toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Leroy, C.; Sejalon-Delmas, N.; Jauneau, A.; Ruiz-Gonzalez, M.X.; Gryta, H.; Jargeat, P.; Corbara, B.; Dejean, A.; Orivel, J. doi  openurl
  Title Trophic mediation by a fungus in an ant-plant mutualism Type Journal Article
  Year 2011 Publication Journal of Ecology Abbreviated Journal J. Ecol.  
  Volume 99 Issue 2 Pages 583-590  
  Keywords delta N-15; Allomerus decemarticulatus; ant-plant-fungus interactions; Ascomycete; fungal mediation; Hirtella physophora; mutualisms; myrmecophytes; nutrient provisioning; stable isotopes  
  Abstract 1. Plants often rely on external, mutualistic partners to survive and reproduce in resource-limited environments or for protection from enemies. Such interactions, including mycorrhizal symbioses and ant plant associations, are widespread and play an important role at the ecosystem and community levels. In ant-plant mutualisms, the plants may benefit from both the protection provided by the presence of ants and from the nutrients absorbed from insect debris. However, the role of third partners in plant nutrition, particularly ant-associated fungi, has never before been demonstrated. 2. We investigate this issue in the ant-plant Hirtella physophora. In this model system, Allomerus decemarticulatus ants are involved in two, highly specific interactions: first, with their host plant, and, secondly, with a fungus that they actively manipulate. Moreover, the ants combine both plant trichomes and fungal hyphae to make a trap to capture prey. 3. We empirically demonstrate the existence of a third type of interaction between the fungus and the plant through the use of both experimental enrichments with stable isotopes (N-15) and histological approaches. The fungus growing in the galleries plays a role in providing nutrients to the host plant, in addition to the structural role it plays for the ants. Fungus-facilitated nitrogen uptake occurs mainly in old domatia, where abundant hyphae are in close contact with the plant cells. Whether the fungi inside the domatia and those in the galleries are the same is still uncertain. 4. Synthesis. Together, our results show that a fungal partner in an ant-plant mutualism can benefit the plant by improving its nutrient uptake, and they demonstrate the existence of a true tripartite mutualism in this system. Our results add further evidence to the notion that interpretations of some ant plant symbioses as purely protective mutualisms have overlooked these nutritional aspects.  
  Address [Leroy, Celine; Dejean, Alain; Orivel, Jerome] CNRS, UMR Ecol Forets Guyane, F-97379 Kourou, France, Email: jerome.orivel@ecofog.gf  
  Corporate Author Thesis  
  Publisher Wiley-Blackwell Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0477 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000287785300024 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 297  
Permanent link to this record
 

 
Author (up) Leroy, Celine ; Maes, Arthur QuyManh ; Louisanna, Eliane ; Schimann, Heidy ; Séjalon-Delmas, Nathalie doi  openurl
  Title Taxonomic, phylogenetic and functional diversity of rootassociated fungi in bromeliads: effects of host identity, life forms and nutritional modes Type Journal Article
  Year 2021 Publication New Phytologist Abbreviated Journal  
  Volume 231 Issue 3 Pages 1195-1209  
  Keywords  
  Abstract Bromeliads represent a major component of neotropical forests and encompass a considerable diversity of life forms and nutritional modes. Bromeliads explore highly stressful habitats and root-associated fungi may play a crucial role in this, but the driving factors and variations in root-associated fungi remain largely unknown.
We explored root-associated fungal communities in 17 bromeliad species and their variations linked to host identity, life forms and nutritional modes by using ITS1 gene-based high-throughput sequencing and by characterizing fungal functional guilds.
We found a dual association of mycorrhizal and nonmycorrhizal fungi. The different species, life forms and nutritional modes among bromeliad hosts had fungal communities that differ in their taxonomic and functional composition. Specifically, roots of epiphytic bromeliads had more endophytic fungi and dark septate endophytes and fewer mycorrhizal fungi than terrestrial bromeliads and lithophytes.
Our results contribute to a fundamental knowledge base on different fungal groups in previously undescribed Bromeliaceae. The diverse root-associated fungal communities in bromeliads may enhance plant fitness in both stressful and nutrient-poor environments and may give more flexibility to the plants to adapt to changing environmental conditions.
 
  Address  
  Corporate Author Thesis  
  Publisher New Phytologist Foundation Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1061  
Permanent link to this record
 

 
Author (up) Letort, V.; Heuret, P.; Zalamea, P.-C.; De Reffye, P.; Nicolini, E. url  openurl
  Title Analysing the effects of local environment on the source-sink balance of Cecropia sciadophylla: A methodological approach based on model inversion Type Journal Article
  Year 2012 Publication Annals of Forest Science Abbreviated Journal Ann. Forest Sci.  
  Volume 69 Issue 2 Pages 167-180  
  Keywords Cecropia; Functional-structural model; Model inversion; Morphology; Trophic competition  
  Abstract Context Functional-structural models (FSM) of tree growth have great potential in forestry, but their development, calibration and validation are hampered by the difficulty of collecting experimental data at organ scale for adult trees. Due to their simple architecture and morphological properties, “model plants” such as Cecropia sciadophylla are of great interest to validate new models and methodologies, since exhaustive descriptions of their plant structure and mass partitioning can be gathered. Aims Our objective was to develop a model-based approach to analysing the influence of environmental conditions on the dynamics of trophic competition within C. sciadophylla trees. Methods We defined an integrated environmental factor that includes meteorological medium-frequency variations and a relative index representing the local site conditions for each plant. This index is estimated based on model inversion of the GreenLab FSM using data from 11 trees for model calibration and 7 trees for model evaluation. Results The resulting model explained the dynamics of biomass allocation to different organs during the plant growth, according to the environmental pressure they experienced. Perspectives By linking the integrated environmental factor to a competition index, an extension of the model to the population level could be considered. © INRA and Springer Science+Business Media B.V. 2011.  
  Address UMR ECOFOG Campus Agronomique, INRA, BP 316, 97379 Kourou cedex, French Guiana  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 12864560 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Cited By (since 1996): 1; Export Date: 20 June 2012; Source: Scopus; Coden: Afosf; doi: 10.1007/s13595-011-0131-x; Language of Original Document: English; Correspondence Address: Letort, V.; Department of Applied Mathematics and Systems (MAS), Ecole Centrale Paris, Grande voie des Vignes, Chatenay-Malabry 92295, France; email: veronique.letort@centraliens.net Approved no  
  Call Number EcoFoG @ webmaster @ Serial 405  
Permanent link to this record
 

 
Author (up) Levionnois, S.; Coste, S.; Nicolini, E.; Stahl, C.; Morel, H.; Heuret, P. url  doi
openurl 
  Title Scaling of petiole anatomies, mechanics and vasculatures with leaf size in the widespread Neotropical pioneer tree species Cecropia obtusa Trécul (Urticaceae) Type Journal Article
  Year 2020 Publication Tree physiology Abbreviated Journal Tree Physiol.  
  Volume 40 Issue 2 Pages 245-258  
  Keywords allometry; leaf size; petiole anatomy; scaling; theoretical hydraulic conductivity; vessel widening; xylem  
  Abstract Although the leaf economic spectrum has deepened our understanding of leaf trait variability, little is known about how leaf traits scale with leaf area. This uncertainty has resulted in the assumption that leaf traits should vary by keeping the same pace of variation with increases in leaf area across the leaf size range. We evaluated the scaling of morphological, tissue-surface and vascular traits with overall leaf area, and the functional significance of such scaling. We examined 1,271 leaves for morphological traits, and 124 leaves for anatomical and hydraulic traits, from 38 trees of Cecropia obtusa Trécul (Urticaceae) in French Guiana. Cecropia is a Neotropical genus of pioneer trees that can exhibit large laminas (0.4 m2 for C. obtusa), with leaf size ranging by two orders of magnitude. We measured (i) tissue fractions within petioles and their second moment of area, (ii) theoretical xylem hydraulic efficiency of petioles and (iii) the extent of leaf vessel widening within the hydraulic path. We found that different scaling of morphological trait variability allows for optimisation of lamina display among larger leaves, especially the positive allometric relationship between lamina area and petiole cross-sectional area. Increasing the fraction of pith is a key factor that increases the geometrical effect of supportive tissues on mechanical rigidity and thereby increases carbon-use efficiency. We found that increasing xylem hydraulic efficiency with vessel size results in lower leaf lamina area: xylem ratios, which also results in potential carbon savings for large leaves. We found that the vessel widening is consistent with hydraulic optimisation models. Leaf size variability modifies scaling of leaf traits in this large-leaved species. © The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permission@oup.com.  
  Address UMR AMAP, CIRAD, CNRS, IRD, Université de Montpellier, Montpellier, 34398, France  
  Corporate Author Thesis  
  Publisher NLM (Medline) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 17584469 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 16 March 2020 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 921  
Permanent link to this record
 

 
Author (up) Levionnois, S.; Jansen, S.; Wandji, R.T.; Beauchêne, J.; Ziegler, C.; Coste, S.; Stahl, C.; Delzon, S.; Authier, L.; Heuret, P. doi  openurl
  Title Linking drought-induced xylem embolism resistance to wood anatomical traits in Neotropical trees Type Journal Article
  Year 2021 Publication New Phytologist Abbreviated Journal New Phytol.  
  Volume 229 Issue 3 Pages 1453-1466  
  Keywords bordered pits; drought-induced embolism; pit membrane; transmission electron microscopy; tropical trees; vessel grouping; xylem anatomy  
  Abstract Drought-induced xylem embolism is considered to be one of the main factors driving mortality in woody plants worldwide. Although several structure–functional mechanisms have been tested to understand the anatomical determinants of embolism resistance, there is a need to study this topic by integrating anatomical data for many species. We combined optical, laser, and transmission electron microscopy to investigate vessel diameter, vessel grouping, and pit membrane ultrastructure for 26 tropical rainforest tree species across three major clades (magnoliids, rosiids, and asteriids). We then related these anatomical observations to previously published data on drought-induced embolism resistance, with phylogenetic analyses. Vessel diameter, vessel grouping, and pit membrane ultrastructure were all predictive of xylem embolism resistance, but with weak predictive power. While pit membrane thickness was a predictive trait when vestured pits were taken into account, the pit membrane diameter-to-thickness ratio suggests a strong importance of the deflection resistance of the pit membrane. However, phylogenetic analyses weakly support adaptive coevolution. Our results emphasize the functional significance of pit membranes for air-seeding in tropical rainforest trees, highlighting also the need to study their mechanical properties due to the link between embolism resistance and pit membrane diameter-to-thickness ratio. Finding support for adaptive coevolution also remains challenging. © 2020 The Authors New Phytologist © 2020 New Phytologist Foundation  
  Address UMR BIOGECO, INRAE, Université de Bordeaux, Pessac, 33615, France  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028646x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 997  
Permanent link to this record
 

 
Author (up) Levionnois, S.; Tysklind, N.; Nicolini, E.; Ferry, B.; Troispoux, V.; Le Moguedec, G.; Morel, H.; Stahl, C.; Coste, S.; Caron, H.; Heuret, P. pdf  url
doi  openurl
  Title Soil variation response is mediated by growth trajectories rather than functional traits in a widespread pioneer Neotropical tree Type Journal Article
  Year 2020 Publication bioRxiv, peer-reviewed by Peer Community in Ecology Abbreviated Journal  
  Volume 351197 Issue v4 Pages  
  Keywords  
  Abstract Trait-environment relationships have been described at the community level across tree species. However, whether interspecific trait-environment relationships are consistent at the intraspecific level is yet unknown. Moreover, we do not know how consistent is the response between organ vs. whole-tree level.We examined phenotypic variability for 16 functional leaf (dimensions, nutrient, chlorophyll) and wood traits (density) across two soil types, Ferralitic Soil (FS) vs. White Sands (WS), on two sites for 70 adult trees of Cecropia obtusa Trécul (Urticaceae) in French Guiana. Cecropia is a widespread pioneer Neotropical genus that generally dominates early successional forest stages. To understand how soil types impact resource-use through the processes of growth and branching, we examined the architectural development with a retrospective analysis of growth trajectories. We expect soil types to affect both, functional traits in relation to resource acquisition strategy as already described at the interspecific level, and growth strategies due to resource limitations with reduced growth on poor soils.Functional traits were not involved in the soil response, as only two traits-leaf residual water content and K content-showed significant differences across soil types. Soil effects were stronger on growth trajectories, with WS trees having the slowest growth trajectories and less numerous branches across their lifespan.The analysis of growth trajectories based on architectural analysis improved our ability to characterise the response of trees with soil types. The intraspecific variability is higher for growth trajectories than functional traits for C. obtusa, revealing the complementarity of the architectural approach with the functional approach to gain insights on the way trees manage their resources over their lifetime. Soil-related responses of Cecropia functional traits are not the same as those at the interspecific level, suggesting that the effects of the acting ecological processes are different between the two levels. Apart from soil differences, much variation was found across sites, which calls for further investigation of the factors shaping growth trajectories in tropical forests.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 931  
Permanent link to this record
 

 
Author (up) Levionnois, S.; Ziegler, C.; Jansen, S.; Calvet, E.; Coste, S.; Stahl, C.; Salmon, C.; Delzon, S.; Guichard, C.; Heuret, P. doi  openurl
  Title Vulnerability and hydraulic segmentations at the stem–leaf transition: coordination across Neotropical trees Type Journal Article
  Year 2020 Publication New Phytologist Abbreviated Journal New Phytol.  
  Volume 228 Issue 2 Pages 512-524  
  Keywords drought-induced embolism resistance; hydraulic segmentation; leaf-specific conductivity; stem–leaf transition; tropical trees; vulnerability segmentation; air bubble; hydraulic conductivity; leaf; Neotropical Region; rainforest; tropical forest; vulnerability; xylem  
  Abstract Hydraulic segmentation at the stem–leaf transition predicts higher hydraulic resistance in leaves than in stems. Vulnerability segmentation, however, predicts lower embolism resistance in leaves. Both mechanisms should theoretically favour runaway embolism in leaves to preserve expensive organs such as stems, and should be tested for any potential coordination. We investigated the theoretical leaf-specific conductivity based on an anatomical approach to quantify the degree of hydraulic segmentation across 21 tropical rainforest tree species. Xylem resistance to embolism in stems (flow-centrifugation technique) and leaves (optical visualization method) was quantified to assess vulnerability segmentation. We found a pervasive hydraulic segmentation across species, but with a strong variability in the degree of segmentation. Despite a clear continuum in the degree of vulnerability segmentation, eight species showed a positive vulnerability segmentation (leaves less resistant to embolism than stems), whereas the remaining species studied exhibited a negative or no vulnerability segmentation. The degree of vulnerability segmentation was positively related to the degree of hydraulic segmentation, such that segmented species promote both mechanisms to hydraulically decouple leaf xylem from stem xylem. To what extent hydraulic and vulnerability segmentation determine drought resistance requires further integration of the leaf–stem transition at the whole-plant level, including both xylem and outer xylem tissue. © 2020 The Authors. New Phytologist © 2020 New Phytologist Trust  
  Address Univ. Bordeaux, INRAE, BIOGECO, Pessac, F-33615, France  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028646x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 952  
Permanent link to this record
 

 
Author (up) Levionnois, Sébastien ; Salmon, Camille ; Alméras, Tancrède ; Clair, Bruno ; Ziegler, Camille ; Coste, Sabrina ; Stahl, Clement ; Gonzalez-Melo, Andrés ; Heinz, Christine ; Heuret, Patrick doi  openurl
  Title Anatomies, vascular architectures, and mechanics underlying the leaf size-stem size spectrum in 42 Neotropical tree species Type Journal Article
  Year 2021 Publication Journal of Experimental Botany Abbreviated Journal  
  Volume 72 Issue 22 Pages 7957–7969  
  Keywords  
  Abstract The leaf size-stem size spectrum is one of the main dimensions of plant ecological strategies. Yet the anatomical, mechanical, and hydraulic implications of small vs. large shoots are still poorly understood. We investigated 42 tropical rainforest tree species in French Guiana, with a wide range of leaf areas at the shoot level. We quantified the scaling of hydraulic and mechanical constraints with shoot size estimated as the water potential difference ΔΨ and the bending angle ΔΦ, respectively. We investigated how anatomical tissue area, flexural stiffness and xylem vascular architecture affect such scaling by deviating (or not) from theoretical isometry with shoot size variation. Vessel diameter and conductive path length were found to be allometrically related to shoot size, thereby explaining the independence between ΔΨ and shoot size. Leaf mass per area, stem length, and the modulus of elasticity were allometrically related with shoot size, explaining the independence between ΔΦ and shoot size. Our study also shows that the maintenance of both water supply and mechanical stability across the shoot size range are not in conflict.  
  Address  
  Corporate Author Thesis  
  Publisher Oxford University Press Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1050  
Permanent link to this record
 

 
Author (up) Levionnois, Sébastien ; Ziegler, Camille ; Heuret, Patrick ; Jansen, Steven ; Stahl, Clément ; Calvet, Emma ; Goret, Jean-Yves ; Bonal, Damien ; Coste, Sabrina doi  openurl
  Title Is vulnerability segmentation at the leaf‑stem transition a drought resistance mechanism? A theoretical test with a trait‑based model for Neotropical canopy tree species Type Journal Article
  Year 2021 Publication Annals of Forest Science Abbreviated Journal  
  Volume 78 Issue 4 Pages 78-87  
  Keywords Neotropics, bark, canopy, capacitance, drought, drought tolerance, embolism, leaves, models, transpiration, trees, tropical rain forests, xylem  
  Abstract Leaf-stem vulnerability segmentation predicts lower xylem embolism resistance in leaves than stem. However, although it has been intensively investigated these past decades, the extent to which vulnerability segmentation promotes drought resistance is not well understood. Based on a trait-based model, this study theoretically supports that vulnerability segmentation enhances shoot desiccation time across 18 Neotropical tree species. CONTEXT: Leaf-stem vulnerability segmentation predicts lower xylem embolism resistance in leaves than stems thereby preserving expensive organs such as branches or the trunk. Although vulnerability segmentation has been intensively investigated these past decades to test its consistency across species, the extent to which vulnerability segmentation promotes drought resistance is not well understood. AIMS: We investigated the theoretical impact of the degree of vulnerability segmentation on shoot desiccation time estimated with a simple trait-based model. METHODS: We combined data from 18 tropical rainforest canopy tree species on embolism resistance of stem xylem (flow-centrifugation technique) and leaves (optical visualisation method). Measured water loss under minimum leaf and bark conductance, leaf and stem capacitance, and leaf-to-bark area ratio allowed us to calculate a theoretical shoot desiccation time (tcᵣᵢₜ). RESULTS: Large degrees of vulnerability segmentation strongly enhanced the theoretical shoot desiccation time, suggesting vulnerability segmentation to be an efficient drought resistance mechanism for half of the studied species. The difference between leaf and bark area, rather than the minimum leaf and bark conductance, determined the drastic reduction of total transpiration by segmentation during severe drought. CONCLUSION: Our study strongly suggests that vulnerability segmentation is an important drought resistance mechanism that should be better taken into account when investigating plant drought resistance and modelling vegetation. We discuss future directions for improving model assumptions with empirical measures, such as changes in total shoot transpiration after leaf xylem embolism.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Link Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1034  
Permanent link to this record
 

 
Author (up) Levis, C.; Costa, F.R.C.; Bongers, F.; Peña-Claros, M.; Clement, C.R.; Junqueira, A.B.; Neves, E.G.; Tamanaha, E.K.; Figueiredo, F.O.G.; Salomão, R.P.; Castilho, C.V.; Magnusson, W.E.; Phillips, O.L.; Guevara, J.E.; Sabatier, D.; Molino, J.-F.; López, D.C.; Mendoza, A.M.; Pitman, N.C.A.; Duque, A.; Vargas, P.N.; Zartman, C.E.; Vasquez, R.; Andrade, A.; Camargo, J.L.; Feldpausch, T.R.; Laurance, S.G.W.; Laurance, W.F.; Killeen, T.J.; Nascimento, H.E.M.; Montero, J.C.; Mostacedo, B.; Amaral, I.L.; Guimarães Vieira, I.C.; Brienen, R.; Castellanos, H.; Terborgh, J.; Carim, M. de J.V.; Guimarães, J.R. da S.; Coelho, L. de S.; Matos, F.D. de A.; Wittmann, F.; Mogollón, H.F.; Damasco, G.; Dávila, N.; García-Villacorta, R.; Coronado, E.N.H.; Emilio, T.; Filho, D. de A.L.; Schietti, J.; Souza, P.; Targhetta, N.; Comiskey, J.A.; Marimon, B.S.; Marimon, B.-H.; Neill, D.; Alonso, A.; Arroyo, L.; Carvalho, F.A.; de Souza, F.C.; Dallmeier, F.; Pansonato, M.P.; Duivenvoorden, J.F.; Fine, P.V.A.; Stevenson, P.R.; Araujo-Murakami, A.; Aymard C., G.A.; Baraloto, C.; do Amaral, D.D.; Engel, J.; Henkel, T.W.; Maas, P.; Petronelli, P.; Revilla, J.D.C.; Stropp, J.; Daly, D.; Gribel, R.; Paredes, M.R.; Silveira, M.; Thomas-Caesar, R.; Baker, T.R.; da Silva, N.F.; Ferreira, L.V.; Peres, C.A.; Silman, M.R.; Cerón, C.; Valverde, F.C.; Di Fiore, A.; Jimenez, E.M.; Mora, M.C.P.; Toledo, M.; Barbosa, E.M.; Bonates, L.C. de M.; Arboleda, N.C.; Farias, E. de S.; Fuentes, A.; Guillaumet, J.-L.; Jørgensen, P.M.; Malhi, Y.; de Andrade Miranda, I.P.; Phillips, J.F.; Prieto, A.; Rudas, A.; Ruschel, A.R.; Silva, N.; von Hildebrand, P.; Vos, V.A.; Zent, E.L.; Zent, S.; Cintra, B.B.L.; Nascimento, M.T.; Oliveira, A.A.; Ramirez-Angulo, H.; Ramos, J.F.; Rivas, G.; Schöngart, J.; Sierra, R.; Tirado, M.; van der Heijden, G.; Torre, E.V.; Wang, O.; Young, K.R.; Baider, C.; Cano, A.; Farfan-Rios, W.; Ferreira, C.; Hoffman, B.; Mendoza, C.; Mesones, I.; Torres-Lezama, A.; Medina, M.N.U.; van Andel, T.R.; Villarroel, D.; Zagt, R.; Alexiades, M.N.; Balslev, H.; Garcia-Cabrera, K.; Gonzales, T.; Hernandez, L.; Huamantupa-Chuquimaco, I.; Manzatto, A.G.; Milliken, W.; Cuenca, W.P.; Pansini, S.; Pauletto, D.; Arevalo, F.R.; Reis, N.F.C.; Sampaio, A.F.; Giraldo, L.E.U.; Sandoval, E.H.V.; Gamarra, L.V.; Vela, C.I.A.; ter Steege, H. url  doi
openurl 
  Title Persistent effects of pre-Columbian plant domestication on Amazonian forest composition Type Journal Article
  Year 2017 Publication Science Abbreviated Journal  
  Volume 355 Issue 6328 Pages 925-931  
  Keywords  
  Abstract The marks of prehistoric human societies on tropical forests can still be detected today. Levis et al. performed a basin-wide comparison of plant distributions, archaeological sites, and environmental data. Plants domesticated by pre-Columbian peoples are much more likely to be dominant in Amazonian forests than other species. Furthermore, forests close to archaeological sites often have a higher abundance and richness of domesticated species. Thus, modern-day Amazonian tree communities across the basin remain largely structured by historical human use.Science, this issue p. 925The extent to which pre-Columbian societies altered Amazonian landscapes is hotly debated. We performed a basin-wide analysis of pre-Columbian impacts on Amazonian forests by overlaying known archaeological sites in Amazonia with the distributions and abundances of 85 woody species domesticated by pre-Columbian peoples. Domesticated species are five times more likely than nondomesticated species to be hyperdominant. Across the basin, the relative abundance and richness of domesticated species increase in forests on and around archaeological sites. In southwestern and eastern Amazonia, distance to archaeological sites strongly influences the relative abundance and richness of domesticated species. Our analyses indicate that modern tree communities in Amazonia are structured to an important extent by a long history of plant domestication by Amazonian peoples.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 739  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: