|   | 
Details
   web
Records
Author (down) Maia, A.C.D.; Dötterl, S.; Kaiser, R.; Silberbauer-Gottsberger, I.; Teichert, H.; Gibernau, M.; do Amaral Ferraz Navarro, D.M.; Schlindwein, C.; Gottsberger, G.
Title The Key Role of 4-methyl-5-vinylthiazole in the Attraction of Scarab Beetle Pollinators: A Unique Olfactory Floral Signal Shared by Annonaceae and Araceae Type Journal Article
Year 2012 Publication Journal of Chemical Ecology Abbreviated Journal J. Chem. Ecol.
Volume 38 Issue 9 Pages 1072-1080
Keywords Beetle pollination; Floral scent; Gas chromatography-mass spectrometry (GC-MS); Olfactory-mediated attraction
Abstract Cyclocephaline scarabs are specialised scent-driven pollinators, implicated with the reproductive success of several Neotropical plant taxa. Night-blooming flowers pollinated by these beetles are thermogenic and release intense fragrances synchronized to pollinator activity. However, data on floral scent composition within such mutualistic interactions are scarce, and the identity of behaviorally active compounds involved is largely unknown. We performed GC-MS analyses of floral scents of four species of Annona (magnoliids, Annonaceae) and Caladium bicolor (monocots, Araceae), and demonstrated the chemical basis for the attraction of their effective pollinators. 4-Methyl-5-vinylthiazole, a nitrogen and sulphur-containing heterocyclic compound previously unreported in flowers, was found as a prominent constituent in all studied species. Field biotests confirmed that it is highly attractive to both male and female beetles of three species of the genus Cyclocephala, pollinators of the studied plant taxa. The origin of 4-methyl-5-vinylthiazole in plants might be associated with the metabolism of thiamine (vitamin B1), and we hypothesize that the presence of this compound in unrelated lineages of angiosperms is either linked to selective expression of a plesiomorphic biosynthetic pathway or to parallel evolution. © 2012 Springer Science+Business Media, LLC.
Address Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 00980331 (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 2 November 2012; Source: Scopus; Coden: Jcecd; doi: 10.1007/s10886-012-0173-z; Language of Original Document: English; Correspondence Address: Maia, A. C. D.; Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife 50740-560, Brazil; email: arturcamposmaia@yahoo.com.br Approved no
Call Number EcoFoG @ webmaster @ Serial 444
Permanent link to this record
 

 
Author (down) Mahoui,Sihem ; Moulay, Mohamed Said ; Omrane, Abdennebi
Title Finite element approach to linear parabolic pointwise control problems of incomplete data Type Journal Article
Year 2020 Publication International Journal of Systems Science Abbreviated Journal
Volume 51 Issue 14 Pages 2597-2609
Keywords Optimal control problem ; low-regret control ; pointwise control ; finite element method ; a priori error estimates
Abstract In this paper we give a priori error estimates for finite element approximations of linear parabolicproblems with pointwise control and incomplete data. We discretise the optimal control problemby using piecewise linear and continuous finite elements for the space discretisation of the state,and we use the backward Euler scheme for time discretisation. We prove a priori error estimates forthe state, the adjoint-state as well as for the low-regret pointwise optimal control.
Address
Corporate Author Thesis
Publisher TAYLOR & FRANCIS LTD Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 935
Permanent link to this record
 

 
Author (down) Maggia, Marie-Eugénie ; Decaëns, Thibaud ; Lapied, Emmanuel ; Dupont, Lise ; Roy, Virginie ; Schimann, Heidy ; Orivel, Jérome ; Murienne, Jérôme ; Baraloto, Christophier ; Cottenie, Karl ; Steinke, Dirk
Title At each site its diversity: DNA barcoding reveals remarkable earthworm diversity in neotropical rainforests of French Guiana Type Journal Article
Year 2021 Publication Applied Soil Ecology Abbreviated Journal
Volume 164 Issue Pages 103932
Keywords DNA barcoding Tropical rainforest Community ecology Diversity level Sampling methods
Abstract Despite their recognized essential role in soil, earthworms in tropical environments are still understudied. The aim of this study was to re-evaluate the diversity at the regional scale, as well as to investigate the environmental and spatial drivers of earthworm communities. We sampled earthworm communities across a range of habitats at six localities in French Guiana using three different sampling methods. We generated 1675 DNA barcodes and combined them with data from a previous study. Together, all sequences clustered into 119 MOTUs which were used as proxy to assess species richness. Only two MOTUs were common between the six localities and 20.2% were singletons, showing very high regional species richness and a high number of rare species. A canonical redundancy analysis was used to identify key drivers of the earthworm community composition. The RDA results and beta-diversity calculations both show strong species turnover and a strong spatial effect, resulting from dispersal limitations that are responsible for the current community composition. Sampling in different microhabitats allowed the discovery of 23 MOTUs that are exclusively found in decaying trunks and epiphytes, highlighting hidden diversity of earthworms outside of soil.
Address
Corporate Author Thesis
Publisher Elsevier B.V. Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0929-1393 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 1055
Permanent link to this record
 

 
Author (down) Luyssaert, S.; Inglima, I.; Jung, M.; Richardson, A.D.; Reichsteins, M.; Papale, D.; Piao, S.L.; Schulzes, E.D.; Wingate, L.; Matteucci, G.; Aragao, L.; Aubinet, M.; Beers, C.; Bernhoffer, C.; Black, K.G.; Bonal, D.; Bonnefond, J.M.; Chambers, J.; Ciais, P.; Cook, B.; Davis, K.J.; Dolman, A.J.; Gielen, B.; Goulden, M.; Grace, J.; Granier, A.; Grelle, A.; Griffis, T.; Grunwald, T.; Guidolotti, G.; Hanson, P.J.; Harding, R.; Hollinger, D.Y.; Hutyra, L.R.; Kolar, P.; Kruijt, B.; Kutsch, W.; Lagergren, F.; Laurila, T.; Law, B.E.; Le Maire, G.; Lindroth, A.; Loustau, D.; Malhi, Y.; Mateus, J.; Migliavacca, M.; Misson, L.; Montagnani, L.; Moncrieff, J.; Moors, E.; Munger, J.W.; Nikinmaa, E.; Ollinger, S.V.; Pita, G.; Rebmann, C.; Roupsard, O.; Saigusa, N.; Sanz, M.J.; Seufert, G.; Sierra, C.; Smith, M.L.; Tang, J.; Valentini, R.; Vesala, T.; Janssens, I.A.
Title CO2 balance of boreal, temperate, and tropical forests derived from a global database Type Journal Article
Year 2007 Publication Global Change Biology Abbreviated Journal Glob. Change Biol.
Volume 13 Issue 12 Pages 2509-2537
Keywords carbon cycle; CO2; forest ecosystems; global database; gross primary productivity; net ecosystem productivity; net primary productivity
Abstract Terrestrial ecosystems sequester 2.1 Pg of atmospheric carbon annually. A large amount of the terrestrial sink is realized by forests. However, considerable uncertainties remain regarding the fate of this carbon over both short and long timescales. Relevant data to address these uncertainties are being collected at many sites around the world, but syntheses of these data are still sparse. To facilitate future synthesis activities, we have assembled a comprehensive global database for forest ecosystems, which includes carbon budget variables (fluxes and stocks), ecosystem traits (e.g. leaf area index, age), as well as ancillary site information such as management regime, climate, and soil characteristics. This publicly available database can be used to quantify global, regional or biome-specific carbon budgets; to re-examine established relationships; to test emerging hypotheses about ecosystem functioning [e.g. a constant net ecosystem production (NEP) to gross primary production (GPP) ratio]; and as benchmarks for model evaluations. In this paper, we present the first analysis of this database. We discuss the climatic influences on GPP, net primary production (NPP) and NEP and present the CO2 balances for boreal, temperate, and tropical forest biomes based on micrometeorological, ecophysiological, and biometric flux and inventory estimates. Globally, GPP of forests benefited from higher temperatures and precipitation whereas NPP saturated above either a threshold of 1500 mm precipitation or a mean annual temperature of 10 degrees C. The global pattern in NEP was insensitive to climate and is hypothesized to be mainly determined by nonclimatic conditions such as successional stage, management, site history, and site disturbance. In all biomes, closing the CO2 balance required the introduction of substantial biome-specific closure terms. Nonclosure was taken as an indication that respiratory processes, advection, and non-CO2 carbon fluxes are not presently being adequately accounted for.
Address Univ Antwerp, Dept Biol, B-2610 Antwerp, Belgium, Email: Sebastiaan.Luyssaert@ua.ac.be
Corporate Author Thesis
Publisher BLACKWELL PUBLISHING Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1354-1013 ISBN Medium
Area Expedition Conference
Notes ISI:000251049000004 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 151
Permanent link to this record
 

 
Author (down) Lormée, Hervé ; Berzins, Rachel ; Rocheteau, Vincent ; De Coster, Fran ; Denis, Thomas ; Richard-Hanssen, Cécile
Title Seasonal Variation in the Home Ranges of Black Curassow, Crax alector, in French Guiana Type Journal Article
Year 2021 Publication Tropical Conservation Science Abbreviated Journal
Volume 14 Issue 1 Pages 1-10
Keywords spatial ecology, Cracids, tracking, Kernel method, Home range, movement pattern
Abstract Cracidae is the most threatened avian family in the Neotropics, mainly because of habitat destruction, heavy hunting pressure and poaching. In French Guiana, Black Curassows are heavily hunted, although basic knowledge of the ecological and demographical traits of the species remains limited. Such a gap prevents any attempt to assess the impact of hunting and to help stakeholders to develop proposals ensuring hunting sustainability. The spatial relationship between animals and their habitat is important for conservation management, being related to population densities through complex patterns. Here, we report on a radio-tracking study of Black Curassows in tropical primary rainforest, in Nouragues National Reserve, French Guiana. The aims of the study were to estimate home range size and its variation across seasons, and to quantify movement patterns of the birds. We captured and fitted VHF tags to four adults, and tracked them for 10 to 21.5 months. Daily movements were recorded, and home ranges estimated using the Kernel Density method, for two consecutive wet seasons and one dry season. Using 95% and 50% Kernel densities, the average annual home range and core area were 96.3± 32.6 ha (SE) and 22.8 ± 2.8 ha respectively. Home ranges appeared spatially stable over the two years, and overlapped between neighbouring groups. During the dry season, Black Curassows did not migrate but tended to enlarge their home range, with greater daily movements and higher home range overlap. Although additional data are still needed, our results can help to improve the knowledge and management of this poorly studied species
Address
Corporate Author Thesis
Publisher SAGE Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 1036
Permanent link to this record
 

 
Author (down) Longo, M.; Saatchi, S.; Keller, M.; Bowman, K.; Ferraz, A.; Moorcroft, P.R.; Morton, D.C.; Bonal, D.; Brando, P.; Burban, B.; Derroire, G.; dos-Santos, M.N.; Meyer, V.; Saleska, S.; Trumbore, S.; Vincent, G.
Title Impacts of Degradation on Water, Energy, and Carbon Cycling of the Amazon Tropical Forests Type Journal Article
Year 2020 Publication Journal of Geophysical Research: Biogeosciences Abbreviated Journal J. Geophys. Res. Biogeosci.
Volume 125 Issue 8 Pages e2020JG005677
Keywords Amazon; drought; ecosystem modeling; evapotranspiration; forest degradation; remote sensing; carbon cycle; deforestation; dry season; evapotranspiration; hydrological cycle; logging (timber); net primary production; remote sensing; sensible heat flux; tropical forest; understory; water stress; Amazon River
Abstract Selective logging, fragmentation, and understory fires directly degrade forest structure and composition. However, studies addressing the effects of forest degradation on carbon, water, and energy cycles are scarce. Here, we integrate field observations and high-resolution remote sensing from airborne lidar to provide realistic initial conditions to the Ecosystem Demography Model (ED-2.2) and investigate how disturbances from forest degradation affect gross primary production (GPP), evapotranspiration (ET), and sensible heat flux (H). We used forest structural information retrieved from airborne lidar samples (13,500 ha) and calibrated with 817 inventory plots (0.25 ha) across precipitation and degradation gradients in the eastern Amazon as initial conditions to ED-2.2 model. Our results show that the magnitude and seasonality of fluxes were modulated by changes in forest structure caused by degradation. During the dry season and under typical conditions, severely degraded forests (biomass loss ≥66%) experienced water stress with declines in ET (up to 34%) and GPP (up to 35%) and increases of H (up to 43%) and daily mean ground temperatures (up to 6.5°C) relative to intact forests. In contrast, the relative impact of forest degradation on energy, water, and carbon cycles markedly diminishes under extreme, multiyear droughts, as a consequence of severe stress experienced by intact forests. Our results highlight that the water and energy cycles in the Amazon are driven by not only climate and deforestation but also the past disturbance and changes of forest structure from degradation, suggesting a much broader influence of human land use activities on the tropical ecosystems. ©2020. The Authors.
Address AMAP, Univ Montpellier, IRD, CIRAD, CNRS, INRAE, Montpellier, France
Corporate Author Thesis
Publisher Blackwell Publishing Ltd Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 21698953 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 957
Permanent link to this record
 

 
Author (down) Longo, M.; Knox, R.G.; Levine, N.M.; Swann, A.L.S.; Medvigy, D.M.; Dietze, M.C.; Kim, Y.; Zhang, K.; Bonal, D.; Burban, B.; Camargo, P.B.; Hayek, M.N.; Saleska, S.R.; Da Silva, R.; Bras, R.L.; Wofsy, S.C.; Moorcroft, P.R.
Title The biophysics, ecology, and biogeochemistry of functionally diverse, vertically and horizontally heterogeneous ecosystems: The Ecosystem Demography model, version 2.2-Part 2: Model evaluation for tropical South America Type Journal Article
Year 2019 Publication Geoscientific Model Development Abbreviated Journal Geoscientific Model Dev.
Volume 12 Issue 10 Pages 4347-4374
Keywords
Abstract The Ecosystem Demography model version 2.2 (ED-2.2) is a terrestrial biosphere model that simulates the biophysical, ecological, and biogeochemical dynamics of vertically and horizontally heterogeneous terrestrial ecosystems. In a companion paper (Longo et al., 2019a), we described how the model solves the energy, water, and carbon cycles, and verified the high degree of conservation of these properties in long-term simulations that include long-term (multi-decadal) vegetation dynamics. Here, we present a detailed assessment of the model's ability to represent multiple processes associated with the biophysical and biogeochemical cycles in Amazon forests. We use multiple measurements from eddy covariance towers, forest inventory plots, and regional remote-sensing products to assess the model's ability to represent biophysical, physiological, and ecological processes at multiple timescales, ranging from subdaily to century long. The ED-2.2 model accurately describes the vertical distribution of light, water fluxes, and the storage of water, energy, and carbon in the canopy air space, the regional distribution of biomass in tropical South America, and the variability of biomass as a function of environmental drivers. In addition, ED-2.2 qualitatively captures several emergent properties of the ecosystem found in observations, specifically observed relationships between aboveground biomass, mortality rates, and wood density; however, the slopes of these relationships were not accurately captured. We also identified several limitations, including the model's tendency to overestimate the magnitude and seasonality of heterotrophic respiration and to overestimate growth rates in a nutrient-poor tropical site. The evaluation presented here highlights the potential of incorporating structural and functional heterogeneity within biomes in Earth system models (ESMs) and to realistically represent their impacts on energy, water, and carbon cycles. We also identify several priorities for further model development.
Address Georgia Institute of Technology, Atlanta, GA, United States
Corporate Author Thesis
Publisher Copernicus GmbH Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1991959x (Issn) ISBN Medium
Area Expedition Conference
Notes Cited By :1; Export Date: 27 October 2019; Correspondence Address: Longo, M.; Harvard UniversityUnited States; email: mdplongo@gmail.com Approved no
Call Number EcoFoG @ webmaster @ Serial 890
Permanent link to this record
 

 
Author (down) Lobova, T.A.; Mori, S.A.; Blanchard, F.; Peckham, H.; Charles-Dominique, P.
Title Cecropia as a food resource for bats in French Guiana and the significance of fruit structure in seed dispersal and longevity Type Journal Article
Year 2003 Publication American Journal of Botany Abbreviated Journal Am. J. Bot.
Volume 90 Issue 3 Pages 388-403
Keywords bat dispersal; Cecropia; French Guiana; fruit anatomy; fruit morphology; mucilage; Neotropical bats; soil seed bank
Abstract Cecropia (Cecropiaceae) is a Neotropical genus of pioneer plants. A review of bat/plant dispersal interactions revealed that 15 species of Cecropia are consumed by 32 species of bats. In French Guiana, bats were captured in primary and secondary forests, yielding 936 fecal samples with diaspores, among which 162 contained fruits of C. obtusa, C. palmata, and C. sciadophylla. A comparative morphological and anatomical study of fruits and seeds taken directly from herbarium specimens, bat feces, and an experimental soil seed bank was made. Contrary to previous reports, the dispersal unit of Cecropia is the fruit not the seed. Bats consume the infructescence, digest pulp derived from the enlarged, fleshy perianth, and defecate the fruits. The mucilaginous pericarp of Cecropia is described. The external mucilage production of Cecropia may facilitate endozoochory. The exocarp and part of the mesocarp may be lost after passage through the digestive tract of bats, but fruits buried for a year in the soil seed bank remain structurally unchanged. Fruit characters were found to be useful for identifying species of bat-dispersed Cecropia. Bat dispersal is not necessary for seed germination but it increases seed survival and subsequent germination. Fruit structure plays a significant role in seed longevity.
Address New York Bot Garden, Inst Systemat Bot, Bronx, NY 10458 USA
Corporate Author Thesis
Publisher BOTANICAL SOC AMER INC Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-9122 ISBN Medium
Area Expedition Conference
Notes ISI:000183133100008 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 272
Permanent link to this record
 

 
Author (down) Llusia, Joan ; Asensio, Dolores ; Sardans, Jordi ; Filella, Iolanda ; Peguero, Guille ; Grau, Oriol ; Ogaya, Roma ; Gargallo-Garriga, Albert ; Verryckt, Lore T. ; Van Langenhove, Leandro ; Brechet, Laëtitia M. ; Courtois, Elodie A. ; Stahl, Clément ; Janssens, Ivan A. ; Penuelas, Josep
Title Contrasting nitrogen and phosphorus fertilization effects on soil terpene exchanges in a tropical forest Type Journal Article
Year 2021 Publication Science of the Total Environment Abbreviated Journal
Volume 802 Issue Pages 149769
Keywords
Abstract Production, emission, and absorption of biogenic volatile organic compounds (BVOCs) in ecosystem soils and associated impacts of nutrient availability are unclear; thus, predictions of effects of global change on source-sink dynamic under increased atmospheric N deposition and nutrition imbalances are limited. Here, we report the dynamics of soil BVOCs under field conditions from two undisturbed tropical rainforests from French Guiana. We analyzed effects of experimental soil applications of nitrogen (N), phosphorus (P), and N + P on soil BVOC exchanges (in particular of total terpenes, monoterpenes, and sesquiterpenes), to determine source and sink dynamics between seasons (dry and wet) and elevations (upper and lower elevations corresponding to top of the hills (30 m high) and bottom of the valley). We identified 45 soil terpenoids compounds emitted to the atmosphere, comprising 26 monoterpenes and 19 sesquiterpenes; of these, it was possible to identify 13 and 7 compounds, respectively. Under ambient conditions, soils acted as sinks of these BVOCs, with greatest soil uptake recorded for sesquiterpenes at upper elevations during the wet season (-282 μg m-2 h-1). Fertilization shifted soils from a sink to source, with greatest levels of terpene emissions recorded at upper elevations during the wet season, following the addition of N (monoterpenes: 406 μg m-2 h-1) and P (sesquiterpenes: 210 μg m-2 h-1). Total soil terpene emission rates were negatively correlated with total atmospheric terpene concentrations. These results indicate likely shifts in tropical soils from sink to source of atmospheric terpenes under projected increases in N deposition under global change, with potential impacts on regional-scale atmospheric chemistry balance and ecosystem function.
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 1033
Permanent link to this record
 

 
Author (down) Liu, S.Q.; Loup, C.; Gril, J.; Dumonceaud, O.; Thibaut, A.; Thibaut, B.
Title Studies on European beech (Fagus sylvatica L.). Part 1: Variations of wood colour parameters Type Journal Article
Year 2005 Publication Annals of Forest Science Abbreviated Journal Ann. For. Sci.
Volume 62 Issue 7 Pages 625-632
Keywords Fagus sylvatica L.; CIELab colour system; solid wood; red heartwood
Abstract Colour parameters of European beech were measured using CIELab system. 103 logs from 87 trees in 9 sites were cut into boards to study the radial variations of wood colour parameters. Both site and tree effects on colour were observed. Patterns of red heartwood occurrence were defined. When excepting red heartwood there was still a highly significant effect of site and tree. Axial and radial variations were small, except very near the pith or in red heartwood, suggesting possible early selection at periphery under colour criteria. Red heartwood is darker, redder and more yellow than normal peripheral wood.
Address Univ Montpellier 2, Lab Mecan & Genie Civil, F-34095 Montpellier, France, Email: jgril@lmgc.univ-montp2.fr
Corporate Author Thesis
Publisher EDP SCIENCES S A Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1286-4560 ISBN Medium
Area Expedition Conference
Notes ISI:000233179100003 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 251
Permanent link to this record