|   | 
Details
   web
Records
Author Leroy, C.; Carrias, J.-F.; Céréghino, R.; Corbara, B.
Title The contribution of microorganisms and metazoans to mineral nutrition in bromeliads Type Journal Article
Year 2016 Publication Journal of Plant Ecology Abbreviated Journal Journal of Plant Ecology
Volume 9 Issue 3 Pages (up) 241-255
Keywords digestive mutualism; insect-assisted nutrients; leaf δ15N; multiple N sources; myrmecotrophy
Abstract Aims One critical challenge for plants is to maintain an adequate nutrient supply under fluctuating environmental conditions. This is particularly true for epiphytic species that have limited or no access to the pedosphere and often live in harsh climates. Bromeliads have evolved key innovations such as epiphytism, water-absorbing leaf trichomes, tank habit and Crassulacean acid metabolism (CAM) photosynthesis that enable them to survive under various environmental conditions. Bromeliads encompass diverse ecological types that live on different substrates (they can be terrestrial, epilithic or epiphytic) and vary in their ability to retain water (they can be tank-forming or tankless) and photosynthetic pathway (i.e. C3 or CAM). In this review, we outline the nutritional modes and specializations that enable bromeliads to thrive in a wide range of nutrient-poor (mostly nitrogen-depleted) environments. Important Findings Bromeliads have evolved a great diversity of morphologies and functional adaptations leading to the existence of numerous nutritional modes. Focusing on species that have absorptive foliar trichomes, we review evidence that bromeliads have evolved multi-faceted nutritional strategies to respond to fluctuations in the supply of natural nitrogen (N). These plants have developed mutualistic associations with many different and functionally diverse terrestrial and aquatic microorganisms and metazoans that contribute substantially to their mineral nutrition and, thus, their fitness and survival. Bacterial and fungal microbiota-assisted N provisioning, protocarnivory, digestive mutualisms and myrmecotrophic pathways are the main strategies used by bromeliads to acquire nitrogen. The combination of different nutritional pathways in bromeliads represents an important adaptation enabling them to exploit nutrient-poor habitats. Nonetheless, as has been shown for several other vascular plants, multiple partners are involved in nutrient acquisition indicating that there have been convergent adaptations to nutrient scarcity. Finally, we point out some gaps in the current knowledge of bromeliad nutrition that offer fascinating research opportunities. © The Author 2015. Published by Oxford University Press on behalf of the Institute of Botany, Chinese Academy of Sciences and the Botanical Society of China.
Address CNRS, EcoLab, 118 Route de Narbonne, Toulouse, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 28 June 2016 Approved no
Call Number EcoFoG @ webmaster @ Serial 683
Permanent link to this record
 

 
Author Herault, B.; Beauchene, J.; Muller, F.; Wagner, F.; Baraloto, C.; Blanc, L.; Martin, J.M.
Title Modeling decay rates of dead wood in a neotropical forest Type Journal Article
Year 2010 Publication Oecologia Abbreviated Journal Oecologia
Volume 164 Issue 1 Pages (up) 243-251
Keywords Amazonia; Carbon cycle; Decomposition; Selective logging; Rainforest; Coarse woody debris
Abstract Variation of dead wood decay rates among tropical trees remains one source of uncertainty in global models of the carbon cycle. Taking advantage of a broad forest plot network surveyed for tree mortality over a 23-year period, we measured the remaining fraction of boles from 367 dead trees from 26 neotropical species widely varying in wood density (0.23-1.24 g cm(-3)) and tree circumference at death time (31.5-272.0 cm). We modeled decay rates within a Bayesian framework assuming a first order differential equation to model the decomposition process and tested for the effects of forest management (selective logging vs. unexploited), of mode of death (standing vs. downed) and of topographical levels (bottomlands vs. hillsides vs. hilltops) on wood decay rates. The general decay model predicts the observed remaining fraction of dead wood (R (2) = 60%) with only two biological predictors: tree circumference at death time and wood specific density. Neither selective logging nor local topography had a differential effect on wood decay rates. Including the mode of death into the model revealed that standing dead trees decomposed faster than downed dead trees, but the gain of model accuracy remains rather marginal. Overall, these results suggest that the release of carbon from tropical dead trees to the atmosphere can be simply estimated using tree circumference at death time and wood density.
Address [Herault, Bruno; Wagner, Fabien; Martin, Jean-Michel] Univ Antilles Guyane, UMR EcoFoG, F-97387 Kourou, France, Email: bruno.herault@ecofog.gf
Corporate Author Thesis
Publisher SPRINGER Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0029-8549 ISBN Medium
Area Expedition Conference
Notes ISI:000280962200023 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 45
Permanent link to this record
 

 
Author Lang, G.; Marcon, E.; Puech, F.
Title Distance-based measures of spatial concentration: introducing a relative density function Type Journal Article
Year 2020 Publication Annals of Regional Science Abbreviated Journal Ann. Reg. Sci.
Volume 64 Issue 2 Pages (up) 243-265
Keywords Agglomeration; Aggregation; Economic geography; Point patterns; Spatial concentration; accuracy assessment; econometrics; economic activity; economic geography; industrial agglomeration; industrial location; location decision; spatial analysis; spatial distribution
Abstract For more than a decade, distance-based methods have been widely employed and constantly improved in spatial economics. These methods are a very useful tool for accurately evaluating the spatial distribution of economic activity. We introduce a new distance-based statistical measure for evaluating the spatial concentration of industries. The m function is the first relative density function to be proposed in economics. This tool supplements the typology of distance-based methods recently drawn up by Marcon and Puech (J Econ Geogr 3(4):409–428, 2003). By considering several simulated and real examples, we show the advantages and the limits of the m function for detecting spatial structures in economics. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.
Address RITM, Univ. Paris-Sud, Université Paris-Saclay and CREST, Sceaux, France
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 05701864 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 976
Permanent link to this record
 

 
Author Ghislain, B.; Clair, B.
Title Diversity in the organisation and lignification of tension wood fibre walls – A review Type Journal Article
Year 2017 Publication IAWA Journal Abbreviated Journal
Volume 38 Issue 2 Pages (up) 245-265
Keywords diversity; fibres; G-layer; lignification; multilayered tension wood fibre walls; S1 + S2 + S3 + G; Tension wood
Abstract Tension wood, a tissue developed by angiosperm trees to actively recover their verticality, has long been defined by the presence of an unlignified cellulosic inner layer in the cell wall of fibres, called the G-layer. Although it was known that some species have no G-layer, the definition was appropriate since it enabled easy detection of tension wood zones using various staining techniques for either cellulose or lignin. For several years now, irrespective of its anatomical structure, tension wood has been defined by its high mechanical internal tensile stress. This definition enables screening of the diversity of cell walls in tension wood fibres. Recent results obtained in tropical species with tension wood with a delay in the lignification of the G-layer opened our eyes to the effective presence of large amounts of lignin in the G-layer of some species. This led us to review older literature mentioning the presence of lignin deposits in the G-layer and give them credit. Advances in the knowledge of tension wood fibres allow us to reconsider some previous classifications of the diversity in the organisation of the fibre walls of the tension wood. © 2017 International Association of Wood Anatomists.
Address CNRS, UMR EcoFoG, AgroParisTech, Cirad, INRA, Université des Antilles, Université de Guyane, Kourou, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 2 September 2017 Approved no
Call Number EcoFoG @ webmaster @ Serial 763
Permanent link to this record
 

 
Author Levionnois, S.; Coste, S.; Nicolini, E.; Stahl, C.; Morel, H.; Heuret, P.
Title Scaling of petiole anatomies, mechanics and vasculatures with leaf size in the widespread Neotropical pioneer tree species Cecropia obtusa Trécul (Urticaceae) Type Journal Article
Year 2020 Publication Tree physiology Abbreviated Journal Tree Physiol.
Volume 40 Issue 2 Pages (up) 245-258
Keywords allometry; leaf size; petiole anatomy; scaling; theoretical hydraulic conductivity; vessel widening; xylem
Abstract Although the leaf economic spectrum has deepened our understanding of leaf trait variability, little is known about how leaf traits scale with leaf area. This uncertainty has resulted in the assumption that leaf traits should vary by keeping the same pace of variation with increases in leaf area across the leaf size range. We evaluated the scaling of morphological, tissue-surface and vascular traits with overall leaf area, and the functional significance of such scaling. We examined 1,271 leaves for morphological traits, and 124 leaves for anatomical and hydraulic traits, from 38 trees of Cecropia obtusa Trécul (Urticaceae) in French Guiana. Cecropia is a Neotropical genus of pioneer trees that can exhibit large laminas (0.4 m2 for C. obtusa), with leaf size ranging by two orders of magnitude. We measured (i) tissue fractions within petioles and their second moment of area, (ii) theoretical xylem hydraulic efficiency of petioles and (iii) the extent of leaf vessel widening within the hydraulic path. We found that different scaling of morphological trait variability allows for optimisation of lamina display among larger leaves, especially the positive allometric relationship between lamina area and petiole cross-sectional area. Increasing the fraction of pith is a key factor that increases the geometrical effect of supportive tissues on mechanical rigidity and thereby increases carbon-use efficiency. We found that increasing xylem hydraulic efficiency with vessel size results in lower leaf lamina area: xylem ratios, which also results in potential carbon savings for large leaves. We found that the vessel widening is consistent with hydraulic optimisation models. Leaf size variability modifies scaling of leaf traits in this large-leaved species. © The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permission@oup.com.
Address UMR AMAP, CIRAD, CNRS, IRD, Université de Montpellier, Montpellier, 34398, France
Corporate Author Thesis
Publisher NLM (Medline) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 17584469 (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 16 March 2020 Approved no
Call Number EcoFoG @ webmaster @ Serial 921
Permanent link to this record
 

 
Author Sharma, K.; Degen, B.; Von Wuehlisch, G.; Singh, N.B.
Title Allozyme variation in eight natural populations of Pinus roxburghii Sarg. in India Type Journal Article
Year 2002 Publication Silvae Genetica Abbreviated Journal Silvae Genet.
Volume 51 Issue 5-6 Pages (up) 246-253
Keywords Allozymes; Differentiation; Genetic distance; Multilocus diversity; Pinus roxburghii; Variation; Enzymes; Forestry; Genes; Allozyme variations; Genetic engineering; Enzymes; Genes; Genetic Engineering; Pinus Roxburghii; Embryophyta; Pinus roxburghii
Abstract Seeds collected from eight populations of Chir pine (Pinus roxburghii SARG.) from the natural distribution range of the species in Himachal Himalayas in India were analysed isozymatically at 11 enzyme systems. For the enzyme systems studied, 25 gene loci were identified out of which 18 were polymorphic. The observed mean values for genetic variation were slightly lower than mean values reported for Pinus species (number of alleles: 1.65 compared to 2.36; effective number of alleles: 1.13 compared to 1.26; observed heterozygosity: 0.153 compared to 0.179). A small differentiation among populations and large variation within populations were reflected by small value of GST (0.04): Considering the different genetic parameters three populations seem favourable for gene conservation measures.
Address Silviculture Division, Forest Research Institute, Dehra Dun – 248 006, India
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 00375349 (Issn) ISBN Medium
Area Expedition Conference
Notes Cited By (since 1996): 4; Export Date: 22 October 2011; Source: Scopus; Coden: Sigea; Language of Original Document: English; Correspondence Address: Sharma, K.; Dr. Y. S. Parmar Univ. Hort./Forest., Reg. Horticultural Research Station, Jachh (Nurpur)-176 201 (HP), India Approved no
Call Number EcoFoG @ webmaster @ Serial 360
Permanent link to this record
 

 
Author Salas-Lopez, A.; Mickal, H.; Menzel, F.; Orivel, J.
Title Ant-mediated ecosystem processes are driven by trophic community structure but mainly by the environment Type Journal Article
Year 2017 Publication Oecologia Abbreviated Journal Oecologia
Volume 183 Issue 1 Pages (up) 249-261
Keywords
Abstract The diversity and functional identity of organisms are known to be relevant to the maintenance of ecosystem processes but can be variable in different environments. Particularly, it is uncertain whether ecosystem processes are driven by complementary effects or by dominant groups of species. We investigated how community structure (i.e., the diversity and relative abundance of biological entities) explains the community-level contribution of Neotropical ant communities to different ecosystem processes in different environments. Ants were attracted with food resources representing six ant-mediated ecosystem processes in four environments: ground and vegetation strata in cropland and forest habitats. The exploitation frequencies of the baits were used to calculate the taxonomic and trophic structures of ant communities and their contribution to ecosystem processes considered individually or in combination (i.e., multifunctionality). We then investigated whether community structure variables could predict ecosystem processes and whether such relationships were affected by the environment. We found that forests presented a greater biodiversity and trophic complementarity and lower dominance than croplands, but this did not affect ecosystem processes. In contrast, trophic complementarity was greater on the ground than on vegetation and was followed by greater resource exploitation levels. Although ant participation in ecosystem processes can be predicted by means of trophic-based indices, we found that variations in community structure and performance in ecosystem processes were best explained by environment. We conclude that determining the extent to which the dominance and complementarity of communities affect ecosystem processes in different environments requires a better understanding of resource availability to different species.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1432-1939 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Salas-Lopez2017 Serial 715
Permanent link to this record
 

 
Author Devault, D.A.; Lévi, Y.; Karolak, S.
Title Applying sewage epidemiology approach to estimate illicit drug consumption in a tropical context: Bias related to sewage temperature and pH Type Journal Article
Year 2017 Publication Science of the Total Environment Abbreviated Journal Science of the Total Environment
Volume 584-585 Issue Pages (up) 252-258
Keywords Cannabis; Degradation; H2s; Half-life; Illicit drugs; Wastewater
Abstract Illicit drug consumption can be estimated from drug target residue (DTR) in wastewater, with the reliability of results being partly linked to DTR stability in the sewage network. However, wastewater temperature and pH drive the stability of molecules and, in this context, tropical conditions must be studied to specify the impact of residence time in the sewage network on DTR degradation. Warmth enhances biotic and abiotic processes such as degradation, leading to a decrease in oxygen content, and consequently, early diagenesis conditions in wastewater. In this study, we conduct laboratory studies under acidic pH and high temperature (30 °C) conditions to determine the degradation half-lives of cocaine (COC), tetrahydrocannabinol, and heroine targets, allowing COC/benzoylecgonine (BZE) ratio variations to be predicted in sewage networks. A rapid COC degradation is observed, as already reported in the literature but without a short-term significant difference between 20 °C and 30 °C. Acidic pH seems to prevent degradation. Thus, theoretically, the use of COC as DTR is only reliable in acidic conditions, with the decrease in COC concentration being 6% at 8 h, but over 40% in other conditions. By contrast, the use of BZE as DTR to estimate COC consumption, which is performed in practice, can be undertaken with the same back-calculation equation as used in temperate countries. However, 11-nor-delta-9-carboxytetrahydrocannabinol stability is more influenced by high temperature: concentration levels after 24 h are 20% lower at 30 °C than at 20 °C, corresponding to a 20% and 40% decrease, respectively. Based on a mean residence time of 8 h, underestimated cannabis consumption is close to 15% in tropical contexts, which is double that of temperate areas. © 2017 Elsevier B.V.
Address Public Health and Environnement Laboratory, UMR 8079 Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 8 March 2017 Approved no
Call Number EcoFoG @ webmaster @ Serial 741
Permanent link to this record
 

 
Author Denis, T.; Herault, B.; Jaouen, G.; Brunaux, O.; Guitet, S.; Richard-Hansen, C.
Title Black Curassow habitat relationships in terra firme forests of the Guiana Shield: A multiscale approach Type Journal Article
Year 2016 Publication The Condor Abbreviated Journal The Condor
Volume 118 Issue 2 Pages (up) 253-273
Keywords
Abstract ABSTRACT The Black Curassow (Crax alector) is a large game bird with Vulnerable conservation status found in north-central South America. We examined its distributional pattern across French Guiana using a large number of environmental descriptors at 3 scales of analysis: landscape, forest type, and microhabitat. We used a hierarchical model with temporary emigration and imperfect detection for data collected by standard distance sampling methods at 35 study sites. At the landscape scale, Black Curassow density decreased with hunting pressure and increased with steeper slopes in both hunted and unhunted areas. Topography appeared to be a good proxy for Black Curassow ecological requirements and probably reflected habitat quality. At the forest scale, population density was negatively correlated with the abundance of palms and Mimosoideae and positively correlated with the abundance of Lauraceae. Botanical families did not directly influence Black Curassow distribution, but rather determined spatial patterns by being markers of a particular forest type. At the microhabitat scale, Black Curassows used hilltops more frequently than other parts of the local topographical gradient. Our multiscale analysis shows that this species' distribution can be explained by biotic or abiotic conditions, regardless of the scale. For conservation, we recommend maintaining connectivity between Black Curassow populations separated by hunted areas. Our predicted densities could be used to adapt hunting quotas across French Guiana's forests. We show that combining field and remote sensing data helps to understand the ecological processes responsible for Black Curassow habitat relationships.
Address
Corporate Author Thesis
Publisher American Ornithological Society Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0010-5422 ISBN Medium
Area Expedition Conference
Notes doi: 10.1650/CONDOR-15-28.1 Approved no
Call Number EcoFoG @ webmaster @ Serial 714
Permanent link to this record
 

 
Author Le Guen, R.; Corbara, B.; Rossi, V.; Azémar, F.; Dejean, A.
Title Reciprocal protection from natural enemies in an ant-wasp association Type Journal Article
Year 2015 Publication Comptes Rendus – Biologies Abbreviated Journal Comptes Rendus – Biologies
Volume 338 Issue 4 Pages (up) 255-259
Keywords Aggressiveness; Arboreal ants; Azteca; Polybia; Protection mutualism; Social wasps
Abstract Abstract We show that in French Guiana the large carton nests of Azteca chartifex, a territorially-dominant arboreal dolichoderine ant, are protected from bird attacks when this ant lives in association with Polybia rejecta, an epiponine social wasp. Because A. chartifex colonies are well known for their ability to divert army ant raids from the base of their host tree so that they protect their associated wasps from these raids, there is a reciprocal benefit for these two partners, permitting us to call this association a mutualism. We also show that P. rejecta nests are significantly less often attacked by birds than are those of two compared epiponine social wasp species. Furthermore, experimentation using a standardized protocol demonstrated the significantly higher aggressiveness of P. rejecta compared to seven other wasp species. We conclude that the efficacious protection of its associated ant nests is likely due to the extreme aggressiveness of P. rejecta. © 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Address CNRS, Écologie des forêts de Guyane (UMR-CNRS 8172), Campus agronomique, BP 316Kourou cedex, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 24 April 2015 Approved no
Call Number EcoFoG @ webmaster @ Serial 600
Permanent link to this record