toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Tremolieres, M.; Noel, V.; Herault, B. openurl 
  Title Phosphorus and nitrogen allocation in Allium ursinum on an alluvial floodplain (Eastern France). Is there an effect of flooding history? Type Journal Article
  Year 2009 Publication Plant and Soil Abbreviated Journal Plant Soil  
  Volume 324 Issue 1-2 Pages (up) 279-289  
  Keywords Allium ursinum; Flooding history; Nitrogen; Nutrient bioavailability; Phosphorus; Rhine  
  Abstract The change in phosphorus and nitrogen content in a common geophyte spring species, Allium ursinum, is studied in alluvial forests in relation to three flooding histories related to river regulation: (1) annually flooded, (2) unflooded for 30 years, and (3) unflooded for 200 years. Flood suppression leads to a reduction of available P soil content as well as decreasing the biomass and the amount of phosphorus in plants, but has no significant effect on N plant content. Plant N:P ratio increases with the suppression of floods and is primarily driven by soil N:P ratios, in turn markedly linked to the total nitrogen in the soil. We highlighted a lower nutrient accumulation in leaves during plant growth in unflooded forests. Overall, our results suggest that P was the main limiting factor in unflooded forests while nitrogen was the main limiting factor in annually flooded forests. Flood suppression strongly affects the morphology and nutrient uptake by Allium ursinum and thus nutrient cycling in riverine forests.  
  Address [Tremolieres, Michele; Noel, Valerie] Inst Bot, LHYGES, UMR 7517, F-67083 Strasbourg, France, Email: michele.tremolieres@bota-ulp.u-strasbg.fr  
  Corporate Author Thesis  
  Publisher SPRINGER Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0032-079X ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000271028800020 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 99  
Permanent link to this record
 

 
Author Houel, E.; Fleury, M.; Odonne, G.; Nardella, F.; Bourdy, G.; Vonthron-Sénécheau, C.; Villa, P.; Obrecht, A.; Eparvier, V.; Deharo, E.; Stien, D. url  openurl
  Title Antiplasmodial and anti-inflammatory effects of an antimalarial remedy from the Wayana Amerindians, French Guiana: Takamalaimë (Psidium acutangulum Mart. ex DC., Myrtaceae) Type Journal Article
  Year 2015 Publication Journal of Ethnopharmacology Abbreviated Journal  
  Volume 166 Issue Pages (up) 279-285  
  Keywords Psidium acutangulum; Plasmodium; Cytokines; Antimalarial; French Guiana; Traditional medicine  
  Abstract Ethnopharmacological relevance:
Field investigations highlighted the use of Psidium acutangulum Mart. ex DC (syn. P. persoonii McVaugh), a small tree used by the Wayana Amerindians in Twenke–Taluhwen and Antecume–Pata, French Guiana, for the treatment of malaria, and administered either orally in the form of a decoction or applied externally over the whole body. This use appears limited to the Wayana cultural group in French Guiana and has never been reported anywhere else. Our goal was to evaluate the antimalarial and anti-inflammatory activities of a P. acutangulum decoction to explain the good reputation of this remedy.
Materials and methods:
Interviews with the Wayana inhabitants of Twenke–Taluhwen and Antecume–Pata were conducted within the TRAMAZ project according to the TRAMIL methodology, which is based on a quantitative and qualitative analysis of medicinal plant uses. A decoction of dried aerial parts of P. acutangulum was prepared in consistency with the Wayana recipe. In vitro antiplasmodial assays were performed on chloroquine-resistant FcB1 ([3H]-hypoxanthine bioassay) and 7G8 (pLDH bioassay) P. falciparum strains and on chloroquine sensitive NF54 ([3H]-hypoxanthine bioassay) P. falciparum strain. In vitro anti-inflammatory activity (IL-1β, IL-6, IL-8, TNFα) was evaluated on LPS-stimulated human PBMC and NO secretion inhibition was measured on LPS stimulated RAW murine macrophages. Cytotoxicity of the decoction was measured on L6 mammalian cells, PBMCs, and RAW cells. A preliminary evaluation of the in vivo antimalarial activity of the decoction, administered orally twice daily, was assessed by the classical four-day suppressive test against P. berghei NK65 in mice.
Results:
The decoction displayed a good antiplasmodial activity in vitro against the three tested strains, regardless to the bioassay used, with IC50 values of 3.3 µg/mL and 10.3 µg/mL against P. falciparum FcB1 and NF54, respectively and 19.0 µg/mL against P. falciparum 7G8. It also exhibited significant anti-inflammatory activity in vitro in a dose dependent manner. At a concentration of 50 µg/mL, the decoction inhibited the secretion of the following pro-inflammatory cytokines: TNFα (−18%), IL-1β (−58%), IL-6 (−32%), IL-8 (−21%). It also exhibited a mild NO secretion inhibition (−13%) at the same concentration. The decoction was non-cytotoxic against L6 cells (IC50>100 µg/mL), RAW cells and PBMC. In vivo, 150 µL of the decoction given orally twice a day (equivalent to 350 mg/kg/day of dried extract) inhibited 39.7% average parasite growth, with more than 50% of inhibition in three mice over five. The absence of response for the two remaining mice, however, induced a strong standard deviation.
Conclusions:
This study highlighted the in vitro antiplasmodial activity of the decoction of P. acutangulum aerial parts, used by Wayana Amerindians from the Upper-Maroni in French Guiana in case of malaria. Its antioxidant and anti-inflammatory potential, which may help to explain its use against this disease, was demonstrated using models of artificially stimulated cells.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-8741 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 649  
Permanent link to this record
 

 
Author Rutishauser, E.; Herault, B.; Petronelli, P.; Sist, P. doi  openurl
  Title Tree Height Reduction After Selective Logging in a Tropical Forest Type Journal Article
  Year 2016 Publication Biotropica Abbreviated Journal Biotropica  
  Volume 48 Issue 3 Pages (up) 285-289  
  Keywords carbon sequestration; forest management; logging; tropical forests; wood production  
  Abstract By harvesting scattered large trees, selective logging increases light availability and thereby stimulates growth and crown expansion at early-life stage among remnant trees. We assessed the effects of logging on total and merchantable bole (i.e., lowest branch at crown base) heights on 952 tropical canopy trees in French Guiana. We observed reductions in both total (mean, −2.3 m) and bole (mean, −2.0 m) heights more than a decade after selective logging. Depending on local logging intensity, height reductions resulted in 2–13 percent decreases in aboveground tree biomass and 3–17 percent decreases in bole volume. These results highlight the adverse effects of logging at both tree and stand levels. This decrease in height is a further threat to future provision of key environmental services, such as timber production and carbon sequestration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1744-7429 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 723  
Permanent link to this record
 

 
Author Faustin, M.; Maciuk, A.; Salvin, P.; Roos, C.; Lebrini, M. url  openurl
  Title Corrosion inhibition of C38 steel by alkaloids extract of Geissospermum laeve in 1M hydrochloric acid: Electrochemical and phytochemical studies Type Journal Article
  Year 2015 Publication Corrosion Science Abbreviated Journal Corrosion Science  
  Volume 92 Issue Pages (up) 287-300  
  Keywords A. C38 steel; B. Eis; B. Sem; C. Acid corrosion; C. Anodic protection; C. Cathodic protection  
  Abstract Corrosion inhibition by alkaloids extract (AE) from Geissospermum laeve on C38 steel in 1. M HCl is investigated with electrochemical studies. Inhibition efficiency of 92% is reached with 100. mg/L of AE at 25. °C. Potentiodynamic polarization showed that the extract behaves as mixed-type inhibitors. The Nyquist plots showed that increasing AE concentration, charge-transfer resistance increased and double-layer capacitance decreased, involving increased inhibition efficiency. Adsorption of the inhibitor molecules corresponds to Langmuir adsorption isotherm. Immersion time and temperature effects were investigated using EIS and potentiodynamic polarization. SEM and EDX supported the adsorption conclusions. The active compound responsible for the corrosion inhibition is geissospermine.  
  Address Laboratoire de Pharmacognosie-Chimie des Substances Naturelles et Chimiotherapies Antiparasitaires, BioCIS, Université Paris-SudChâtenay-Malabry, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 6 February 2015 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 584  
Permanent link to this record
 

 
Author Baraloto, C.; Molto, Q.; Rabaud, S.; Herault, B.; Valencia, R.; Blanc, L.; Fine, P.V.A.; Thompson, J. url  openurl
  Title Rapid simultaneous estimation of aboveground biomass and tree diversity across neotropical forests: A comparison of field inventory methods Type Journal Article
  Year 2013 Publication Biotropica Abbreviated Journal Biotropica  
  Volume 45 Issue 3 Pages (up) 288-298  
  Keywords Biodiversity assessment; carbon stocks; Monitoring; Permanent plot; Survey; Tropical rain forest  
  Abstract A standardized rapid inventory method providing information on both tree species diversity and aboveground carbon stocks in tropical forests will be an important tool for evaluating efforts to conserve biodiversity and to estimate the carbon emissions that result from deforestation and degradation (REDD). Herein, we contrast five common plot methods differing in shape, size, and effort requirements to estimate tree diversity and aboveground tree biomass (AGB). We simulated the methods across six Neotropical forest sites that represent a broad gradient in forest structure, tree species richness, and floristic composition, and we assessed the relative performance of methods by evaluating the bias and precision of their estimates of AGB and tree diversity. For a given sample of forest area, a 'several small' (< 1 ha) sampling strategy led to a smaller coefficient of variation (CV) in the estimate of AGB than a 'few large' one. The effort (person-days) required to achieve an accurate AGB estimate (< 10% CV), however, was greater for the smallest plots (0.1 ha) than for a compromise approach using 0.5 ha modified Gentry plots, which proved to be the most efficient method to estimate AGB across all forest types. Gentry plots were also the most efficient at providing accurate estimates of tree diversity (< 10% CV of Hill number). We recommend the use of the 0.5 ha modified Gentry plot method in future rapid inventories, and we discuss a set of criteria that should inform any choice of inventory method. © 2012 The Author(s) Journal compilation © 2012 by The Association for Tropical Biology and Conservation.  
  Address Centre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian, EH26 0QB, United Kingdom  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00063606 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 16 May 2013; Source: Scopus; Coden: Btroa; :doi 10.1111/btp.12006; Language of Original Document: English; Correspondence Address: Baraloto, C.; INRA, UMR 'Ecologie des Forêts de Guyane', 97387, Kourou Cedex, French Guiana; email: chris.baraloto@ecofog.gf Approved no  
  Call Number EcoFoG @ webmaster @ Serial 485  
Permanent link to this record
 

 
Author Houel, E.; Rodrigues, A.M.S.; Jahn-Oyac, A.; Bessière, J.-M.; Eparvier, V.; Deharo, E.; Stien, D. url  openurl
  Title In vitro antidermatophytic activity of Otacanthus azureus (Linden) Ronse essential oil alone and in combination with azoles Type Journal Article
  Year 2014 Publication Journal of Applied Microbiology Abbreviated Journal J. Appl. Microbiol.  
  Volume 116 Issue 2 Pages (up) 288-294  
  Keywords Antifungal activity; Azoles; Dermatophytes; Essential oil; Otacanthus azureus; Synergy  
  Abstract Aims: We determined the chemical composition and investigated the antifungal activity of Otacanthus azureus (Linden) Ronse essential oil (EO) against a range of dermatophytes alone or in combination with azole antifungals. Methods and Results: Aerial parts of the plant were steam-distilled and the obtained oil was analysed by gas chromatography/mass spectrometry and 1H-NMR. It was shown to be largely composed of sesquiterpenes, with the main component being β-copaen-4-α-ol. Using broth microdilution techniques, this oil was found to have remarkable in vitro antifungal activities. Minimum inhibitory concentrations as low as 4 μg ml-1 were recorded. The analysis of the combined effect of the O. azureus EO with azoles using chequerboard assays revealed a synergism between the EO and ketoconazole, fluconazole or itraconazole against Trichophyton mentagrophytes. Notably, the O. azureus essential oil showed low cytotoxicity to VERO cells. Conclusions: The O. azureus essential oil alone or in combination with azoles is a promising antifungal agent in the treatment for human dermatomycoses caused by filamentous fungi. Significance and Impact of the Study: There is much interest in the study of essential oils for the discovery of new antimicrobial drugs. This study has highlighted the antidermatophytic activity of the O. azureus EO. © 2013 The Society for Applied Microbiology.  
  Address Institut de Recherche pour le Développement (IRD), UMR 152 Pharma-DEV, Toulouse, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 13645072 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 9 February 2014; Source: Scopus; Coden: Jamif; Language of Original Document: English; Correspondence Address: Houël, E.; CNRS – UMR Ecologie des Forêts de Guyane (EcoFoG), Institut Pasteur de la Guyane, 23 Avenue Pasteur, BP6010, 97306 Cayenne Cedex, French Guiana; email: emeline.houel@ecofog.gf Approved no  
  Call Number EcoFoG @ webmaster @ Serial 526  
Permanent link to this record
 

 
Author Dejean, A.; Corbara, B.; Céréghino, R.; Leponce, M.; Roux, O.; Rossi, V.; Delabie, J.H.C.; Compin, A. doi  openurl
  Title Traits allowing some ant species to nest syntopically with the fire ant Solenopsis saevissima in its native range Type Journal Article
  Year 2015 Publication Insect Science Abbreviated Journal Insect Science  
  Volume 22 Issue 2 Pages (up) 289-294  
  Keywords Ant community; Fire ants; Invasive species; Solenopsis saevissima; Species coexistence; Supercoloniality  
  Abstract Supercolonies of the red fire ant Solenopsis saevissima (Smith) develop in disturbed environments and likely alter the ant community in the native range of the species. For example, in French Guiana only 8 ant species were repeatedly noted as nesting in close vicinity to its mounds. Here, we verified if a shared set of biological, ecological, and behavioral traits might explain how these 8 species are able to nest in the presence of S. saevissima. We did not find this to be the case. We did find, however, that all of them are able to live in disturbed habitats. It is likely that over the course of evolution each of these species acquired the capacity to live syntopically with S. saevissima through its own set of traits, where colony size (4 species develop large colonies), cuticular compounds which do not trigger aggressiveness (6 species) and submissive behaviors (4 species) complement each other. © 2013 Institute of Zoology, Chinese Academy of Sciences.  
  Address U.P.A. Laboratório de Mirmecologia, Convênio UESC/CEPLAC, C.P. 7Itabuna, Bahia, Brazil  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 9 April 2015 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 594  
Permanent link to this record
 

 
Author Richard-Hansen, C.; Davy, D.; Longin, G.; Gaillard, L.; Renoux, F.; Grenand, P.; Rinaldo, R. pdf  url
doi  openurl
  Title Hunting in French Guiana Across Time, Space and Livelihoods Type Journal Article
  Year 2019 Publication Frontiers in Ecology and Evolution Abbreviated Journal  
  Volume 7 Issue Pages (up) 289  
  Keywords  
  Abstract Hunting sustainability in Amazonian ecosystems is a key challenge for modern stakeholders. Predictive models have evolved from first mostly biological data-based to more recent modelling including human behavior. We analyze here the hunting data collected in French Guiana through a panel of indices aiming at drawing the puzzle of parameters influencing hunting activity and impact in various socio ecological conditions across the country. Data were collected from five different study sites differing in cultural origins and remoteness from market economy, and over a ten years period. Most indices show an impact on wildlife populations, and using a full set of indicators allowed us to better understand some underlying mechanisms that lead to a community’s hunting profile. The results showed that there are noticeable differences between the study sites in the practices and the ways hunters face the changes in environment and resources availability  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-701x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 880  
Permanent link to this record
 

 
Author Fu, Z.; Gerken, T.; Bromley, G.; Araújo, A.; Bonal, D.; Burban, B.; Ficklin, D.; Fuentes, J.D.; Goulden, M.; Hirano, T.; Kosugi, Y.; Liddell, M.; Nicolini, G.; Niu, S.; Roupsard, O.; Stefani, P.; Mi, C.; Tofte, Z.; Xiao, J.; Valentini, R.; Wolf, S.; Stoy, P.C. url  doi
openurl 
  Title The surface-atmosphere exchange of carbon dioxide in tropical rainforests: Sensitivity to environmental drivers and flux measurement methodology Type Journal Article
  Year 2018 Publication Agricultural and Forest Meteorology Abbreviated Journal Agric. For. Meterol.  
  Volume 263 Issue Pages (up) 292-307  
  Keywords Climate variability; Ecosystem respiration; Eddy covariance; Gross primary productivity; Net ecosystem carbon dioxide exchange; Tropical rainforest; acclimation; air temperature; anthropogenic effect; atmosphere-biosphere interaction; biodiversity; carbon flux; climate change; Cmip; eddy covariance; environmental change; flux measurement; methodology; net ecosystem exchange; net ecosystem production; radiative forcing; rainforest; sensitivity analysis; tropical environment  
  Abstract Tropical rainforests play a central role in the Earth system by regulating climate, maintaining biodiversity, and sequestering carbon. They are under threat by direct anthropogenic impacts like deforestation and the indirect anthropogenic impacts of climate change. A synthesis of the factors that determine the net ecosystem exchange of carbon dioxide (NEE) at the site scale across different forests in the tropical rainforest biome has not been undertaken to date. Here, we study NEE and its components, gross ecosystem productivity (GEP) and ecosystem respiration (RE), across thirteen natural and managed forests within the tropical rainforest biome with 63 total site-years of eddy covariance data. Our results reveal that the five ecosystems with the largest annual gross carbon uptake by photosynthesis (i.e. GEP > 3000 g C m−2 y-1) have the lowest net carbon uptake – or even carbon losses – versus other study ecosystems because RE is of a similar magnitude. Sites that provided subcanopy CO2 storage observations had higher average magnitudes of GEP and RE and lower average magnitudes of NEE, highlighting the importance of measurement methodology for understanding carbon dynamics in ecosystems with characteristically tall and dense vegetation. A path analysis revealed that vapor pressure deficit (VPD) played a greater role than soil moisture or air temperature in constraining GEP under light saturated conditions across most study sites, but to differing degrees from -0.31 to -0.87 μmol CO2 m−2 s-1 hPa-1. Climate projections from 13 general circulation models (CMIP5) under the representative concentration pathway that generates 8.5 W m−2 of radiative forcing suggest that many current tropical rainforest sites on the lower end of the current temperature range are likely to reach a climate space similar to present-day warmer sites by the year 2050, warmer sites will reach a climate not currently experienced, and all forests are likely to experience higher VPD. Results demonstrate the need to quantify if and how mature tropical trees acclimate to heat and water stress, and to further develop flux-partitioning and gap-filling algorithms for defensible estimates of carbon exchange in tropical rainforests. © 2018 Elsevier B.V.  
  Address Department of Environmental Systems Science, ETH Zurich, Zurich, 8092, Switzerland  
  Corporate Author Thesis  
  Publisher Elsevier B.V. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 01681923 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 12 November 2018; Coden: Afmee; Correspondence Address: Stoy, P.C.; Department of Land Resources and Environmental Sciences, Montana State UniversityUnited States; email: paul.stoy@montana.edu; Funding details: ANR-10-LABX-25-01; Funding details: U.S. Department of Energy, DOE, SC0011097; Funding details: Agence Nationale de la Recherche, ANR; Funding details: 1702029; Funding details: 1552976; Funding details: Graduate School, Ohio State University; Funding details: National Natural Science Foundation of China, NSFC, 31625006; Funding text 1: PCS and JDF acknowledges funding support from the U.S. Department of Energy as part of the GoAmazon project (Grant SC0011097 ). PCS additionally acknowledges the U.S. National Science Foundation grants 1552976 and 1702029 , and The Graduate School at Montana State University . ZF is supported by the China Scholarship Council and National Natural Science Foundation of China ( 31625006 ). This work used eddy covariance data acquired and shared by the FLUXNET community, including the AmeriFlux, AfriFlux, AsiaFlux, CarboAfrica, LBA, and TERN- OzFlux networks. The FLUXNET eddy covariance data processing and harmonization was carried out by the ICOS Ecosystem Thematic Center, AmeriFlux Management Project and Fluxdata project of FLUXNET, with the support of CDIAC, and the OzFlux, ChinaFlux and AsiaFlux offices. The Guyaflux program belongs to the SOERE F-ORE-T which is supported annually by Ecofor, Allenvi and the French national research infrastructure ANAEE-F. The Guyaflux program also received support from the “Observatoire du Carbone en Guyane” and an “investissement d'avenir” grant from the Agence Nationale de la Recherche (CEBA, ref ANR-10-LABX-25-01). Funding for the site PA-SPn was provided by the North-South Centre of ETH Zurich. We acknowledge the World Climate Research Programme's Working Group on Coupled Modeling for the CMIP and thank the climate modeling groups for producing and making available their model output. For CMIP, the U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. Angela Tang and Taylor Rodenburg provided valuable comments to earlier drafts of this manuscript. We thank Dr. Tim Hill and two anonymous reviewers for their constructive comments on the manuscript.; References: Acevedo, O.C., Moraes, O.L.L., Degrazia, G.A., Fitzjarrald, D.R., Manzi, A.O., Campos, J.G., Is friction velocity the most appropriate scale for correcting nocturnal carbon dioxide fluxes? (2009) Agric. For. Meteorol., 149, pp. 1-10; Aguilos, M., Hérault, B., Burban, B., Wagner, F., Bonal, D., What drives long-term variations in carbon flux and balance in a tropical rainforest in French Guiana? Agric (2018) For. Meteorol., 253-254, pp. 114-123; Ahlström, A., Raupach, M.R., Schurgers, G., Smith, B., Arneth, A., Jung, M., Reichstein, M., Jain, A.K., The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink (2015) Science, 348 (80), pp. 895-899; Aiba, S.I., Kitayama, K., Structure, composition and species diversity in an altitude-substrate matrix of rain forest tree communities on Mount Kinabalu (1999) Borneo. Plant Ecol., 140, pp. 139-157; Andreae, M.O., Artaxo, P., Brandão, C., Carswell, F.E., Ciccioli, P., da Costa, A.L., Culf, A.D., Waterloo, M.J., Biogeochemical cycling of carbon, water, energy, trace gases, and aerosols in Amazonia: the LBA-EUSTACH experiments (2002) J. Geophys. Res., 107, p. 8066; Andreae, M.O., Acevedo, O.C., Araùjo, A., Artaxo, P., Barbosa, C.G.G., Barbosa, H.M.J., Brito, J., Yáñez-Serrano, A.M., The Amazon Tall Tower Observatory (ATTO): overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols (2015) Atmos. Chem. Phys., 15, pp. 10723-10776; Araújo, A.C., Nobre, A.D., Kruijt, B., Elbers, J.A., Dallarosa, R., Stefani, P., Von Randow, C., Kabat, P., Comparative measurements of carbon dioxide fluxes from two nearby towers in a central Amazonian rainforest: The Manaus LBA site (2002) J. Geophys. Res., 107, p. 8090; Asner, G.P., Anderson, C.B., Martin, R.E., Tupayachi, R., Knapp, D.E., Sinca, F., Landscape biogeochemistry reflected in shifting distributions of chemical traits in the Amazon forest canopy (2015) Nat. Geosci., 8, pp. 567-573; Asner, G.P., Martin, R.E., Knapp, D.E., Tupayachi, R., Anderson, C.B., Sinca, F., Vaughn, N.R., Llactayo, W., Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation (2017) Science, 355 (80), pp. 385-389; Avissar, R., Werth, D., Global hydroclimatological teleconnections resulting from tropical deforestation (2005) J. Hydrometeorol., 6, pp. 134-145; Baccini, A., Walker, W., Carvalho, L., Farina, M., Sulla-Menashe, D., Houghton, R.A., Tropical forests are a net carbon source based on aboveground measurements of gain and loss (2017) Science, 358 (80), pp. 230-234; Belelli Marchesini, L., Bombelli, A., Chiti, T., Consalvo, C., Forgione, A., Grieco, E., Mazzenga, F., Valentini, R., Ankasa flux tower: a new research facility for the study of the carbon cycle in a primary tropical forest in Africa (2008) Proceedings of the Open Science Conference on Africa and Carbon Cycle: The CarboAfrica Project; Beringer, J., Hutley, L.B., McHugh, I., Arndt, S.K., Campbell, D., Cleugh, H.A., Cleverly, J., Wardlaw, T., An introduction to the Australian and New Zealand flux tower network – OzFlux (2016) Biogeosciences, 13, pp. 5895-5916; Bonal, D., Bosc, A., Ponton, S., Goret, J.-Y.J.Y., Burban, B.T., Gross, P., Bonnefond, J.M.J.-M., Granier, A., Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana (2008) Glob. Chang. Biol., 14, pp. 1917-1933; Borma, L.S., da Rocha, H.R., Cabral, O.M., von Randow, C., Collicchio, E., Kurzatkowski, D., Brugger, P.J., Artaxo, P., Atmosphere and hydrological controls of the evapotranspiration over a floodplain forest in the Bananal Island region, Amazonia (2009) J. Geophys. Res. Biogeosci., 114; Bradford, M.G., Metcalfe, D.J., Ford, A., Liddell, M.J., McKeown, A., Floristics, stand structure and aboveground biomass of a 25-ha rainforest plot in the Wet Tropics of Australia (2014) J. Trop. For. Sci., pp. 543-553; Braga, N., da, S., Vitória, A.P., Souza, G.M., Barros, C.F., Freitas, L., Weak relationships between leaf phenology and isohydric and anisohydric behavior in lowland wet tropical forest trees (2016) Biotropica, 48, pp. 453-464; Carswell, F.E., Costa, A.L., Palheta, M., Malhi, Y., Meir, P., Costa, J.D.P.R., Ruivo, M.D.L., Grace, J., Seasonality in CO2 and H2O flux at an eastern Amazonian rain forest (2002) J. Geophys. Res. D Atmos., p. 107; Chambers, J.Q., Tribuzy, E.S., Toledo, L.C., Crispim, B.F., Higuchi, N., dos Santos, J., Araújo, A.C., Trumbore, S.E., Respiration from a tropical forest ecosystem: partitioning of sources and low carbon use efficiency (2004) Ecol. Appl., 14, pp. 72-88; Chambers, J., Davies, S., Koven, C., Kueppers, L., Leung, R., McDowell, N., Norby, R., Rogers, A., Next Generation Ecosystem Experiment (NGEE) Tropics. US DOE NGEE Trop. white paper. (2014); Chiti, T., Certini, G., Grieco, E., Valentini, R., The role of soil in storing carbon in tropical rainforests: the case of Ankasa Park, Ghana (2010) Plant Soil, 331, pp. 453-461; Cleveland, C.C., Wieder, W.R., Reed, S.C., Townsend, A.R., Experimental drought in a tropical rain forest increases soil carbon dioxide losses to the atmosphere (2010) Ecology, 91, pp. 2313-2323; Cleveland, C.C., Townsend, A.R., Taylor, P., Alvarez-Clare, S., Bustamante, M.M.C., Chuyong, G., Dobrowski, S.Z., Wieder, W.R., Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis (2011) Ecol. Lett.; Cusack, D.F., Chou, W.W., Yang, W.H., Harmon, M.E., Silver, W.L., Controls on long-term root and leaf litter decomposition in neotropical forests (2009) Glob. Chang. Biol., 15, pp. 1339-1355; da Rocha, H.R., Manzi, A.O., Cabral, O.M., Miller, S.D., Goulden, M.L., Saleska, S.R., Coupe, N.R., Maia, J.F., Patterns of water and heat flux across a biome gradient from tropical forest to savanna in Brazil (2009) J. Geophys. Res. Biogeosci., 114. , G00B12; Dargie, G.C., Lewis, S.L., Lawson, I.T., Mitchard, E.T.A., Page, S.E., Bocko, Y.E., Ifo, S.A., Age, extent and carbon storage of the central Congo Basin peatland complex (2017) Nature, 542, pp. 86-89; de Araújo, A.C., Dolman, A.J., Waterloo, M.J., Gash, J.H.C., Kruijt, B., Zanchi, F.B., de Lange, J.M.E., Backer, J., The spatial variability of CO2 storage and the interpretation of eddy covariance fluxes in central Amazonia (2010) Agric. For. Meteorol., 150, pp. 226-237; Dixon, R.K., Solomon, A.M., Brown, S., Houghton, R.A., Trexier, M.C., Wisniewski, J., Carbon pools and flux of global forest ecosystems (1994) Science, 263 (80), pp. 185-190; Fisher, R.A., Williams, M., Do Vale, R.L., Da Costa, A.L., Meir, P., Evidence from Amazonian forests is consistent with isohydric control of leaf water potential (2006) Plant Cell Environ., 29, pp. 151-165; Foley, J.A., DeFries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Chapin, F.S., Snyder, P.K., Global consequences of land use (2005) Science, 309, pp. 570-574; Fu, Z., Dong, J., Zhou, Y., Stoy, P.C., Niu, S., Long term trend and interannual variability of land carbon uptake—the attribution and processes (2017) Environ. Res. Lett., 12, p. 14018; Fuentes, J.D., Chamecki, M., dos Santos, R.M.N., Von Randow, C., Stoy, P.C., Katul, G., Fitzjarrald, D., Yañez-Serrano, A.M., Linking meteorology, turbulence, and air chemistry in the amazon rain forest (2016) Bull. Am. Meteorol. Soc., 97, pp. 2329-2342; Gerken, T., Chamecki, M., Fuentes, J.D., Air-parcel residence times within forest canopies (2017) Boundary-Layer Meteorol., 165, pp. 29-54; Giardina, F., Konings, A.G., Kennedy, D., Alemohammad, S.H., Oliveira, R.S., Uriarte, M., Gentine, P., Tall Amazonian forests are less sensitive to precipitation variability (2018) Nat. Geosci., 11, pp. 405-409; Gibson, L., Lee, T.M., Koh, L.P., Brook, B.W., Gardner, T.A., Barlow, J., Peres, C.A., Sodhi, N.S., Primary forests are irreplaceable for sustaining tropical biodiversity (2011) Nature, 478, pp. 378-381; Goulden, M.L., Miller, S.D., Da Rocha, H.R., Nocturnal cold air drainage and pooling in a tropical forest (2006) J. Geophys. Res. Atmos., p. 111; Grace, J., Lloyd, J., Mcintyre, J., Miranda, A., Meir, P., Miranda, H., Moncrieff, J., Gash, J., Fluxes of carbon dioxide and water vapour over an undisturbed tropical forest in south-west Amazonia (1995) Glob. Chang. Biol., 1, pp. 1-12; Grace, J., Malhi, Y., Lloyd, J., McIntyre, J., Miranda, A.C., Meir, P., Miranda, H.S., The use of eddy covariance to infer the net carbon dioxide uptake of Brazilian rain forest (1996) Glob. Chang. Biol., 2, pp. 209-217; Grace, J., Nagy, L., Forsberg, B.R., Artaxo, P., The Amazon carbon balance: an evaluation of methods and results (2016) Interactions Between Biosphere, Atmosphere and Human Land Use in the Amazon Basin., pp. 79-100. , Springer Berlin Heidelberg; Hall, C.A.S., Tian, H., Qi, Y., Pontius, G., Cornell, J., Modelling spatial and temporal patterns of tropical land use change (1995) J. Biogeogr., 22, pp. 753-757; Hayek, M.N., Wehr, R., Longo, M., Hutyra, L.R., Wiedemann, K., Munger, J.W., Bonal, D., Wofsy, S.C., A novel correction for biases in forest eddy covariance carbon balance (2018) Agric. For. Meteorol., 250-251, pp. 90-101; Hirano, T., Segah, H., Harada, T., Limin, S., June, T., Hirata, R., Osaki, M., Carbon dioxide balance of a tropical peat swamp forest in Kalimantan, Indonesia (2007) Glob. Chang. Biol., 13, pp. 412-425; Hirano, T., Jauhiainen, J., Inoue, T., Takahashi, H., Controls on the carbon balance of tropical peatlands (2008) Ecosystems, 12, pp. 873-887; Hirano, T., Segah, H., Kusin, K., Limin, S., Takahashi, H., Osaki, M., Effects of disturbances on the carbon balance of tropical peat swamp forests (2012) Glob. Change Biol., 18, pp. 3410-3422; Huete, A.R., Didan, K., Shimabukuro, Y.E., Ratana, P., Saleska, S.R., Hutyra, L.R., Yang, W., Myneni, R., Amazon rainforests green‐up with sunlight in dry season (2006) Geophys. Res. Lett., 33. , L06405; Huete, A.R., Restrepo-Coupe, N., Ratana, P., Didan, K., Saleska, S.R., Ichii, K., Panuthai, S., Gamo, M., Multiple site tower flux and remote sensing comparisons of tropical forest dynamics in Monsoon Asia (2008) Agric. For. Meteorol., 148, pp. 748-760; Hutyra, L.R., Munger, J.W., Saleska, S.R., Gottlieb, E., Daube, B.C., Dunn, A.L., Amaral, D.F., Wofsy, S.C., Seasonal controls on the exchange of carbon and water in an Amazonian rain forest (2007) J. Geophys. Res. Biogeosci., 112; Hutyra, L.R., Munger, J.W., Hammond-Pyle, E., Saleska, S.R., Restrepo-Coupe, N., Daube, B.C., de Camargo, P.B., Wofsy, S.C., Resolving systematic errors in estimates of net ecosystem exchange of CO2 and ecosystem respiration in a tropical forest biome (2008) Agric. For. Meteorol., 148, pp. 1266-1279; Inoue, Y., Ichie, T., Kenzo, T., Yoneyama, A., Kumagai, T., Nakashizuka, T., Effects of rainfall exclusion on leaf gas exchange traits and osmotic adjustment in mature canpopy trees of Dryobalanops aromatica (Sipterocarpaceae) in a Malaysian tropical rain forest (2016) J. Trop. Pediatr., pp. 1-11; Jocher, G., Ottosson Löfvenius, M., De Simon, G., Hörnlund, T., Linder, S., Lundmark, T., Marshall, J., Peichl, M., Apparent winter CO2 uptake by a boreal forest due to decoupling (2017) Agric. For. Meteorol., 232, pp. 23-34; Kiew, F., Hirata, R., Hirano, T., Wong, G.X., Aeries, E.B., Musin, K.K., Waili, J.W., Melling, L., CO2 balance of a secondary tropical peat swamp forest in Sarawak, Malaysia (2018) Agric. For. Meteorol., 248, pp. 494-501; Kim, D.-H., Sexton, J.O., Townshend, J.R., Accelerated deforestation in the humid tropics from the 1990s to the 2000s (2015) Geophys. Res. Lett., 42, pp. 3495-3501; Klein, T., The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours (2014) Funct. Ecol., 28, pp. 1313-1320; Konings, A.G., Gentine, P., Global variations in ecosystem‐scale isohydricity (2016) Glob. Change Biol.; Körner, C., Leaf diffusive conductances in the major vegetation types of the globe (1995) Ecophysiology of Photosynthesis, pp. 463-490. , Springer; Kosugi, Y., Takanashi, S., Ohkubo, S., Matsuo, N., Tani, M., Mitani, T., Tsutsumi, D., Nik, A.R., CO2 exchange of a tropical rainforest at Pasoh in Peninsular Malaysia (2008) Agric. For. Meteorol., 148, pp. 439-452; Kosugi, Y., Takanashi, S., Tani, M., Ohkubo, S., Matsuo, N., Itoh, M., Noguchi, S., Nik, A.R., Effect of inter-annual climate variability on evapotranspiration and canopy CO2 exchange of a tropical rainforest in Peninsular Malaysia (2012) J. For. Res., 17, pp. 227-240; Kruijt, B., Elbers, J.A., Von Randow, C., Araujo, A.C., Oliveira, P.J., Culf, A., Manzi, A.O., Moors, E.J., The robustness of eddy correlation fluxes for Amazon rain forest conditions (2004) Ecol. Appl., 14, pp. 101-113; Kumagai, T., Porporato, A., Strategies of a Bornean tropical rainforest water use as a function of rainfall regime: isohydric or anisohydric? (2012) Plant Cell Environ., 35, pp. 61-71; Kutsch, W.L., Herbst, M., Vanselow, R., Hummelshøj, P., Jensen, N.O., Kappen, L., Stomatal acclimation influences water and carbon fluxes of a beech canopy in northern Germany (2001) Basic Appl. Ecol., 2, pp. 265-281; Lasslop, G., Reichstein, M., Papale, D., Richardson, A.D., Arneth, A., Barr, A.G., Stoy, P.C., Wohlfahrt, G., Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation (2010) Glob. Chang. Biol., 16, pp. 187-208; Levine, N.M., Zhang, K., Longo, M., Baccini, A., Phillips, O.L., Lewis, S.L., Alvarez-Dávila, E., Moorcroft, P.R., Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change (2016) Proc. Natl. Acad. Sci., 113, pp. 793-797; Lewis, S.L., Brando, P.M., Phillips, O.L., van der Heijden, G.M.F., Nepstad, D., The 2010 amazon drought (2011) Science, 331 (80), p. 554; Loescher, H.W., Oberbauer, S.F., Gholz, H.L., Clark, D.B., Environmental controls on net ecosystem-level carbon exchange and productivity in a Central American tropical wet forest (2003) Glob. Chang. Biol., 9, p. 396; Lopes, A.P., Nelson, B.W., Wu, J., Graça, P.M.L., de, A., Tavares, J.V., Prohaska, N., Saleska, S.R., Leaf flush drives dry season green-up of the Central Amazon (2016) Remote Sens. Environ., 182, pp. 90-98; Malhi, Y., Nobre, A.D., Grace, J., Kruijt, B., Pereira, M.G.P., Culf, A., Scott, S., Carbon dioxide transfer over a Central Amazonian rain forest (1998) J. Geophys. Res., 103, pp. 31593-31612; Marchin, R.M., Broadhead, A.A., Bostic, L.E., Dunn, R.R., Hoffmann, W.A., Stomatal acclimation to vapour pressure deficit doubles transpiration of small tree seedlings with warming (2016) Plant Cell Environ., 39, pp. 2221-2234; Martens, C.S., Shay, T.J., Mendlovitz, H.P., Matross, D.M., Saleska, S.R., Wofsy, S.C., Stephen Woodward, W., Crill, P.M., Radon fluxes in tropical forest ecosystems of Brazilian Amazonia: night‐time CO2 net ecosystem exchange derived from radon and eddy covariance methods (2004) Glob. Chang. Biol., 10, pp. 618-629; Martinez-Vilalta, J., Poyatos, R., Aguade, D., Retana, J., Mencuccini, M., A new look at water transport regulation in plants (2014) New Phytol., 204, pp. 105-115; Matheny, A.M., Mirfenderesgi, G., Bohrer, G., Trait-based representation of hydrological functional properties of plants in weather and ecosystem models (2017) Plant Divers., 39, pp. 1-12; Meir, P., Grace, J., Miranda, A.C., Leaf respiration in two tropical rainforests: constraints on physiology by phosphorus, nitrogen and temperature (2001) Funct. Ecol., 15, pp. 378-387; Miller, S.D., Goulden, M.L., Menton, M.C., da Rocha, H.R., de Freitas, H.C., Silva, E., Figueira, A.M., de Sousa, C.A.D., Biometric and micrometeorological measurements of tropical forest carbon balance (2004) Ecol. Appl., 14, pp. 114-126; Mitchard, E.T.A., The tropical forest carbon cycle and climate change (2018) Nature, 559, pp. 527-534; Navarro, M.N.V., Jourdan, C., Sileye, T., Braconnier, S., Mialet-Serra, I., Saint-Andre, L., Dauzat, J., Roupsard, O., Fruit development, not GPP, drives seasonal variation in NPP in a tropical palm plantation (2008) Tree Physiol., 28, pp. 1661-1674; Nepstad, D.C., Moutinho, P., Dias‐Filho, M.B., Davidson, E., Cardinot, G., Markewitz, D., Figueiredo, R., Schwalbe, K., The effects of partial throughfall exclusion on canopy processes, aboveground production, and biogeochemistry of an Amazon forest (2002) J. Geophys. Res., 107. , 8085; Norby, R.J., De Kauwe, M.G., Domingues, T.F., Duursma, R.A., Ellsworth, D.S., Goll, D.S., Lapola, D.M., Zaehle, S., Model – data synthesis for the next generation of forest free-air CO2 enrichment (FACE) experiments (2015) New Phytol., pp. 17-28; Novick, K., Oren, R., Stoy, P.C., Juang, J.Y., Siqueira, M., Katul, G., The relationship between reference canopy conductance and simplified hydraulic architecture (2009) Adv. Water Resour., 32, pp. 809-819; Novick, K.A., Ficklin, D.L., Stoy, P.C., Williams, C.A., Bohrer, G., Oishi, A.C., Papuga, S.A., Phillips, R.P., The increasing importance of atmospheric demand for ecosystem water and carbon fluxes (2016) Nat. Clim. Change, 6, pp. 1023-1027; Oberbauer, S.F., Loescher, H.W., Clark, D.B., Effects of climate factors on daytime carbon exchange from an old growth forest in Costa rica (2000) Selbyana, pp. 66-73; Oren, R., Sperry, J.S., Katul, G.G., Pataki, D.E., Ewers, B.E., Phillips, N., Schäfer, K.V.R., Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit (1999) Plant Cell Environ., 22, pp. 1515-1526; Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., Hayes, D., A large and persistent carbon sink in the world's forests (2011) Science, 333 (80). , 988 LP-993; Paoli, G.D., Curran, L.M., Slik, J.W.F., Soil nutrients affect spatial patterns of aboveground biomass and emergent tree density in southwestern Borneo (2008) Oecologia, 155, pp. 287-299; Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W., Longdoz, B., Yakir, D., Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation (2006) Biogeosciences, 3, pp. 571-583; Pau, S., Detto, M., Kim, Y., Still, C.J., Tropical forest temperature thresholds for gross primary productivity (2018) Ecosphere, 9; Pavlick, R., Drewry, D.T., Bohn, K., Reu, B., Kleidon, A., The Jena Diversity-Dynamic Global Vegetation Model (JeDi-DGVM): a diverse approach to representing terrestrial biogeography and biogeochemistry based on plant functional trade-offs (2013) Biogeosciences, 10, pp. 4137-4177; Phillips, O.L., Malhi, Y., Higuchi, N., Laurance, W.F., Núñez, P.V., Vásquez, R.M., Laurance, S.G., Grace, J., Changes in the carbon balance of tropical forests: Evidence from long-term plots (1998) Science, 282 (80). , 439 LP-442; Phillips, O.L., Aragão, L.E.O.C., Lewis, S.L., Fisher, J.B., Lloyd, J., López-González, G., Malhi, Y., Torres-Lezama, A., Drought sensitivity of the Amazon Rainforest (2009) Science, 323 (80), pp. 1344-1347; Powell, T.L., Wheeler, J.K., de Oliveira, A.A.R., da Costa, A.C.L., Saleska, S.R., Meir, P., Moorcroft, P.R., Differences in xylem and leaf hydraulic traits explain differences in drought tolerance among mature Amazon rainforest trees (2017) Glob. Change Biol.; Raich, J.W., Russell, A.E., Vitousek, P.M., Primary productivity and ecosystem development along an elevational gradient on Mauna Loa, Hawai'i (1997) Ecology, 78, pp. 707-721; Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Valentini, R., On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm (2005) Glob. Change Biol., 11, pp. 1424-1439; Restrepo-Coupe, N., da Rocha, H.R., Hutyra, L.R., da Araujo, A.C., Borma, L.S., Christoffersen, B., Cabral, O.M.R., Saleska, S.R., What drives the seasonality of photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower measurements from the Brasil flux network (2013) Agric. For. Meteorol.; Rice, W.R., Analyzing tables of statistical tests (1989) Evolution (N. Y.), 43, pp. 223-225; Richardson, A.D., Braswell, B.H., Hollinger, D.Y., Jenkins, J.P., Ollinger, S.V., Near-surface remote sensing of spatial and temporal variation in canopy phenology (2009) Ecol. Appl., 19, pp. 1417-1428; Roderick, M.L., Farquhar, G.D., The cause of decreased Pan evaporation over the past 50 years (2002) Science, 298 (80), pp. 1410-1411; Roupsard, O., Bonnefond, J.-M., Irvine, M., Berbigier, P., Nouvellon, Y., Dauzat, J., Taga, S., Bouillet, J.-P., Partitioning energy and evapo-transpiration above and below a tropical palm canopy (2006) Agric. For. Meteorol., 139, pp. 252-268; Saleska, S.R., Miller, S.D., Matross, D.M., Goulden, M., Wofsy, S., da Rocha, H.R., de Camargo, P.B., Silva, H., Carbon in Amazon forests: unexpected seasonal fluxes and disturbance-induced losses (2003) Science, 302 (80), pp. 1554-1557; Saleska, S.R., Didan, K., Huete, A.R., Da Rocha, H.R., Amazon forests green-up during 2005 drought (2007) Science, 318 (80), p. 612; Saleska, S., Da Rocha, H., Kruijt, B., Nobre, A., Ecosystem carbon fluxes and Amazonian forest metabolism (2009) Amazonia Glob. Change, pp. 389-407; Saleska, S.R., Wu, J., Guan, K., Araujo, A.C., Huete, A., Nobre, A.D., Restrepo-Coupe, N., Dry-season greening of Amazon forests (2016) Nature, 531, pp. E4-E5; Salinas, N., Malhi, Y., Meir, P., Silman, M., Roman Cuesta, R., Huaman, J., Salinas, D., Farfan, F., The sensitivity of tropical leaf litter decomposition to temperature: results from a large-scale leaf translocation experiment along an elevation gradient in Peruvian forests (2011) New Phytol., 189, pp. 967-977; Santana, R.A., Dias-Júnior, C.Q., da Silva, J.T., Fuentes, J.D., do Vale, R.S., Alves, E.G., dos Santos, R.M.N., Manzi, A.O., Air turbulence characteristics at multiple sites in and above the Amazon rainforest canopy (2018) Agric. For. Meteorol., 260-261, pp. 41-54; Santos, D.M., Acevedo, O.C., Chamecki, M., Fuentes, J.D., Gerken, T., Stoy, P.C., Temporal scales of the nocturnal flow within and above a forest canopy in Amazonia (2016) Boundary-Layer Meteorol., pp. 1-26; Siddiq, Z., Chen, Y.-J., Zhang, Y.-J., Zhang, J.-L., Cao, K.-F., More sensitive response of crown conductance to VPD and larger water consumption in tropical evergreen than in deciduous broadleaf timber trees (2017) Agric. For. Meteorol., 247, pp. 399-407; Sulman, B.N., Roman, D.T., Yi, K., Wang, L., Phillips, R.P., Novick, K.A., High atmospheric demand for water can limit forest carbon uptake and transpiration as severely as dry soil (2016) Geophys. Res. Lett., 43, pp. 9686-9695; Swann, A.L.S., Hoffman, F.M., Koven, C.D., Randerson, J.T., Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity (2016) Proc. Natl. Acad. Sci. U. S. A., 113, pp. 10019-10024; Taylor, K.E., Stouffer, R.J., Meehl, G.A., An overview of CMIP5 and the experiment design (2012) Bull. Am. Meteorol. Soc.; Taylor, P.G., Cleveland, C.C., Wieder, W.R., Sullivan, B.W., Doughty, C.E., Dobrowski, S.Z., Townsend, A.R., Temperature and rainfall interact to control carbon cycling in tropical forests (2017) Ecol. Lett., 20, pp. 779-788; Thomas, C.K., Martin, J.G., Law, B.E., Davis, K., Toward biologically meaningful net carbon exchange estimates for tall, dense canopies: multi-level eddy covariance observations and canopy coupling regimes in a mature Douglas-fir forest in Oregon (2013) Agric. For. Meteorol., 173, pp. 14-27; Tóta, J., Fitzjarrald, D.R., da Silva Dias, M.A.F., Amazon rainforest exchange of carbon and subcanopy air flow: manaus LBA Site—a complex terrain condition (2012) Transfus. Apher. Sci., , 165067; Tyukavina, A., Baccini, A., Hansen, M.C., Potapov, P.V., Stehman, S.V., Houghton, R.A., Krylov, A.M., Goetz, S.J., Aboveground carbon loss in natural and managed tropical forests from 2000 to 2012 (2015) Environ. Res. Lett., 10, p. 74002; van Marle, M.J.E., Field, R.D., van der Werf, G.R., Estrada de Wagt, I.A., Houghton, R.A., Rizzo, L.V., Artaxo, P., Tsigaridis, K., Fire and deforestation dynamics in Amazonia (1973-2014) (2017) Glob. Biogeochem. Cycles, 31, pp. 24-38; Wieder, W.R., Cleveland, C.C., Townsend, A.R., Controls over leaf litter decomposition in wet tropical forests (2009) Ecology, 90, pp. 3333-3341; Wolf, S., Eugster, W., Majorek, S., Buchmann, N., Afforestation of tropical pasture only marginally affects ecosystem-scale evapotranspiration (2011) Ecosystems, 14, pp. 1264-1275; Wolf, S., Eugster, W., Potvin, C., Buchmann, N., Strong seasonal variations in net ecosystem CO2 exchange of a tropical pasture and afforestation in Panama (2011) Agric. For. Meteorol., 151, pp. 1139-1151; Wolf, S., Eugster, W., Potvin, C., Turner, B.L., Buchmann, N., Carbon sequestration potential of tropical pasture compared with afforestation in Panama (2011) Glob. Change Biol., 17, pp. 2763-2780; Wood, A.W., Leung, L.R., Sridhar, V., Lettenmaier, D.P., Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs (2004) Clim. Change, 62, pp. 189-216; Wu, J., Guan, K., Hayek, M., Restrepo-Coupe, N., Wiedemann, K.T., Xu, X., Wehr, R., Saleska, S.R., Partitioning controls on Amazon forest photosynthesis between environmental and biotic factors at hourly to interannual timescales (2017) Glob. Change Biol., 23, pp. 1240-1257; Xiao, J., Liu, S., Stoy, P.C., Preface: impacts of extreme climate events and disturbances on carbon dynamics (2016) Biogeosciences, 13, pp. 3665-3675 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 831  
Permanent link to this record
 

 
Author Tindo, M.; Kenne, M.; Dejean, A. openurl 
  Title Advantages of multiple foundress colonies in Belonogaster juncea juncea L.: greater survival and increased productivity Type Journal Article
  Year 2008 Publication Ecological Entomology Abbreviated Journal Ecol. Entomol.  
  Volume 33 Issue 2 Pages (up) 293-297  
  Keywords colony development; evolution of eusociality; fitness; Polistinae; productivity  
  Abstract 1. The ecological hypothesis predicts that multiple foundress colonies of social wasps may have a better survival rate and produce more brood per capita than single foundress colonies. With the aim of verifying if these characteristics exist in the primitively eusocial wasp species Belonogaster juncea juncea (L.), we monitored 49 foundations, including 13 single and 36 multiple foundress colonies, in Cameroon. 2. Multiple foundress colonies were significantly more successful than single foundress colonies in producing at least one adult. 3. The total productivity of the colonies increased significantly with the number of associated foundresses, but the productivity per capita did not. No single foundress colony reached the sexual phase, while eight (21.6%) multiple foundress colonies did. Males were produced in only five colonies, so that the sex ratio was biased in favour of females. 4. These results suggest that because of the strong ecological constraints on solitary nesting, survival and high colony productivity are two advantages of multiple foundress colonies in B. j. juncea. 5. The decreasing per capita productivity concomitant with an increasing number of females noted in this study illustrates once again Michener's paradox. The coefficient of variance of the per capita productivity significantly decreased with group size, as Wenzel and Pickering suggested in the model they created to explain the paradox. 6. Ecological factors may act in conjunction with other factors, such as genetic relatedness between associated foundresses, to promote joining behaviour in B. j. juncea.  
  Address [Tindo, Maurice; Kenne, Martin] Univ Douala, Fac Sci, BP Douala, Cameroon, Email: jtindo2000@yahoo.fr  
  Corporate Author Thesis  
  Publisher BLACKWELL PUBLISHING Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0307-6946 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000253710000017 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 142  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: