pp. 24-38; Wieder, W.R., Cleveland, C.C., Townsend, A.R., Controls over leaf litter decomposition in wet tropical forests (2009) Ecology, 90, pp. 3333-3341; Wolf, S., Eugster, W., Majorek, S., Buchmann, N., Afforestation of tropical pasture only marginally affects ecosystem-scale evapotranspiration (2011) Ecosystems, 14, pp. 1264-1275; Wolf, S., Eugster, W., Potvin, C., Buchmann, N., Strong seasonal variations in net ecosystem CO2 exchange of a tropical pasture and afforestation in Panama (2011) Agric. For. Meteorol., 151, pp. 1139-1151; Wolf, S., Eugster, W., Potvin, C., Turner, B.L., Buchmann, N., Carbon sequestration potential of tropical pasture compared with afforestation in Panama (2011) Glob. Change Biol., 17, pp. 2763-2780; Wood, A.W., Leung, L.R., Sridhar, V., Lettenmaier, D.P., Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs (2004) Clim. Change, 62, pp. 189-216; Wu, J., Guan, K., Hayek, M., Restrepo-Coupe, N., Wiedemann, K.T., Xu, X., Wehr, R., Saleska, S.R., Partitioning controls on Amazon forest photosynthesis between environmental and biotic factors at hourly to interannual timescales (2017) Glob. Change Biol., 23, pp. 1240-1257; Xiao, J., Liu, S., Stoy, P.C., Preface: impacts of extreme climate events and disturbances on carbon dynamics (2016) Biogeosciences, 13, pp. 3665-3675 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 831  
Permanent link to this record
 

 
Author Dejean, A.; Corbara, B.; Céréghino, R.; Leponce, M.; Roux, O.; Rossi, V.; Delabie, J.H.C.; Compin, A. doi  openurl
  Title Traits allowing some ant species to nest syntopically with the fire ant Solenopsis saevissima in its native range Type Journal Article
  Year 2015 Publication Insect Science Abbreviated Journal Insect Science  
  Volume 22 Issue 2 Pages (down) 289-294  
  Keywords Ant community; Fire ants; Invasive species; Solenopsis saevissima; Species coexistence; Supercoloniality  
  Abstract Supercolonies of the red fire ant Solenopsis saevissima (Smith) develop in disturbed environments and likely alter the ant community in the native range of the species. For example, in French Guiana only 8 ant species were repeatedly noted as nesting in close vicinity to its mounds. Here, we verified if a shared set of biological, ecological, and behavioral traits might explain how these 8 species are able to nest in the presence of S. saevissima. We did not find this to be the case. We did find, however, that all of them are able to live in disturbed habitats. It is likely that over the course of evolution each of these species acquired the capacity to live syntopically with S. saevissima through its own set of traits, where colony size (4 species develop large colonies), cuticular compounds which do not trigger aggressiveness (6 species) and submissive behaviors (4 species) complement each other. © 2013 Institute of Zoology, Chinese Academy of Sciences.  
  Address U.P.A. Laboratório de Mirmecologia, Convênio UESC/CEPLAC, C.P. 7Itabuna, Bahia, Brazil  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 9 April 2015 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 594  
Permanent link to this record
 

 
Author Richard-Hansen, C.; Davy, D.; Longin, G.; Gaillard, L.; Renoux, F.; Grenand, P.; Rinaldo, R. pdf  url
doi  openurl
  Title Hunting in French Guiana Across Time, Space and Livelihoods Type Journal Article
  Year 2019 Publication Frontiers in Ecology and Evolution Abbreviated Journal  
  Volume 7 Issue Pages (down) 289  
  Keywords  
  Abstract Hunting sustainability in Amazonian ecosystems is a key challenge for modern stakeholders. Predictive models have evolved from first mostly biological data-based to more recent modelling including human behavior. We analyze here the hunting data collected in French Guiana through a panel of indices aiming at drawing the puzzle of parameters influencing hunting activity and impact in various socio ecological conditions across the country. Data were collected from five different study sites differing in cultural origins and remoteness from market economy, and over a ten years period. Most indices show an impact on wildlife populations, and using a full set of indicators allowed us to better understand some underlying mechanisms that lead to a community’s hunting profile. The results showed that there are noticeable differences between the study sites in the practices and the ways hunters face the changes in environment and resources availability  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-701x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 880  
Permanent link to this record
 

 
Author Baraloto, C.; Molto, Q.; Rabaud, S.; Herault, B.; Valencia, R.; Blanc, L.; Fine, P.V.A.; Thompson, J. url  openurl
  Title Rapid simultaneous estimation of aboveground biomass and tree diversity across neotropical forests: A comparison of field inventory methods Type Journal Article
  Year 2013 Publication Biotropica Abbreviated Journal Biotropica  
  Volume 45 Issue 3 Pages (down) 288-298  
  Keywords Biodiversity assessment; carbon stocks; Monitoring; Permanent plot; Survey; Tropical rain forest  
  Abstract A standardized rapid inventory method providing information on both tree species diversity and aboveground carbon stocks in tropical forests will be an important tool for evaluating efforts to conserve biodiversity and to estimate the carbon emissions that result from deforestation and degradation (REDD). Herein, we contrast five common plot methods differing in shape, size, and effort requirements to estimate tree diversity and aboveground tree biomass (AGB). We simulated the methods across six Neotropical forest sites that represent a broad gradient in forest structure, tree species richness, and floristic composition, and we assessed the relative performance of methods by evaluating the bias and precision of their estimates of AGB and tree diversity. For a given sample of forest area, a 'several small' (< 1 ha) sampling strategy led to a smaller coefficient of variation (CV) in the estimate of AGB than a 'few large' one. The effort (person-days) required to achieve an accurate AGB estimate (< 10% CV), however, was greater for the smallest plots (0.1 ha) than for a compromise approach using 0.5 ha modified Gentry plots, which proved to be the most efficient method to estimate AGB across all forest types. Gentry plots were also the most efficient at providing accurate estimates of tree diversity (< 10% CV of Hill number). We recommend the use of the 0.5 ha modified Gentry plot method in future rapid inventories, and we discuss a set of criteria that should inform any choice of inventory method. © 2012 The Author(s) Journal compilation © 2012 by The Association for Tropical Biology and Conservation.  
  Address Centre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian, EH26 0QB, United Kingdom  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00063606 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 16 May 2013; Source: Scopus; Coden: Btroa; :doi 10.1111/btp.12006; Language of Original Document: English; Correspondence Address: Baraloto, C.; INRA, UMR 'Ecologie des Forêts de Guyane', 97387, Kourou Cedex, French Guiana; email: chris.baraloto@ecofog.gf Approved no  
  Call Number EcoFoG @ webmaster @ Serial 485  
Permanent link to this record
 

 
Author Houel, E.; Rodrigues, A.M.S.; Jahn-Oyac, A.; Bessière, J.-M.; Eparvier, V.; Deharo, E.; Stien, D. url  openurl
  Title In vitro antidermatophytic activity of Otacanthus azureus (Linden) Ronse essential oil alone and in combination with azoles Type Journal Article
  Year 2014 Publication Journal of Applied Microbiology Abbreviated Journal J. Appl. Microbiol.  
  Volume 116 Issue 2 Pages (down) 288-294  
  Keywords Antifungal activity; Azoles; Dermatophytes; Essential oil; Otacanthus azureus; Synergy  
  Abstract Aims: We determined the chemical composition and investigated the antifungal activity of Otacanthus azureus (Linden) Ronse essential oil (EO) against a range of dermatophytes alone or in combination with azole antifungals. Methods and Results: Aerial parts of the plant were steam-distilled and the obtained oil was analysed by gas chromatography/mass spectrometry and 1H-NMR. It was shown to be largely composed of sesquiterpenes, with the main component being β-copaen-4-α-ol. Using broth microdilution techniques, this oil was found to have remarkable in vitro antifungal activities. Minimum inhibitory concentrations as low as 4 μg ml-1 were recorded. The analysis of the combined effect of the O. azureus EO with azoles using chequerboard assays revealed a synergism between the EO and ketoconazole, fluconazole or itraconazole against Trichophyton mentagrophytes. Notably, the O. azureus essential oil showed low cytotoxicity to VERO cells. Conclusions: The O. azureus essential oil alone or in combination with azoles is a promising antifungal agent in the treatment for human dermatomycoses caused by filamentous fungi. Significance and Impact of the Study: There is much interest in the study of essential oils for the discovery of new antimicrobial drugs. This study has highlighted the antidermatophytic activity of the O. azureus EO. © 2013 The Society for Applied Microbiology.  
  Address Institut de Recherche pour le Développement (IRD), UMR 152 Pharma-DEV, Toulouse, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 13645072 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 9 February 2014; Source: Scopus; Coden: Jamif; Language of Original Document: English; Correspondence Address: Houël, E.; CNRS – UMR Ecologie des Forêts de Guyane (EcoFoG), Institut Pasteur de la Guyane, 23 Avenue Pasteur, BP6010, 97306 Cayenne Cedex, French Guiana; email: emeline.houel@ecofog.gf Approved no  
  Call Number EcoFoG @ webmaster @ Serial 526  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: