toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Lipshutz, B.H.; Taft, B.R.; Abela, A.R.; Ghorai, S.; Krasovskiy, A.; Duplais, C. pdf  url
openurl 
  Title Catalysis in the service of green chemistry: Nobel prize-winning palladium-catalysed cross-couplings, run in water at room temperature Type Journal Article
  Year 2012 Publication Platinum Metals Review Abbreviated Journal Platinum Met. Rev.  
  Volume 56 Issue 2 Pages 62-74  
  Keywords  
  Abstract Palladium-catalysed cross-couplings, in particular Heck, Suzuki-Miyaura and Negishi reactions developed over three decades ago, are routinely carried out in organic solvents. However, alternative media are currently of considerable interest given an increasing emphasis on making organic processes 'greener'; for example, by minimising organic waste in the form of organic solvents. Water is the obvious leading candidate in this regard. Hence, this review focuses on the application of micellar catalysis, in which a 'designer' surfactant enables these award-winning coupling reactions to be run in water at room temperature. © 2012 Johnson Matthey.  
  Address UMR-CNRS Ecofog, Institut Pasteur de la Guyane, 23 Avenue Pasteur, 97306 Cayenne, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00321400 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Cited By (since 1996): 1; Export Date: 15 May 2012; Source: Scopus; Coden: Ptmra; doi: 10.1595/147106712X629761; Language of Original Document: English; Correspondence Address: Lipshutz, B.H.; Department of Chemistry, University of California, Santa Barbara, CA 93106, United States; email: lipshutz@chem.ucsb.edu Approved no  
  Call Number EcoFoG @ webmaster @ Serial 400  
Permanent link to this record
 

 
Author (down) Liang, J.; Crowther, T.W.; Picard, N.; Wiser, S.; Zhou, M.; Alberti, G.; Schulze, E.-D.; McGuire, A.D.; Bozzato, F.; Pretzsch, H.; de-Miguel, S.; Paquette, A.; Herault, B.; Scherer-Lorenzen, M.; Barrett, C.B.; Glick, H.B.; Hengeveld, G.M.; Nabuurs, G.-J.; Pfautsch, S.; Viana, H.; Vibrans, A.C.; Ammer, C.; Schall, P.; Verbyla, D.; Tchebakova, N.; Fischer, M.; Watson, J.V.; Chen, H.Y.H.; Lei, X.; Schelhaas, M.-J.; Lu, H.; Gianelle, D.; Parfenova, E.I.; Salas, C.; Lee, E.; Lee, B.; Kim, H.S.; Bruelheide, H.; Coomes, D.A.; Piotto, D.; Sunderland, T.; Schmid, B.; Gourlet-Fleury, S.; Sonké, B.; Tavani, R.; Zhu, J.; Brandl, S.; Vayreda, J.; Kitahara, F.; Searle, E.B.; Neldner, V.J.; Ngugi, M.R.; Baraloto, C.; Frizzera, L.; Bałazy, R.; Oleksyn, J.; Zawiła-Niedźwiecki, T.; Bouriaud, O.; Bussotti, F.; Finér, L.; Jaroszewicz, B.; Jucker, T.; Valladares, F.; Jagodzinski, A.M.; Peri, P.L.; Gonmadje, C.; Marthy, W.; O’Brien, T.; Martin, E.H.; Marshall, A.R.; Rovero, F.; Bitariho, R.; Niklaus, P.A.; Alvarez-Loayza, P.; Chamuya, N.; Valencia, R.; Mortier, F.; Wortel, V.; Engone-Obiang, N.L.; Ferreira, L.V.; Odeke, D.E.; Vasquez, R.M.; Lewis, S.L.; Reich, P.B. url  doi
openurl 
  Title Positive biodiversity-productivity relationship predominant in global forests Type Journal Article
  Year 2016 Publication Science Abbreviated Journal  
  Volume 354 Issue 6309 Pages  
  Keywords  
  Abstract The relationship between biodiversity and ecosystem productivity has been explored in detail in herbaceous vegetation, but patterns in forests are far less well understood. Liang et al. have amassed a global forest data set from >770,000 sample plots in 44 countries. A positive and consistent relationship can be discerned between tree diversity and ecosystem productivity at landscape, country, and ecoregion scales. On average, a 10% loss in biodiversity leads to a 3% loss in productivity. This means that the economic value of maintaining biodiversity for the sake of global forest productivity is more than fivefold greater than global conservation costs.Science, this issue p. 196INTRODUCTIONThe biodiversity-productivity relationship (BPR; the effect of biodiversity on ecosystem productivity) is foundational to our understanding of the global extinction crisis and its impacts on the functioning of natural ecosystems. The BPR has been a prominent research topic within ecology in recent decades, but it is only recently that we have begun to develop a global perspective.RATIONALEForests are the most important global repositories of terrestrial biodiversity, but deforestation, forest degradation, climate change, and other factors are threatening approximately one half of tree species worldwide. Although there have been substantial efforts to strengthen the preservation and sustainable use of forest biodiversity throughout the globe, the consequences of this diversity loss pose a major uncertainty for ongoing international forest management and conservation efforts. The forest BPR represents a critical missing link for accurate valuation of global biodiversity and successful integration of biological conservation and socioeconomic development. Until now, there have been limited tree-based diversity experiments, and the forest BPR has only been explored within regional-scale observational studies. Thus, the strength and spatial variability of this relationship remains unexplored at a global scale.RESULTSWe explored the effect of tree species richness on tree volume productivity at the global scale using repeated forest inventories from 777,126 permanent sample plots in 44 countries containing more than 30 million trees from 8737 species spanning most of the global terrestrial biomes. Our findings reveal a consistent positive concave-down effect of biodiversity on forest productivity across the world, showing that a continued biodiversity loss would result in an accelerating decline in forest productivity worldwide.The BPR shows considerable geospatial variation across the world. The same percentage of biodiversity loss would lead to a greater relative (that is, percentage) productivity decline in the boreal forests of North America, Northeastern Europe, Central Siberia, East Asia, and scattered regions of South-central Africa and South-central Asia. In the Amazon, West and Southeastern Africa, Southern China, Myanmar, Nepal, and the Malay Archipelago, however, the same percentage of biodiversity loss would lead to greater absolute productivity decline.CONCLUSIONOur findings highlight the negative effect of biodiversity loss on forest productivity and the potential benefits from the transition of monocultures to mixed-species stands in forestry practices. The BPR we discover across forest ecosystems worldwide corresponds well with recent theoretical advances, as well as with experimental and observational studies on forest and nonforest ecosystems. On the basis of this relationship, the ongoing species loss in forest ecosystems worldwide could substantially reduce forest productivity and thereby forest carbon absorption rate to compromise the global forest carbon sink. We further estimate that the economic value of biodiversity in maintaining commercial forest productivity alone is $166 billion to $490 billion per year. Although representing only a small percentage of the total value of biodiversity, this value is two to six times as much as it would cost to effectively implement conservation globally. These results highlight the necessity to reassess biodiversity valuation and the potential benefits of integrating and promoting biological conservation in forest resource management and forestry practices worldwide.Global effect of tree species diversity on forest productivity.Ground-sourced data from 777,126 global forest biodiversity permanent sample plots (dark blue dots, left), which cover a substantial portion of the global forest extent (white), reveal a consistent positive and concave-down biodiversity-productivity relationship across forests worldwide (red line with pink bands representing 95% confidence interval, right).The biodiversity-productivity relationship (BPR) is foundational to our understanding of the global extinction crisis and its impacts on ecosystem functioning. Understanding BPR is critical for the accurate valuation and effective conservation of biodiversity. Using ground-sourced data from 777,126 permanent plots, spanning 44 countries and most terrestrial biomes, we reveal a globally consistent positive concave-down BPR, showing that continued biodiversity loss would result in an accelerating decline in forest productivity worldwide. The value of biodiversity in maintaining commercial forest productivity alone—US$166 billion to 490 billion per year according to our estimation—is more than twice what it would cost to implement effective global conservation. This highlights the need for a worldwide reassessment of biodiversity values, forest management strategies, and conservation priorities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 703  
Permanent link to this record
 

 
Author (down) Li, M.C.; Royer, M.; Stien, D.; Lecante, A.; Roos, C. openurl 
  Title Inhibitive effect of sodium eperuate on zinc corrosion in alkaline solutions Type Journal Article
  Year 2008 Publication Corrosion Science Abbreviated Journal Corrosion Sci.  
  Volume 50 Issue 7 Pages 1975-1981  
  Keywords zinc; concrete; EIS; alkaline corrosion; passivity  
  Abstract The effect of sodium eperuate prepared from Wallaba (Eperua falcata Aubl) extract on zinc corrosion was investigated in alkaline solutions with chloride ions (i.e., simulated concrete pore solutions) by using electrochemical techniques. Sodium eperuate inhibits the corrosion of zinc in 0.1 M NaCl solutions with pH 9.6. As its concentration increases to 1 g/L, the inhibition efficiency reaches approximately 92%. In alkaline solutions with pH 12.6, sodium eperuate has no adverse effect on passivity of zinc, and retards the chloride attack. These suggest that sodium eperuate is an effective inhibitor for the protection of zinc in alkaline environments. (c) 2008 Elsevier Ltd. All rights reserved.  
  Address [Li, M. C.; Royer, M.; Stien, D.] UMR ECOFOG, CNRS, F-97337 Cayenne, French Guiana, Email: mouchengli@yahoo.com.cn  
  Corporate Author Thesis  
  Publisher PERGAMON-ELSEVIER SCIENCE LTD Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-938X ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000258543600021 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 132  
Permanent link to this record
 

 
Author (down) Li, Lingjuan ; Preece, Catherine ; Lin, Qiang ; Bréchet, Laëtitia M. ; Stahl, Clément ; Courtois, Elodie A. ; Verbruggen, Erik doi  openurl
  Title Resistance and resilience of soil prokaryotic communities in response to prolonged drought in a tropical forest Type Journal Article
  Year 2021 Publication FEMS Microbiology Ecology Abbreviated Journal  
  Volume 97 Issue 9 Pages  
  Keywords drought, microbial communities, microbial network, tropical forest, resistance, resilience  
  Abstract Global climate changes such as prolonged duration and intensity of drought can lead to adverse ecological consequences in forests. Currently little is known about soil microbial community responses to such drought regimes in tropical forests. In this study, we examined the resistance and resilience of topsoil prokaryotic communities to a prolongation of the dry season in terms of diversity, community structure and co-occurrence patterns in a French Guianan tropical forest. Through excluding rainfall during and after the dry season, a simulated prolongation of the dry season by five months was compared to controls. Our results show that prokaryotic communities increasingly diverged from controls with the progression of rain exclusion. Furthermore, prolonged drought significantly affected microbial co-occurrence networks. However, both the composition and co-occurrence networks of soil prokaryotic communities immediately ceased to differ from controls when precipitation throughfall returned. This study thus suggests modest resistance but high resilience of microbial communities to a prolonged drought in tropical rainforest soils.  
  Address  
  Corporate Author Thesis  
  Publisher Oxford Academy Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1032  
Permanent link to this record
 

 
Author (down) Levis, C.; Costa, F.R.C.; Bongers, F.; Peña-Claros, M.; Clement, C.R.; Junqueira, A.B.; Neves, E.G.; Tamanaha, E.K.; Figueiredo, F.O.G.; Salomão, R.P.; Castilho, C.V.; Magnusson, W.E.; Phillips, O.L.; Guevara, J.E.; Sabatier, D.; Molino, J.-F.; López, D.C.; Mendoza, A.M.; Pitman, N.C.A.; Duque, A.; Vargas, P.N.; Zartman, C.E.; Vasquez, R.; Andrade, A.; Camargo, J.L.; Feldpausch, T.R.; Laurance, S.G.W.; Laurance, W.F.; Killeen, T.J.; Nascimento, H.E.M.; Montero, J.C.; Mostacedo, B.; Amaral, I.L.; Guimarães Vieira, I.C.; Brienen, R.; Castellanos, H.; Terborgh, J.; Carim, M. de J.V.; Guimarães, J.R. da S.; Coelho, L. de S.; Matos, F.D. de A.; Wittmann, F.; Mogollón, H.F.; Damasco, G.; Dávila, N.; García-Villacorta, R.; Coronado, E.N.H.; Emilio, T.; Filho, D. de A.L.; Schietti, J.; Souza, P.; Targhetta, N.; Comiskey, J.A.; Marimon, B.S.; Marimon, B.-H.; Neill, D.; Alonso, A.; Arroyo, L.; Carvalho, F.A.; de Souza, F.C.; Dallmeier, F.; Pansonato, M.P.; Duivenvoorden, J.F.; Fine, P.V.A.; Stevenson, P.R.; Araujo-Murakami, A.; Aymard C., G.A.; Baraloto, C.; do Amaral, D.D.; Engel, J.; Henkel, T.W.; Maas, P.; Petronelli, P.; Revilla, J.D.C.; Stropp, J.; Daly, D.; Gribel, R.; Paredes, M.R.; Silveira, M.; Thomas-Caesar, R.; Baker, T.R.; da Silva, N.F.; Ferreira, L.V.; Peres, C.A.; Silman, M.R.; Cerón, C.; Valverde, F.C.; Di Fiore, A.; Jimenez, E.M.; Mora, M.C.P.; Toledo, M.; Barbosa, E.M.; Bonates, L.C. de M.; Arboleda, N.C.; Farias, E. de S.; Fuentes, A.; Guillaumet, J.-L.; Jørgensen, P.M.; Malhi, Y.; de Andrade Miranda, I.P.; Phillips, J.F.; Prieto, A.; Rudas, A.; Ruschel, A.R.; Silva, N.; von Hildebrand, P.; Vos, V.A.; Zent, E.L.; Zent, S.; Cintra, B.B.L.; Nascimento, M.T.; Oliveira, A.A.; Ramirez-Angulo, H.; Ramos, J.F.; Rivas, G.; Schöngart, J.; Sierra, R.; Tirado, M.; van der Heijden, G.; Torre, E.V.; Wang, O.; Young, K.R.; Baider, C.; Cano, A.; Farfan-Rios, W.; Ferreira, C.; Hoffman, B.; Mendoza, C.; Mesones, I.; Torres-Lezama, A.; Medina, M.N.U.; van Andel, T.R.; Villarroel, D.; Zagt, R.; Alexiades, M.N.; Balslev, H.; Garcia-Cabrera, K.; Gonzales, T.; Hernandez, L.; Huamantupa-Chuquimaco, I.; Manzatto, A.G.; Milliken, W.; Cuenca, W.P.; Pansini, S.; Pauletto, D.; Arevalo, F.R.; Reis, N.F.C.; Sampaio, A.F.; Giraldo, L.E.U.; Sandoval, E.H.V.; Gamarra, L.V.; Vela, C.I.A.; ter Steege, H. url  doi
openurl 
  Title Persistent effects of pre-Columbian plant domestication on Amazonian forest composition Type Journal Article
  Year 2017 Publication Science Abbreviated Journal  
  Volume 355 Issue 6328 Pages 925-931  
  Keywords  
  Abstract The marks of prehistoric human societies on tropical forests can still be detected today. Levis et al. performed a basin-wide comparison of plant distributions, archaeological sites, and environmental data. Plants domesticated by pre-Columbian peoples are much more likely to be dominant in Amazonian forests than other species. Furthermore, forests close to archaeological sites often have a higher abundance and richness of domesticated species. Thus, modern-day Amazonian tree communities across the basin remain largely structured by historical human use.Science, this issue p. 925The extent to which pre-Columbian societies altered Amazonian landscapes is hotly debated. We performed a basin-wide analysis of pre-Columbian impacts on Amazonian forests by overlaying known archaeological sites in Amazonia with the distributions and abundances of 85 woody species domesticated by pre-Columbian peoples. Domesticated species are five times more likely than nondomesticated species to be hyperdominant. Across the basin, the relative abundance and richness of domesticated species increase in forests on and around archaeological sites. In southwestern and eastern Amazonia, distance to archaeological sites strongly influences the relative abundance and richness of domesticated species. Our analyses indicate that modern tree communities in Amazonia are structured to an important extent by a long history of plant domestication by Amazonian peoples.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 739  
Permanent link to this record
 

 
Author (down) Levionnois, Sébastien ; Ziegler, Camille ; Heuret, Patrick ; Jansen, Steven ; Stahl, Clément ; Calvet, Emma ; Goret, Jean-Yves ; Bonal, Damien ; Coste, Sabrina doi  openurl
  Title Is vulnerability segmentation at the leaf‑stem transition a drought resistance mechanism? A theoretical test with a trait‑based model for Neotropical canopy tree species Type Journal Article
  Year 2021 Publication Annals of Forest Science Abbreviated Journal  
  Volume 78 Issue 4 Pages 78-87  
  Keywords Neotropics, bark, canopy, capacitance, drought, drought tolerance, embolism, leaves, models, transpiration, trees, tropical rain forests, xylem  
  Abstract Leaf-stem vulnerability segmentation predicts lower xylem embolism resistance in leaves than stem. However, although it has been intensively investigated these past decades, the extent to which vulnerability segmentation promotes drought resistance is not well understood. Based on a trait-based model, this study theoretically supports that vulnerability segmentation enhances shoot desiccation time across 18 Neotropical tree species. CONTEXT: Leaf-stem vulnerability segmentation predicts lower xylem embolism resistance in leaves than stems thereby preserving expensive organs such as branches or the trunk. Although vulnerability segmentation has been intensively investigated these past decades to test its consistency across species, the extent to which vulnerability segmentation promotes drought resistance is not well understood. AIMS: We investigated the theoretical impact of the degree of vulnerability segmentation on shoot desiccation time estimated with a simple trait-based model. METHODS: We combined data from 18 tropical rainforest canopy tree species on embolism resistance of stem xylem (flow-centrifugation technique) and leaves (optical visualisation method). Measured water loss under minimum leaf and bark conductance, leaf and stem capacitance, and leaf-to-bark area ratio allowed us to calculate a theoretical shoot desiccation time (tcᵣᵢₜ). RESULTS: Large degrees of vulnerability segmentation strongly enhanced the theoretical shoot desiccation time, suggesting vulnerability segmentation to be an efficient drought resistance mechanism for half of the studied species. The difference between leaf and bark area, rather than the minimum leaf and bark conductance, determined the drastic reduction of total transpiration by segmentation during severe drought. CONCLUSION: Our study strongly suggests that vulnerability segmentation is an important drought resistance mechanism that should be better taken into account when investigating plant drought resistance and modelling vegetation. We discuss future directions for improving model assumptions with empirical measures, such as changes in total shoot transpiration after leaf xylem embolism.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Link Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1034  
Permanent link to this record
 

 
Author (down) Levionnois, Sébastien ; Salmon, Camille ; Alméras, Tancrède ; Clair, Bruno ; Ziegler, Camille ; Coste, Sabrina ; Stahl, Clement ; Gonzalez-Melo, Andrés ; Heinz, Christine ; Heuret, Patrick doi  openurl
  Title Anatomies, vascular architectures, and mechanics underlying the leaf size-stem size spectrum in 42 Neotropical tree species Type Journal Article
  Year 2021 Publication Journal of Experimental Botany Abbreviated Journal  
  Volume 72 Issue 22 Pages 7957–7969  
  Keywords  
  Abstract The leaf size-stem size spectrum is one of the main dimensions of plant ecological strategies. Yet the anatomical, mechanical, and hydraulic implications of small vs. large shoots are still poorly understood. We investigated 42 tropical rainforest tree species in French Guiana, with a wide range of leaf areas at the shoot level. We quantified the scaling of hydraulic and mechanical constraints with shoot size estimated as the water potential difference ΔΨ and the bending angle ΔΦ, respectively. We investigated how anatomical tissue area, flexural stiffness and xylem vascular architecture affect such scaling by deviating (or not) from theoretical isometry with shoot size variation. Vessel diameter and conductive path length were found to be allometrically related to shoot size, thereby explaining the independence between ΔΨ and shoot size. Leaf mass per area, stem length, and the modulus of elasticity were allometrically related with shoot size, explaining the independence between ΔΦ and shoot size. Our study also shows that the maintenance of both water supply and mechanical stability across the shoot size range are not in conflict.  
  Address  
  Corporate Author Thesis  
  Publisher Oxford University Press Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1050  
Permanent link to this record
 

 
Author (down) Levionnois, S.; Ziegler, C.; Jansen, S.; Calvet, E.; Coste, S.; Stahl, C.; Salmon, C.; Delzon, S.; Guichard, C.; Heuret, P. doi  openurl
  Title Vulnerability and hydraulic segmentations at the stem–leaf transition: coordination across Neotropical trees Type Journal Article
  Year 2020 Publication New Phytologist Abbreviated Journal New Phytol.  
  Volume 228 Issue 2 Pages 512-524  
  Keywords drought-induced embolism resistance; hydraulic segmentation; leaf-specific conductivity; stem–leaf transition; tropical trees; vulnerability segmentation; air bubble; hydraulic conductivity; leaf; Neotropical Region; rainforest; tropical forest; vulnerability; xylem  
  Abstract Hydraulic segmentation at the stem–leaf transition predicts higher hydraulic resistance in leaves than in stems. Vulnerability segmentation, however, predicts lower embolism resistance in leaves. Both mechanisms should theoretically favour runaway embolism in leaves to preserve expensive organs such as stems, and should be tested for any potential coordination. We investigated the theoretical leaf-specific conductivity based on an anatomical approach to quantify the degree of hydraulic segmentation across 21 tropical rainforest tree species. Xylem resistance to embolism in stems (flow-centrifugation technique) and leaves (optical visualization method) was quantified to assess vulnerability segmentation. We found a pervasive hydraulic segmentation across species, but with a strong variability in the degree of segmentation. Despite a clear continuum in the degree of vulnerability segmentation, eight species showed a positive vulnerability segmentation (leaves less resistant to embolism than stems), whereas the remaining species studied exhibited a negative or no vulnerability segmentation. The degree of vulnerability segmentation was positively related to the degree of hydraulic segmentation, such that segmented species promote both mechanisms to hydraulically decouple leaf xylem from stem xylem. To what extent hydraulic and vulnerability segmentation determine drought resistance requires further integration of the leaf–stem transition at the whole-plant level, including both xylem and outer xylem tissue. © 2020 The Authors. New Phytologist © 2020 New Phytologist Trust  
  Address Univ. Bordeaux, INRAE, BIOGECO, Pessac, F-33615, France  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028646x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 952  
Permanent link to this record
 

 
Author (down) Levionnois, S.; Tysklind, N.; Nicolini, E.; Ferry, B.; Troispoux, V.; Le Moguedec, G.; Morel, H.; Stahl, C.; Coste, S.; Caron, H.; Heuret, P. pdf  url
doi  openurl
  Title Soil variation response is mediated by growth trajectories rather than functional traits in a widespread pioneer Neotropical tree Type Journal Article
  Year 2020 Publication bioRxiv, peer-reviewed by Peer Community in Ecology Abbreviated Journal  
  Volume 351197 Issue v4 Pages  
  Keywords  
  Abstract Trait-environment relationships have been described at the community level across tree species. However, whether interspecific trait-environment relationships are consistent at the intraspecific level is yet unknown. Moreover, we do not know how consistent is the response between organ vs. whole-tree level.We examined phenotypic variability for 16 functional leaf (dimensions, nutrient, chlorophyll) and wood traits (density) across two soil types, Ferralitic Soil (FS) vs. White Sands (WS), on two sites for 70 adult trees of Cecropia obtusa Trécul (Urticaceae) in French Guiana. Cecropia is a widespread pioneer Neotropical genus that generally dominates early successional forest stages. To understand how soil types impact resource-use through the processes of growth and branching, we examined the architectural development with a retrospective analysis of growth trajectories. We expect soil types to affect both, functional traits in relation to resource acquisition strategy as already described at the interspecific level, and growth strategies due to resource limitations with reduced growth on poor soils.Functional traits were not involved in the soil response, as only two traits-leaf residual water content and K content-showed significant differences across soil types. Soil effects were stronger on growth trajectories, with WS trees having the slowest growth trajectories and less numerous branches across their lifespan.The analysis of growth trajectories based on architectural analysis improved our ability to characterise the response of trees with soil types. The intraspecific variability is higher for growth trajectories than functional traits for C. obtusa, revealing the complementarity of the architectural approach with the functional approach to gain insights on the way trees manage their resources over their lifetime. Soil-related responses of Cecropia functional traits are not the same as those at the interspecific level, suggesting that the effects of the acting ecological processes are different between the two levels. Apart from soil differences, much variation was found across sites, which calls for further investigation of the factors shaping growth trajectories in tropical forests.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 931  
Permanent link to this record
 

 
Author (down) Levionnois, S.; Jansen, S.; Wandji, R.T.; Beauchêne, J.; Ziegler, C.; Coste, S.; Stahl, C.; Delzon, S.; Authier, L.; Heuret, P. doi  openurl
  Title Linking drought-induced xylem embolism resistance to wood anatomical traits in Neotropical trees Type Journal Article
  Year 2021 Publication New Phytologist Abbreviated Journal New Phytol.  
  Volume 229 Issue 3 Pages 1453-1466  
  Keywords bordered pits; drought-induced embolism; pit membrane; transmission electron microscopy; tropical trees; vessel grouping; xylem anatomy  
  Abstract Drought-induced xylem embolism is considered to be one of the main factors driving mortality in woody plants worldwide. Although several structure–functional mechanisms have been tested to understand the anatomical determinants of embolism resistance, there is a need to study this topic by integrating anatomical data for many species. We combined optical, laser, and transmission electron microscopy to investigate vessel diameter, vessel grouping, and pit membrane ultrastructure for 26 tropical rainforest tree species across three major clades (magnoliids, rosiids, and asteriids). We then related these anatomical observations to previously published data on drought-induced embolism resistance, with phylogenetic analyses. Vessel diameter, vessel grouping, and pit membrane ultrastructure were all predictive of xylem embolism resistance, but with weak predictive power. While pit membrane thickness was a predictive trait when vestured pits were taken into account, the pit membrane diameter-to-thickness ratio suggests a strong importance of the deflection resistance of the pit membrane. However, phylogenetic analyses weakly support adaptive coevolution. Our results emphasize the functional significance of pit membranes for air-seeding in tropical rainforest trees, highlighting also the need to study their mechanical properties due to the link between embolism resistance and pit membrane diameter-to-thickness ratio. Finding support for adaptive coevolution also remains challenging. © 2020 The Authors New Phytologist © 2020 New Phytologist Foundation  
  Address UMR BIOGECO, INRAE, Université de Bordeaux, Pessac, 33615, France  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028646x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 997  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: