toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ollivier, M.; Baraloto, C.; Marcon, E. openurl 
  Title A trait database for Guianan rain forest trees permits intra- and inter-specific contrasts Type Journal Article
  Year 2007 Publication Annals of Forest Science Abbreviated Journal Ann. For. Sci.  
  Volume 64 Issue 7 Pages (up) 781-786  
  Keywords plant traits; tropical forest; French Guiana; functional groups; plasticity; ontogeny  
  Abstract We present a plant trait database covering autecology for rain forest trees of French Guiana. The database comprises more than thirty traits including autecology (e. g., habitat associations and reproductive phenology), wood structure (e. g., density and tension characteristics) and physiology at the whole plant (e. g., carbon and nitrogen isotopes) and leaf level (e. g., specific leaf area, photosynthetic capacity). The current database describes traits for about nine hundred species from three hundred genera in one hundred families. For more than sixty species, data on twelve morphological and ecophysiological traits are provided for individual plants under different environmental conditions and at different ontogenetic stages. The database is thus unique in permitting intraspecific analyses, such as the effects of ontogenetic stages or environmental conditions on trait values and their relationships.  
  Address INRA, Unit Mixte Rech Ecol Forets Guyane, Kourou, France, Email: baraloto.c@kourou.cirad.fr  
  Corporate Author Thesis  
  Publisher EDP SCIENCES S A Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1286-4560 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000250097700011 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 158  
Permanent link to this record
 

 
Author Gourlet-Fleury, S.; Blanc, L.; Picard, N.; Sist, P.; Dick, J.; Nasi, R.; Swaine, M.D.; Forni, E. openurl 
  Title Grouping species for predicting mixed tropical forest dynamics: looking for a strategy Type Journal Article
  Year 2005 Publication Annals of Forest Science Abbreviated Journal Ann. For. Sci.  
  Volume 62 Issue 8 Pages (up) 785-796  
  Keywords cross-comparisons; functional groups; modelling strategy; species classifications  
  Abstract The high species diversity of mixed tropical forests hinders the development of forest dynamic models. A solution commonly adopted is to cluster species in groups. There are various methods for grouping species that can be linked to three strategies (i) the ecological subjective strategy, (ii) the ecological data-driven strategy, and (iii) the dynamic process strategy. In the first two strategies a species will be assigned to a single group while in the latter strategy, a specific grouping is defined for each process of population dynamics ( typically based on recruitment, growth, mortality). Little congruency or convergence is observed in the literature between any two classifications of species. This may be explained by the independence between the sets of tree characters used to build species groups, or by the intra-specific variability of these characters. We therefore recommend the dynamic process strategy as the most convenient strategy for building groups of species.  
  Address Cirad Foret, F-34398 Montpellier, France, Email: sylvie.gourlet-fleury@cirad.fr  
  Corporate Author Thesis  
  Publisher EDP SCIENCES S A Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1286-4560 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000233972500001 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 228  
Permanent link to this record
 

 
Author Courtois, E. A.; Stahl, C.; Burban, B.; Van Den Berge, J.; Berveiller, D.; Bréchet, L.; Larned Soong, J.; Arriga, N.; Peñuelas, J.; August Janssens, I. pdf  url
doi  openurl
  Title Automatic high-frequency measurements of full soil greenhouse gas fluxes in a tropical forest Type Journal Article
  Year 2019 Publication Biogeosciences Abbreviated Journal Biogeosciences  
  Volume 16 Issue 3 Pages (up) 785-796  
  Keywords  
  Abstract Measuring in situ soil fluxes of carbon dioxide (CO 2 ), methane (CH 4 ), and nitrous oxide (N 2 O) continuously at high frequency requires appropriate technology. We tested the combination of a commercial automated soil CO 2 flux chamber system (LI-8100A) with a CH 4 and N 2 O analyzer (Picarro G2308) in a tropical rainforest for 4 months. A chamber closure time of 2 min was sufficient for a reliable estimation of CO 2 and CH 4 fluxes (100% and 98.5% of fluxes were above minimum detectable flux – MDF, respectively). This closure time was generally not suitable for a reliable estimation of the low N 2 O fluxes in this ecosystem but was sufficient for detecting rare major peak events. A closure time of 25 min was more appropriate for reliable estimation of most N 2 O fluxes (85.6% of measured fluxes are above MDF±0.002 nmolm -2 s -1 ). Our study highlights the importance of adjusted closure time for each gas. © Author(s) 2019.  
  Address CREAF, Cerdanyola Del Vallès, Catalonia, 08193, Spain  
  Corporate Author Thesis  
  Publisher Copernicus GmbH Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 17264170 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 25 February 2019; Correspondence Address: Alice Courtois, E.; Department of Biology University of Antwerp, Centers of Excellence Global Change Ecology and PLECO (Plants and Ecosystems), Universiteitsplein 1, Belgium; email: courtoiselodie@gmail.com; Funding details: Centre de Coopération Internationale en Recherche Agronomique pour le Développement, CIRAD; Funding details: European Research Council, ERC, ERC-2013-SyG 610028-IMBALANCE-P; Funding details: ANR-10-LABX-25-01, ANR-11-INBS-0001; Funding details: U.S. Department of Energy, DOE, DE-AC02-05CH11231; Funding details: Agence Nationale de la Recherche, ANR; Funding details: Institut National de la Recherche Agronomique, INRA; Funding details: Fonds Wetenschappelijk Onderzoek, FWO; Funding text 1: Acknowledgements. This research was supported by the European Research Council Synergy grant ERC-2013-SyG 610028-IMBALANCE-P. We thank Jan Segers for help in the initial setting of the system and Renato Winkler from Picarro and Rod Madsen and Jason Hupp from LI-COR for their help in combining the systems. We thank the staff of Paracou station, managed by UMR Ecofog (CIRAD, INRA; Kourou), which received support from “Investissement d’Avenir” grants managed by Agence Nationale de la Recherche (CEBA: ANR-10-LABX-25-01, ANAEE-France: ANR-11-INBS-0001). This study was conducted in collaboration with the Guyaflux program belonging to SOERE F-ORE-T, which is supported annually by Ecofor, Allenvi, and the French national research infrastructure, ANAEE-F. This program also received support from an “investissement d’avenir” grant from the Agence Nationale de la Recherche (CEBA, ref ANR-10-LABX-25-01). Ivan August Janssens acknowledges support from Antwerp University (Methusalem funding), Nicola Arriga from ICOS-Belgium and Fonds Wetenschappelijk Onderzoek (FWO), and Jennifer Larned Soong from the U.S. Department of Energy under contract DE-AC02-05CH11231.; References: Aguilos, M., Hérault, B., Burban, B., Wagner, F., Bonal, D., What drives long-Term variations in carbon flux and balance in a tropical rainforest in French Guiana? (2018) Agr. Forest Meteorol, 253, pp. 114-123; Ambus, P., Skiba, U., Drewer, J., Jones, S., Carter, M.S., Albert, K.R., Sutton, M., Development of an accumulation-based system for cost-effective chamber measurements of inert trace gas fluxes (2010) Eur. J. Soil Sci, 61, pp. 785-792; Arias-Navarro, C., Díaz-Pinés, E., Klatt, S., Brandt, P., Rufino, M.C., Butterbach-Bahl, K., Verchot, L., Spatial variability of soil N2O and CO2 fluxes in different topographic positions in a tropical montane forest in Kenya (2017) J. Geophys. Res.-Biogeo, 122, pp. 514-527; Bonal, D., Bosc, A., Ponton, S., Goret, J.Y., Burban, B., Gross, P., Bonnefond, J., Epron, D., Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana (2008) Glob. Change Biol, 14, pp. 1917-1933; Bréchet, L., Ponton, S., Roy, J., Freycon, V., Coteaux, M.-M., Bonal, D., Epron, D., Do tree species characteristics influence soil respiration in tropical forests? A test based on 16 tree species planted in monospecific plots (2009) Plant Soil, 319, pp. 235-246; Breuer, L., Papen, H., Butterbach-Bahl, K., N2O emission from tropical forest soils of Australia (2000) J. Geophys. Res.-Atmos, 105, pp. 26353-26367; Christiansen, J.R., Outhwaite, J., Smukler, S.M., Comparison of CO2, CH4 and N2O soil-Atmosphere exchange measured in static chambers with cavity ring-down spectroscopy and gas chromatography (2015) Agr. Forest Meteorol, 211, pp. 48-57; Courtois, E.A., Stahl, C., Dataset from Automatic high-frequency measurements of full soil greenhouse gas fluxes in a tropical forest (2019) Biogeosciences, 2019. , https://doi.org/10.5281/zenodo.2555299; Courtois, E.A., Stahl, C., Van Den Berge, J., Bréchet, L., Van Langenhove, L., Richter, A., Urbina, I., Janssens, I.A., Spatial variation of soil CO2, CH4 and N2O fluxes across topographical positions in tropical forests of the Guiana Shield (2018) Ecosystems, 21, pp. 1445-1458; Davidson, E., Savage, K., Verchot, L., Navarro, R., Minimizing artifacts and biases in chamber-based measurements of soil respiration (2002) Agr. Forest Meteorol, 113, pp. 21-37; Davidson, E.A., Nepstad, D.C., Ishida, F.Y., Brando, P.M., Effects of an experimental drought and recovery on soil emissions of carbon dioxide, methane, nitrous oxide, and nitric oxide in a moist tropical forest (2008) Glob. Change Biol, 14, pp. 2582-2590; De Klein, C., Harvey, M., (2012) Nitrous Oxide Chamber Methodology Guidelines, , Ministry for Primary Industries, Wellington, New Zealand; Denmead, O., Chamber systems for measuring nitrous oxide emission from soils in the field (1979) Soil Sci. Soc. Am. J, 43, pp. 89-95; Dutaur, L., Verchot, L.V., A global inventory of the soil CH4 sink (2007) Glob. Biogeochem. Cy, p. 21. , https://doi.org/10.1029/2006GB002734; Epron, D., Bosc, A., Bonal, D., Freycon, V., Spatial variation of soil respiration across a topographic gradient in a tropical rain forest in French Guiana (2006) J. Trop. Ecol, 22, pp. 565-574; (1998) World Reference Base for Soil Resources, , FAO/ ISRIC/ISSS.FAO, ISRIC, ISSS, World Soil Resources Reports 84, Rome; Görres, C.-M., Kammann, C., Ceulemans, R., Automation of soil flux chamber measurements, potentials and pitfalls (2016) Biogeosciences, 13, pp. 1949-1966. , https://doi.org/10.5194/bg-13-1949-2016; Hupp, J.R., Garcia, R.L., Madsen, R., McDermitt, D.K., Measurement of CO2 evolution in a multiplexed flask system (2009) Amer. Soc. Horticultural Science, Alexandria USA, 44, pp. 1143-1143; Janssens, I.A., Kowalski, A.S., Longdoz, B., Ceulemans, R., Assessing forest soil CO2 efflux, an in-situ comparison of four techniques (2000) Tree Physiol, 20, pp. 23-32; Koskinen, M., Minkkinen, K., Ojanen, P., Kämäräinen, M., Laurila, T., Lohila, A., Measurements of CO2 exchange with an automated chamber system throughout the year, challenges in measuring night-Time respiration on porous peat soil (2014) Biogeosciences, 11, pp. 347-363. , https://doi.org/10.5194/bg-11-347-2014; Kostyanovsky, K., Huggins, D., Stockle, C., Waldo, S., Lamb, B., Developing a flow through chamber system for automated measurements of soil N2O and CO2 emissions (2018) Measurement, 113, pp. 172-180; Merbold, L., Wohlfahrt, G., Butterbach-Bahl, K., Pilegaard, K., DelSontro, T., Stoy, P., Zona, D., Preface, Towards a full greenhouse gas balance of the biosphere (2015) Biogeosciences, 12, pp. 453-456. , https://doi.org/10.5194/bg-12-453-2015; Nickerson, N., (2016) Evaluating Gas Emission Measurements Using Minimum Detectable Flux (MDF), , Eosense Inc., Dartmouth, Nova Scotia, Canada; Nicolini, G., Castaldi, S., Fratini, G., Valentini, R., A literature overview of micrometeorological CH4 and N2O flux measurements in terrestrial ecosystems (2013) Atmos. Environ, 81, pp. 311-319; O'Connell, C.S., Ruan, L., Silver, W.L., Drought drives rapid shifts in tropical rainforest soil biogeochemistry and greenhouse gas emissions (2018) Nat. Commun, 9, p. 1348. , https://doi.org/10.1038/s41467-018-03352; Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F., Erasmi, S., Greenhouse gas emissions from soils-A review (2016) Chem. Erde-Geochem, 76, pp. 327-352; Petitjean, C., Hénault, C., Perrin, A.-S., Pontet, C., Metay, A., Bernoux, M., Jehanno, T., Roggy, J.-C., Soil N2O emissions in French Guiana after the conversion of tropical forest to agriculture with the chop-And-mulch method (2015) Agr. Ecosyst. Environ, 208, pp. 64-74; Petrakis, S., Seyfferth, A., Kan, J., Inamdar, S., Vargas, R., Influence of experimental extreme water pulses on greenhouse gas emissions from soils (2017) Biogeochemistry, 133, pp. 147-164; Petrakis, S., Barba, J., Bond-Lamberty, B., Vargas, R., Using greenhouse gas fluxes to define soil functional types (2017) Plant Soil, pp. 1-10; Pumpanen, J., Kolari, P., Ilvesniemi, H., Minkkinen, K., Vesala, T., Niinistö, S., Lohila, A., Pihlatie, M., Comparison of different chamber techniques for measuring soil CO2 efflux (2004) Agr. Forest Meteorol, 123, pp. 159-176; Rowland, L., Hill, T.C., Stahl, C., Siebicke, L., Burban, B., Zaragoza-Castells, J., Ponton, S., Williams, M., Evidence for strong seasonality in the carbon storage and carbon use efficiency of an Amazonian forest (2014) Glob. Change Biol, 20, pp. 979-991; Rubio, V.E., Detto, M., Spatiotemporal variability of soil respiration in a seasonal tropical forest (2017) Ecol. Evol, 7, pp. 7104-7116; Savage, K., Phillips, R., Davidson, E., High temporal frequency measurements of greenhouse gas emissions from soils (2014) Biogeosciences, 11, pp. 2709-2720. , https://doi.org/10.5194/bg-11-2709-2014; Silver, W.L., Lugo, A., Keller, M., Soil oxygen availability and biogeochemistry along rainfall and topographic gradients in upland wet tropical forest soils (1999) Biogeochemistry, 44, pp. 301-328; Teh, Y.A., Diem, T., Jones, S., Huaraca Quispe, L.P., Baggs, E., Morley, N., Richards, M., Meir, P., Methane and nitrous oxide fluxes across an elevation gradient in the tropical Peruvian Andes (2014) Biogeosciences, 11, pp. 2325-2339. , https://doi.org/10.5194/bg-11-2325-2014; Verchot, L.V., Davidson, E.A., Cattânio, H., Ackerman, I.L., Erickson, H.E., Keller, M., Land use change and biogeochemical controls of nitrogen oxide emissions from soils in eastern Amazonia (1999) Global Biogeochem. Cy, 13, pp. 31-46; Verchot, L.V., Davidson, E.A., Cattânio, J.H., Ackerman, I.L., Land-use change and biogeochemical controls of methane fluxes in soils of eastern Amazonia (2000) Ecosystems, 3, pp. 41-56; Wagner, F., Hérault, B., Stahl, C., Bonal, D., Rossi, V., Modeling water availability for trees in tropical forests (2011) Agr. Forest Meteorol, 151, pp. 1202-1213 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 860  
Permanent link to this record
 

 
Author Rutishauser, E.; Herault, B.; Baraloto, C.; Blanc, L.; Descroix, L.; Sotta, E.D.; Ferreira, J.; Kanashiro, M.; Mazzei, L.; D'Oliveira, M.V.N.; De Oliveira, L.C.; Peña-Claros, M.; Putz, F.E.; Ruschel, A.R.; Rodney, K.; Roopsind, A.; Shenkin, A.; Da Silva, K.E.; De Souza, C.R.; Toledo, M.; Vidal, E.; West, T.A.P.; Wortel, V.; Sist, P. url  openurl
  Title Rapid tree carbon stock recovery in managed Amazonian forests Type Journal Article
  Year 2015 Publication Current Biology Abbreviated Journal Current Biology  
  Volume 25 Issue 18 Pages (up) R787-R788  
  Keywords  
  Abstract Summary While around 20% of the Amazonian forest has been cleared for pastures and agriculture, one fourth of the remaining forest is dedicated to wood production [1]. Most of these production forests have been or will be selectively harvested for commercial timber, but recent studies show that even soon after logging, harvested stands retain much of their tree-biomass carbon and biodiversity [2,3]. Comparing species richness of various animal taxa among logged and unlogged forests across the tropics, Burivalova et al.[4] found that despite some variability among taxa, biodiversity loss was generally explained by logging intensity (the number of trees extracted). Here, we use a network of 79 permanent sample plots (376 ha total) located at 10 sites across the Amazon Basin [5] to assess the main drivers of time-to-recovery of post-logging tree carbon (Table S1). Recovery time is of direct relevance to policies governing management practices (i.e., allowable volumes cut and cutting cycle lengths), and indirectly to forest-based climate change mitigation interventions. © 2015 Elsevier Ltd.  
  Address Biodiversity Department, CELOS, Paramaribo, Paramaribo, Suriname  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 2 October 2015 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 626  
Permanent link to this record
 

 
Author Turcotte, M.M.; Thomsen, C.J.M.; Broadhead, G.T.; Fine, P.V.A.; Godfrey, R.M.; Lamarre, G.P.A.; Meyer, S.T.; Richards, L.A.; Johnson, M.T.J. doi  openurl
  Title Percentage leaf herbivory across vascular plant species Type Journal Article
  Year 2014 Publication Ecology Abbreviated Journal Ecology  
  Volume 95 Issue 3 Pages (up) 788-788  
  Keywords  
  Abstract Herbivory is viewed as a major driver of plant evolution and the most important energy pathway from plants to higher trophic levels. Therefore, understanding patterns of herbivory on plants remains a key focus in evolution and ecology. The evolutionary impacts of leaf herbivory include altering plant fitness, local adaptation, the evolution of defenses, and the diversification of plants as well as natural enemies. Leaf herbivory also impacts ecological processes such as plant productivity, community composition, and ecosystem nutrient cycling. Understanding the impact of herbivory on these ecological and evolutionary processes requires species-specific, as opposed to community-level, measures of herbivory. In addition, species-specific data enables the use of modern comparative methods to account for phylogenetic non-independence. Although hundreds of studies have measured natural rates of leaf consumption, we are unaware of any accessible compilation of these data. We created such a data set to provide the raw data needed to test general hypotheses relating to plant?herbivore interactions and to test the influence of biotic and abiotic factors on herbivory rates across large spatial scales. A large repository will make this endeavor more efficient and robust. In total, we compiled 2641 population-level measures for either annual or daily rates of leaf herbivory across 1145 species of vascular plants collected from 189 studies. All damage measures represent natural occurrences of herbivory that span numerous angiosperm, gymnosperm, and fern species. To enable researchers to explore the causes of variation in herbivory and how these might interact, we added information about the study sites including: geolocation, climate classification, habitat descriptions (e.g., seashore, grassland, forest, agricultural fields), and plant trait information concerning growth form and duration (e.g., annual vs. perennial). We also included extensive details of the methodology used to measure leaf damage, including seasons and months of sampling, age of leaves, and the method used to estimate percentage area missing. We anticipate that these data will make it possible to test important hypotheses in the plant?herbivore literature, including the plant apparency hypothesis, the latitudinal-herbivory defense hypothesis, the resource availability hypothesis, and the macroevolutionary escalation of defense hypothesis.  
  Address  
  Corporate Author Thesis  
  Publisher Ecological Society of America Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0012-9658 ISBN Medium  
  Area Expedition Conference  
  Notes doi: 10.1890/13-1741.1 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 575  
Permanent link to this record
 

 
Author Scotti, I. openurl 
  Title Adaptive potential in forest tree populations: what is it, and how can we measure it? Type Journal Article
  Year 2010 Publication Annals of Forest Science Abbreviated Journal Ann. For. Sci.  
  Volume 67 Issue 8 Pages (up) 801  
  Keywords  
  Abstract  
  Address INRA, Unite Mixte Rech Ecol Forets Guyane EcoFoG, F-97387 Kourou, France, Email: ivan.scotti@ecofog.gf  
  Corporate Author Thesis  
  Publisher EDP SCIENCES S A Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1286-4560 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000283594400002 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 21  
Permanent link to this record
 

 
Author Clair, B.; Alteyrac, J.; Gronvold, A.; Espejo, J.; Chanson, B.; Alméras, T. pdf  url
openurl 
  Title Patterns of longitudinal and tangential maturation stresses in Eucalyptus nitens plantation trees Type Journal Article
  Year 2013 Publication Annals of Forest Science Abbreviated Journal Ann. Forest Sci.  
  Volume 70 Issue 8 Pages (up) 801-811  
  Keywords Eucalyptus nitens; G-layer; Longitudinal maturation stress; Maturation strain; Tangential maturation stress; Tension wood  
  Abstract Context: Tree orientation is controlled by asymmetric mechanical stresses set during wood maturation. The magnitude of maturation stress differs between longitudinal and tangential directions, and between normal and tension woods. Aims: We aimed at evaluating patterns of maturation stress on eucalypt plantation trees and their relation with growth, with a focus on tangential stress evaluation. Methods: Released maturation strains along longitudinal and tangential directions were measured around the circumference of 29 Eucalyptus nitens trees, including both straight and leaning trees. Results: Most trees produced asymmetric patterns of longitudinal maturation strain, but more than half of the maturation strain variability occurred between trees. Many trees produced high longitudinal tensile stress all around their circumference. High longitudinal tensile stress was not systematically associated with the presence of gelatinous layer. The average magnitude of released longitudinal maturation strain was found negatively correlated to the growth rate. A methodology is proposed to ensure reliable evaluation of released maturation strain in both longitudinal and tangential directions. Tangential strain evaluated with this method was lower than previously reported. Conclusion: The stress was always tensile along the longitudinal direction and compressive along the tangential direction, and their respective magnitude was positively correlated. This correlation does not result from a Poisson effect but may be related to the mechanism of maturation stress generation. © 2013 # The Author(s) 2013. This article is published with open access at Springerlink.com.  
  Address Facultad de Ciencias Forestales, Universidad de Concepcion, Ciudad Universitaria, Concepcion, Chile  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 12864560 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 16 December 2013; Source: Scopus; Coden: Afosf; doi: 10.1007/s13595-013-0318-4; Language of Original Document: English; Correspondence Address: Clair, B.; CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), Campus Agronomique, BP 701, 97387 Kourou, French Guiana; email: bruno.clair@univ-montp2.fr; Funding Details: ANR-12-BS09-0004, French National Research Agency; References: Alméras, T., Fournier, M., Biomechanical design and long-term stability of trees: Morphological and wood traits involved in the balance between weight increase and the gravitropic reaction (2009) J Theor Biol, 256, pp. 370-381. , 19013473 10.1016/j.jtbi.2008.10.011; Alméras, T., Thibaut, A., Gril, J., Effect of circumferential heterogeneity of wood maturation strain, modulus of elasticity and radial growth on the regulation of stem orientation in trees (2005) Trees, 19, pp. 457-467. , 10.1007/s00468-005-0407-6; Archer, R.R., (1986) Growth Stresses and Strains in Trees, , Springer Verlag Berlin/Heidelberg/New York; Archer, R.R., On the origin of growth stresses in trees. Part 1: Micro mechanics of the developing cambial cell wall. Wood Sci (1987) Technol., 21, pp. 139-154; Baillères, H., Chanson, B., Fournier, M., Tollier, M.T., Monties, B., Structure, composition chimique et retraits de maturation du bois chez les clones d' Eucalyptus (1995) Ann Sci for, 52, pp. 157-172. , 10.1051/forest:19950206; Bergman, R., Cai, Z., Carll, C.G., Clausen, C.A., Ma, D., Falk, R.H., Frihart, C.R., Star, (2010) Wood Handbook: Wood As An Engineering Material, , U.S. Department of Agriculture, Forest Service, Forest Products Laboratory., Washington D.C. (USA)/Madison, WI, (USA); Biechele, T., Nutto, L., Becker, G., Growth strain in Eucalyptus nitens at different stages of development (2009) Silva Fennica, 43, pp. 669-679; Bonser, R.H.C., Ennos, A.R., Measurement of prestrain in trees:implications for the determination of safety factors (1998) Funct Ecol, 12, pp. 971-974. , 10.1046/j.1365-2435.1998.00279.x; Boyd, J.D., Tree growth stresses – Part I: Growth stress evaluation (1950) Austr. J. Sci. Res. Series B, Biological Sciences, 3, pp. 270-293; Boyd, J.D., Tree growth stresses – Part II: The development of shakes and other visual failure in timber (1950) Aust. J. App. Sci., 1, pp. 296-312; Clair, B., Alméras, T., Sugiyama, J., Compression stress in opposite wood of angiosperms: Observations in chestnut, mani and poplar (2006) Ann for Sci, 63, pp. 507-510. , 10.1051/forest:2006032; Clair, B., Ruelle, J., Beauchêne, J., Prevost, M.F., Fournier, M., Tension wood and opposite wood in 21 tropical rain forest species. 1. Occurence and efficiency of G-layer (2006) IAWA J, 27, pp. 329-338; Clair, B., Ruelle, J., Thibaut, B., Relationship between growth stress, mechano-physical properties and proportion of fibre with gelatinous layer in Chestnut (Castanea sativa Mill.) (2003) Holzforschung, 57, pp. 189-195. , 1:CAS:528:DC%2BD3sXjs1ensr8%3D; Coutand, C., Fournier, M., Moulia, B., The gravitropic response of poplar trunks: Key roles of prestressed wood regulation and the relative kinetics of cambial growth versus wood maturation (2007) Plant Physiol, 144, pp. 1166-1180. , 17468227 10.1104/pp.106.088153 1:CAS:528:DC%2BD2sXmvValtbg%3D; Fang, C.-H., Clair, B., Gril, J., Liu, S.-Q., Growth stresses are highly controlled by the amount of G-layer in poplar tension wood (2008) IAWA J, 29, pp. 237-246. , 10.1163/22941932-90000183; Ferrand, J.C., Study of growth stresses. 1. Measurement method on increment cores (1982) Ann Sci for, 39, pp. 109-142. , 10.1051/forest:19820201 (in French with English summary); Ferrand, J.C., Study of growth stresses. 2. Variations in the forest of growth stresses of beech (Fagus sylvatica) (1982) Ann Sci for, 39, pp. 187-218. , 10.1051/forest:19820301 (in French with English summary); Ferrand, J.C., Study of growth stresses. 3. Eucalyptus dedegatensis and Eucalyptus nitens – Influence of sylviculture and site index (1982) Ann Sci for, 39, pp. 355-378. , 10.1051/forest:19820402 (in French with English summary); Fournier, M., Chanson, B., Thibaut, B., Guitard, D., Measurement of residual growth strains at the stem surface. Observations of different species (1994) Ann. For. Sci., 51, pp. 249-266. , 10.1051/forest:19940305 (in French with English summary); Gerard, J., Bailleres, H., Fournier, M., Thibaut, B., Wood quality in plantation Eucalyptus – A study of variation in three reference properties (1995) Bois For. Trop, 245, pp. 101-110. , (in French with English summary); Giordano, G., Curro, P., Ghisi, G., Contribution of internal stresses in wood of Eucalyptus (1969) Wood Sci Technol, 3, pp. 1-13. , 10.1007/BF00349980; Jacobs, M.R., The fibre tension of woody stems, with special reference to the genus Eucalyptus (1938) Bull. Com. For. Bur, 22, p. 37; Jacobs, M.R., (1945) The Growth Stresses of Woody Stems, , Commonwealth Forestry Bureau Canberra, Australia; Jullien, D., Laghdir, A., Gril, J., Modelling log-end cracks due to growth stresses: Calculation of the elastic energy release rate (2003) Holzforschung, 57, pp. 407-414. , 10.1515/HF.2003.060 1:CAS:528:DC%2BD3sXntFeksrk%3D; Jullien, D., Gril, J., Growth strain assessment at the periphery of small-diameter trees using the two-grooves method: Influence of operating parameters estimated by numerical simulations (2008) Wood Sci. Technol., 42, pp. 551-565. , 10.1007/s00226-008-0202-9 1:CAS:528:DC%2BD1cXhtVOiu7jL; Jullien, D., Widmann, R., Loup, C., Thibaut, B., Relationship between tree morphology and growth stress in mature European beech stands (2013) Ann for Sci, 68, pp. 681-688; Kubler, H., Studies on growth stresses in trees – Part I: The origin of growth stresses and the stresses in transverse direction (1959) Holz Als Roh- Und Werkstoff, 17, pp. 1-9. , 10.1007/BF02608827; Kubler, H., Growth stresses in trees and related wood properties (1987) For. Abst., 48, pp. 131-189; Moulia, B., Coutand, C., Lenne, C., Posture control and skeletal mechanical acclimation in terrestrial plants: Implications for mechanical modelling of plant architecture (2006) Am J Bot, 93, pp. 1477-1489. , 21642095 10.3732/ajb.93.10.1477; Nicholson, J., A rapid method for estimating the longitudinal growth stress in logs (1971) Wood Sci. Technol., 5, pp. 40-48. , 10.1007/BF00363119; Nicholson, J.E., Growth stress differences in Eucalypts (1973) For Sci, 19, pp. 169-174; Okuyama, T., Sasaki, Y., Kikata, Y., Kawai, N., The seasonal change in growth stress in the tree trunk (1981) Mokuzai Gakkaishi, 27, pp. 350-355; Okuyama, T., Yamamoto, H., Yoshida, M., Hattori, Y., Archer, R.R., Growth stresses in tension wood: Role of microfibrils and lignification (1994) Ann for Sci, 51, pp. 291-300. , 10.1051/forest:19940308; Onaka, F., Studies on compression and tension wood (traduction) (1949) Wood Res, 1, pp. 1-88. , traduction n.p; Sasaki, Y., Okuyama, T., Kikata, Y., The evolution process of the growth stress in the tree. The surface stresses on the tree (1978) Mokuzai Gakkaishi, 24, pp. 140-157. , (in Japenese with English summary); Scurfield, G., Histochemistry of reaction wood cell walls in two species of Eucalyptus and in Tristania Conferta R (1972) Br. Aust. J. Bot., 20, pp. 9-26. , 10.1071/BT9720009 1:CAS:528:DyaE38XltFWksLk%3D; Yamamoto, H., Generation mechanism of growth stresses in wood cell walls: Roles of lignin deposition and cellulose microfibril during cell wall maturation (1998) Wood Sci. Technol., 32, pp. 171-182. , 1:CAS:528:DyaK1cXktlKhsb0%3D; Yamamoto, H., Abe, K., Arakawa, Y., Okuyama, T., Gril, J., Role of the gelatinous layer on the origin of the physical properties of the tension wood of Acer sieboldianum (2005) Wood Sci. Technol., 51, pp. 222-233. , 10.1007/s10086-004-0639-x 1:CAS:528:DC%2BD2MXpslOqurs%3D; Yamamoto, H., Yoshida, M., Okuyama, T., Growth stress controls negative gravitropism in woody plant stems (2002) Planta, 216, pp. 280-292. , 12447542 10.1007/s00425-002-0846-x 1:CAS:528:DC%2BD3sXktFOiug%3D%3D; Yang, J.L., Waugh, G., Growth stress, its measurement and effects (2001) Autr. For., 64, pp. 127-135; Yoshida, M., Ohta, H., Yamamoto, H., Okuyama, T., Tensile growth stress and lignin distribution in the cell walls of yellow poplar, Liriodendron tulipifera Linn (2002) Trees, 16, pp. 457-464. , 10.1007/s00468-002-0186-2 1:CAS:528:DC%2BD38XosFWltro%3D; Yoshida, M., Okuyama, T., Techniques for measuring growth stress (2002) Holzforschung, 56, pp. 461-467. , 10.1515/HF.2002.071 1:CAS:528:DC%2BD38XovVaru7c%3D Approved no  
  Call Number EcoFoG @ webmaster @ Serial 519  
Permanent link to this record
 

 
Author Sist, P.; Picard, N.; Gourlet-Fleury, S. openurl 
  Title Sustainable cutting cycle and yields in a lowland mixed dipterocarp forest of Borneo Type Journal Article
  Year 2003 Publication Annals of Forest Science Abbreviated Journal Ann. For. Sci.  
  Volume 60 Issue 8 Pages (up) 803-814  
  Keywords  
  Abstract Based on a 6 year monitoring of the dynamics of a mixed dipterocarp forest in East Borneo (1990-1996), we built a matrix model to predict the sustainable cutting cycle in relation with the extraction and damage rates. Plots were ordered according to three main groups of damage and logging intensity. The first group G1 gathered slightly damaged plots with a remaining basal area greater than or equal to80% of the original (mean logging intensity = 6 trees ha(-1)). Plots belonging to G2, had a remaining basal area varying between 70 and 79% of the original one (mean logging intensity = 8 trees ha(-1)). Finally, G3 gathers highly damaged plots with a remaining basal area < 70% of the original one and a high logging intensity (mean = 14 trees ha(-1)). The mean sustainable cutting cycles predicted in the three groups were significantly different and equal 27, 41 and 89 years in G1, G2 and G3 respectively. However, the respective mean annual extracted volumes were similar: 1.6, 1.8 and 1.4 m(3) ha(-1) year(-1), respectively in G1, G2 and G3. The model suggests that a 40 year cycle, extracting 8 trees ha(-1) (60 m(3) ha(-1)) and an annual volume of 1.5 m(3) ha(-1) year(-1) is the best option to preserve ecological integrity of the forest, to ensure yield sustainability and, according to existing cost analysis, economic profitability. This result is also consistent with other studies which already demonstrated that logging damage reduction using RIL techniques could be only significant with a moderate felling intensity not exceeding 8 trees ha(-1). This felling intensity threshold can be easily achieved by applying simple harvesting rules.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1286-4560 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000221039000007 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 310  
Permanent link to this record
 

 
Author Amusant, N.; Fournier, M.; Beauchene, J. openurl 
  Title Colour and decay resistance and its relationships in Eperua grandiflora Type Journal Article
  Year 2008 Publication Annals of Forest Science Abbreviated Journal Ann. For. Sci.  
  Volume 65 Issue 8 Pages (up) 806  
  Keywords natural durability; colour; decay resistance; variability; heartwood; tropical wood  
  Abstract Eperua grandiflora, which is widely distributed in the French Guiana forest region, shows high variability in decay resistance. Further information concerning this wood quality parameter is necessary, but standard testing methods are complex and time-consuming. We assessed the use of colorimetry to determine durability in heartwood samples from a range of trees. Eperua grandiflora colour parameters were measured using a CIELAB system, revealing that the tree effect was greater than the radial position and height effects. The wood samples were exposed to Coriolus versicolor and Antrodia sp. according to two European standards (En 350-1 and XP CEN TS 15083-1). Eperua grandiflora is more susceptible to brown rot. These two standards did not give the same durability classes. The high variation in natural durability was due to the tree effect. These two properties were found to be correlated and the assessment also distinguished the extreme durability classes but they are not sufficient to classify the class of durability of this species.  
  Address [Amusant, Nadine] CIRAD, PERSYT, UR Valorisat Bois Tropicaux, F-34538 Montpellier 5, France, Email: nadine.amusant@cirad.fr  
  Corporate Author Thesis  
  Publisher EDP SCIENCES S A Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1286-4560 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000261431600006 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 127  
Permanent link to this record
 

 
Author Aimene, Y.; Dorville, R.; Omrane, A. url  openurl
  Title Optimal control for trees trunk diameter estimation in rain forest ecology Type Journal Article
  Year 2013 Publication Applied Mathematical Sciences Abbreviated Journal  
  Volume 7 Issue 17-20 Pages (up) 807-816  
  Keywords Missing data; Optimal control; Tree trunk diameter  
  Abstract We study the optimal control question for an important mechanical problem related to tree trunk diameter variation in tropical forest ecology where some data are missing. Within a cost function, the control problem is formulated with a mechanical model that requires boundary conditions tosolve all equations. We give a characterization of the optimal measurement function for the tree trunk problem.  
  Address Laboratoire CEREGMIA EA 2440, Université Antilles-Guyane, I.E.S.G Campus de Trou-Biran, Route de Baduel, 97337 Cayenne, French Guiana  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 21 February 2013; Source: Scopus Approved no  
  Call Number EcoFoG @ webmaster @ Serial 469  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: