toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Baraloto, C.; Rabaud, S.; Molto, Q.; Blanc, L.; Fortunel, C.; Herault, B.; Davila, N.; Mesones, I.; Rios, M.; Valderrama, E.; Fine, P.V.A. openurl 
  Title Disentangling stand and environmental correlates of aboveground biomass in Amazonian forests Type Journal Article
  Year 2011 Publication Global Change Biology Abbreviated Journal Glob. Change Biol.  
  Volume 17 Issue 8 Pages 2677-2688  
  Keywords carbon stocks; climate; flooded forest; forest structure; French Guiana; Peru; REDD; soil properties; tropical rainforest; white-sand forest; wood specific gravity  
  Abstract Tropical forests contain an important proportion of the carbon stored in terrestrial vegetation, but estimated aboveground biomass (AGB) in tropical forests varies two-fold, with little consensus on the relative importance of climate, soil and forest structure in explaining spatial patterns. Here, we present analyses from a plot network designed to examine differences among contrasting forest habitats (terra firme, seasonally flooded, and white-sand forests) that span the gradient of climate and soil conditions of the Amazon basin. We installed 0.5-ha plots in 74 sites representing the three lowland forest habitats in both Loreto, Peru and French Guiana, and we integrated data describing climate, soil physical and chemical characteristics and stand variables, including local measures of wood specific gravity (WSG). We use a hierarchical model to separate the contributions of stand variables from climate and soil variables in explaining spatial variation in AGB. AGB differed among both habitats and regions, varying from 78 Mg ha(-1) in white-sand forest in Peru to 605 Mg ha(-1) in terra firme clay forest of French Guiana. Stand variables including tree size and basal area, and to a lesser extent WSG, were strong predictors of spatial variation in AGB. In contrast, soil and climate variables explained little overall variation in AGB, though they did co-vary to a limited extent with stand parameters that explained AGB. Our results suggest that positive feedbacks in forest structure and turnover control AGB in Amazonian forests, with richer soils (Peruvian terra firme and all seasonally flooded habitats) supporting smaller trees with lower wood density and moderate soils (French Guianan terra firme) supporting many larger trees with high wood density. The weak direct relationships we observed between soil and climate variables and AGB suggest that the most appropriate approaches to landscape scale modeling of AGB in the Amazon would be based on remote sensing methods to map stand structure.  
  Address (up) [Baraloto, Christopher; Rabaud, Suzanne; Fortunel, Claire; Rios, Marcos; Valderrama, Elvis] INRA, UMR Ecol Forets Guyane, Kourou 97387, French Guiana, Email: chris.baraloto@ecofog.gf  
  Corporate Author Thesis  
  Publisher Wiley-Blackwell Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1354-1013 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000292308300013 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 325  
Permanent link to this record
 

 
Author Baraloto, C.; Marcon, E.; Morneau, F.; Pavoine, S.; Roggy, J.C. openurl 
  Title Integrating functional diversity into tropical forest plantation designs to study ecosystem processes Type Journal Article
  Year 2010 Publication Annals of Forest Science Abbreviated Journal Ann. For. Sci.  
  Volume 67 Issue 3 Pages 303  
  Keywords complementarity; ecosystem function; functional groups; leaf economics spectrum; nitrogen fixation; quadratic entropy  
  Abstract The elucidation of relationships between biodiversity and ecosystem processes has been limited by the definition of metrics of biodiversity and their integration into experimental design. Functional trait screening can strengthen the performance of these designs. We suggest the use of Rao's quadratic entropy to measure both functional diversity and phylogenetic diversity of species mixtures proposed for an experimental design, and demonstrate how they can provide complementary information. We also present an index assessing the statistical performance of these independent variables in different experimental designs. Measurement of independent variables as continuous vs. discrete variables reduces statistical performance, but improves the model by quantifying species differences masked by group assignments. To illustrate these advances, we present an example from a tropical forest tree community in which we screened 38 species for nine functional traits. The proposed TropiDEP design is based on the relative orthogonality of two multivariate trait axes defined using principal component analysis. We propose that independent variables describing functional diversity might be grouped to calculate independent variables describing suites of different traits with potentially different effects on particular ecosystem processes. In other systems these axes may differ from those reported here, yet the methods of analysis integrating functional and phylogenetic diversity into experimental design could be universal.  
  Address (up) [Baraloto, Christopher; Roggy, Jean-Christophe] INRA, UMR Ecol Forets Guyane, Kourou, French Guiana, Email: chris.baraloto@ecofog.gf  
  Corporate Author Thesis  
  Publisher EDP SCIENCES S A Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1286-4560 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000276507800004 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 62  
Permanent link to this record
 

 
Author Baraloto, C.; Couteron, P. openurl 
  Title Fine-scale Microhabitat Heterogeneity in a French Guianan Forest Type Journal Article
  Year 2010 Publication Biotropica Abbreviated Journal Biotropica  
  Volume 42 Issue 4 Pages 420-428  
  Keywords canopy gap; geostatistics; light availability; microclimate; soil moisture; soil nutrients; topography  
  Abstract We examined fine-scale heterogeneity of environmental conditions in a primary rain forest in French Guiana to describe variation in microhabitats that plants may experience during establishment. We characterized both the range as well as the spatial structuring of 11 environmental factors important for seedling establishment in six hexagonal sampling grids, one each in gap and understory sites at three points representing the predominant geomorphic units in this primary forest. Each grid contained 37 sampling points separated by 31 cm-20 m. Monte-Carlo tests of semivariograms against complete spatial randomness indicated that for many variables in all six sampling grids, spatial dependence did not exceed 1 m. A principal component analysis of all sampling points revealed a lack of spatial microhabitat structure, rather than homogeneous patches associated with canopy structure or geomorphology. Our results suggest that ample fine-scale spatial heterogeneity exists to support the coexistence of plant species with differential abiotic requirements for regeneration.  
  Address (up) [Baraloto, Christopher] INRA, UMR Ecol Forets Guyane, F-97387 Kourou, France, Email: chris.baraloto@ecofog.gf  
  Corporate Author Thesis  
  Publisher WILEY-BLACKWELL PUBLISHING, INC Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3606 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000279438900005 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 55  
Permanent link to this record
 

 
Author Barantal, S.; Roy, J.; Fromin, N.; Schimann, H.; Hattenschwiler, S. openurl 
  Title Long-term presence of tree species but not chemical diversity affect litter mixture effects on decomposition in a neotropical rainforest Type Journal Article
  Year 2011 Publication Oecologia Abbreviated Journal Oecologia  
  Volume 167 Issue 1 Pages 241-252  
  Keywords Amazonian rainforest; Chemical diversity; Decomposition; Functional diversity indices; Litter traits  
  Abstract Plant litter diversity effects on decomposition rates are frequently reported, but with a strong bias towards temperate ecosystems. Altered decomposition and nutrient recycling with changing litter diversity may be particularly important in tree species-rich tropical rainforests on nutrient-poor soils. Using 28 different mixtures of leaf litter from 16 Amazonian rainforest tree species, we tested the hypothesis that litter mixture effects on decomposition increase with increasing functional litter diversity. Litter mixtures and all single litter species were exposed in the field for 9 months using custom-made microcosms with soil fauna access. In order to test the hypothesis that the long-term presence of tree species contributing to the litter mixtures increases mixture effects on decomposition, microcosms were installed in a plantation at sites including the respective tree species composition and in a nearby natural forest where these tree species are absent. We found that mixture decomposition deviated from predictions based on single species, with predominantly synergistic effects. Functional litter diversity, defined as either richness, evenness, or divergence based on a wide range of chemical traits, did not explain the observed litter mixture effects. However, synergistic effects in litter mixtures increased with the long-term presence of tree species contributing to these mixtures as the home field advantage hypothesis assumes. Our data suggest that complementarity effects on mixed litter decomposition may emerge through long-term interactions between aboveground and belowground biota.  
  Address (up) [Barantal, S; Roy, J; Fromin, N; Hattenschwiler, S] CEFE CNRS, UMR 5175, F-34293 Montpellier 5, France, Email: sandra.barantal@cefe.cnrs.fr  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0029-8549 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000293914000024 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 336  
Permanent link to this record
 

 
Author Bekaert, E.; Robert, F.; Lippens, P.E.; Menetrier, M. openurl 
  Title Li-7 NMR Knight Shifts in Li-Sn Compounds: MAS NMR Measurements and Correlation with DFT Calculations Type Journal Article
  Year 2010 Publication Journal of Physical Chemistry C Abbreviated Journal J. Phys. Chem. C  
  Volume 114 Issue 14 Pages 6749-6754  
  Keywords  
  Abstract Several Li-Sn crystalline phases, LiSn. Li7Sn3, Li5Sn7, Li13Sn5, Li7Sn2, and Li22Sn5. were prepared by ball-milling and studied by Li-7 MAS NMR spectroscopy with silica as a chiming agent to avoid field penetration limitations All phases except for LiSn exhibit exchanged NMR signals at room temperature for the various types of Li present in the unit cells. in the 10 to 100 ppm range. Electronic structure calculations based on first-principles method led to a lather good correlation between the participation of the Li 2s orbital to the density of states (DOS) at the Fermi level and the corresponding NMR Knight shift for the two Li crystallographic types in the case of LiSn, and for the weighted average of the different crystallographic types in the case of the NMR-exchanged signals for the other compounds  
  Address (up) [Bekaert, Emilie; Menetrier, Michel] Univ Bordeaux, CNRS, ICMCB, F-33608 Pessac, France  
  Corporate Author Thesis  
  Publisher AMER CHEMICAL SOC Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000276341700075 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 80  
Permanent link to this record
 

 
Author Bleron, L.; Duchanois, G.; Thibaut, B. openurl 
  Title Characteristic properties of embedding strength for the nailing of the gonfolio rose (Qualea rosea Aubl.) Type Journal Article
  Year 2008 Publication Holzforschung Abbreviated Journal Holzforschung  
  Volume 62 Issue 1 Pages 86-90  
  Keywords embedding strength; Eurocode V; nail  
  Abstract Experimental results are presented with single nail joints of gonfolo rose which were loaded at different grain angles and compared to results obtained by Eurocode V. A wide range of embedding strength tests was conducted. The embedding behaviour across the grain was also investigated with a specific test apparatus. The results were analysed and modelled in terms of strength. Initial loading and unloading stiffness of the timber have been taken into account. The embedment strength of the nails varied according to the angle between the direction of loading and that to the grain. This work is part of a larger research project to establish a computer program for the prediction of stiffness and limit strengths of all timber-to-timber and timber-to-steel joints.  
  Address (up) [Bleron, Laurent] LABOMAP ENSAM, F-71250 Poret De Paris, Cluny, France, Email: laurent.bleron@cluny.ensam.fr  
  Corporate Author Thesis  
  Publisher WALTER DE GRUYTER & CO Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-3830 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000252041400013 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 144  
Permanent link to this record
 

 
Author Blanc, L.; Echard, M.; Herault, B.; Bonal, D.; Marcon, E.; Chave, J.; Baraloto, C. openurl 
  Title Dynamics of aboveground carbon stocks in a selectively logged tropical forest Type Journal Article
  Year 2009 Publication Ecological Applications Abbreviated Journal Ecol. Appl.  
  Volume 19 Issue 6 Pages 1397-1404  
  Keywords aboveground biomass; carbon sequestration; deforestation; French Guiana; global change; timber stand improvement; tropical forests  
  Abstract The expansion of selective logging in tropical forests may be an important source of global carbon emissions. However, the effects of logging practices on the carbon cycle have never been quantified over long periods of time. We followed the fate of more than 60 000 tropical trees over 23 years to assess changes in aboveground carbon stocks in 48 1.56-ha plots in French Guiana that represent a gradient of timber harvest intensities, with and without intensive timber stand improvement (TSI) treatments to stimulate timber tree growth. Conventional selective logging led to emissions equivalent to more than a third of aboveground carbon stocks in plots without TSI (85 Mg C/ha), while plots with TSI lost more than one-half of aboveground carbon stocks (142 Mg C/ha). Within 20 years of logging, plots without TSI sequestered aboveground carbon equivalent to more than 80% of aboveground carbon lost to logging (-70.7 Mg C/ha), and our simulations predicted an equilibrium aboveground carbon balance within 45 years of logging. In contrast, plots with intensive TSI are predicted to require more than 100 years to sequester aboveground carbon lost to emissions. These results indicate that in some tropical forests aboveground carbon storage can be recovered within half a century after conventional logging at moderate harvest intensities.  
  Address (up) [Bonal, Damien; Baraloto, Christopher] INRA, UMR Ecol Forets Guyane, Kourou 97379, French Guiana, Email: chris.baraloto@ecofog.gf  
  Corporate Author Thesis  
  Publisher ECOLOGICAL SOC AMER Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-0761 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000269075200003 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 105  
Permanent link to this record
 

 
Author Bonal, D.; Bosc, A.; Ponton, S.; Goret, J.Y.; Burban, B.; Gross, P.; Bonnefond, J.M.; Elbers, J.; Longdoz, B.; Epron, D.; Guehl, J.M.; Granier, A. openurl 
  Title Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana Type Journal Article
  Year 2008 Publication Global Change Biology Abbreviated Journal Glob. Change Biol.  
  Volume 14 Issue 8 Pages 1917-1933  
  Keywords dry season; ecosystem respiration; eddy covariance; gross ecosystem productivity; Neotropical rainforest; net ecosystem productivity; soil drought; solar radiation  
  Abstract The lack of information on the ways seasonal drought modifies the CO2 exchange between Neotropical rainforest ecosystems and the atmosphere and the resulting carbon balance hinders our ability to precisely predict how these ecosystems will respond as global environmental changes force them to face increasingly contrasting conditions in the future. To address this issue, seasonal variations in daily net ecosystem productivity (NEPd) and two main components of this productivity, daily total ecosystem respiration (R-Ed) and daily gross ecosystem productivity (GEP(d)), were estimated over 2 years at a flux tower site in French Guiana, South America (5 degrees 16'54'N, 52 degrees 54'44'W). We compared seasonal variations between wet and dry periods and between dry periods of contrasting levels of intensity (i.e. mild vs. severe) during equivalent 93-day periods. During the wet periods, the ecosystem was almost in balance with the atmosphere (storage of 9.0 g C m(-2)). Seasonal dry periods, regardless of their severity, are associated with higher incident radiation and lower R-Ed combined with reduced soil respiration associated with low soil water availability. During the mild dry period, as is normally the case in this region, the amount of carbon stored in the ecosystem was 32.7 g C m(-2). Severe drought conditions resulted in even lower R-Ed, whereas the photosynthetic activity was only moderately reduced and no change in canopy structure was observed. Thus, the severe dry period was characterized by greater carbon storage (64.6 g C m(-2)), emphasizing that environmental conditions, such as during a severe drought, modify the CO2 exchange between Neotropical rainforest ecosystems and the atmosphere and potentially the resulting carbon balance.  
  Address (up) [Bonal, Damien; Goret, Jean-Yves; Burban, Benoit] INRA, UMR Ecol Forets Guyane, Kourou 97387, French Guiana, Email: damien.bonal@kourou.cirad.fr  
  Corporate Author Thesis  
  Publisher BLACKWELL PUBLISHING Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1354-1013 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000257712400015 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 133  
Permanent link to this record
 

 
Author Bonal, D.; Ponton, S.; Le Thiec, D.; Richard, B.; Ningre, N.; Herault, B.; Ogee, J.; Gonzalez, S.; Pignal, M.; Sabatier, D.; Guehl, J.M. openurl 
  Title Leaf functional response to increasing atmospheric CO(2) concentrations over the last century in two northern Amazonian tree species: a historical delta(13)C and delta(18)O approach using herbarium samples Type Journal Article
  Year 2011 Publication Plant Cell and Environment Abbreviated Journal Plant Cell Environ.  
  Volume 34 Issue 8 Pages 1332-1344  
  Keywords carbon isotope composition; environmental change; herbarium; oxygen isotope composition; photosynthesis; stomata; tropical rainforests  
  Abstract We assessed the extent of recent environmental changes on leaf morphological (stomatal density, stomatal surface, leaf mass per unit area) and physiological traits (carbon isotope composition, delta(13)C(leaf), and discrimination, Delta(13)C(leaf), oxygen isotope composition, delta(18)O(leaf)) of two tropical rainforest species (Dicorynia guianensis; Humiria balsamifera) that are abundant in the Guiana shield (Northern Amazonia). Leaf samples were collected in different international herbariums to cover a 200 year time-period (1790-2004) and the whole Guiana shield. Using models describing carbon and oxygen isotope fractionations during photosynthesis, different scenarios of change in intercellular CO(2) concentrations inside the leaf (C(i)), stomatal conductance (g), and photosynthesis (A) were tested in order to understand leaf physiological response to increasing air CO(2) concentrations (C(a)). Our results confirmed that both species displayed physiological response to changing C(a). For both species, we observed a decrease of about 1.7% in delta(13)C(leaf) since 1950, without significant change in Delta(13)C(leaf) and leaf morphological traits. Furthermore, there was no clear change in delta(18)O(leaf) for Humiria over this period. Our simulation approach revealed that an increase in A, rather than a decrease in g, explained the observed trends for these tropical rainforest species, allowing them to maintain a constant ratio of C(i)/C(a).  
  Address (up) [Bonal, D] INRA, UMR Ecofog, F-97387 Kourou, France, Email: bonal@nancy.inra.fr  
  Corporate Author Thesis  
  Publisher Wiley-Blackwell Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0140-7791 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000292698900010 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 330  
Permanent link to this record
 

 
Author Stahl, C.; Burban, B.; Goret, J.Y.; Bonal, D. openurl 
  Title Seasonal variations in stem CO(2) efflux in the Neotropical rainforest of French Guiana Type Journal Article
  Year 2011 Publication Annals of Forest Science Abbreviated Journal Ann. For. Sci.  
  Volume 68 Issue 4 Pages 771-782  
  Keywords Tropical rainforest; Stem CO(2) efflux; Soil water content; Terra Firme forest; Seasonally flooded forest  
  Abstract Introduction Stem CO(2) efflux (E (s)) is a significant component of total ecosystem respiration, but there is only scant information on seasonal variations in E (s) in tropical rainforests and on the main factors explaining these variations. Methods We conducted a comprehensive 18-month study in French Guiana to try to better understand which environmental factors contribute to seasonal variations in E (s) in two habitats differing in soil water conditions. Results In both habitats, large seasonal variations in E (s) were observed for most trees. The main variations occurred during climatic transition periods and were consistent with seasonal variations in soil and total ecosystem respiration. Discussion Seasonal variations in atmospheric conditions, including air temperature, did not explain seasonal variations in E (s). In contrast, seasonal variations in surface soil water content clearly induced seasonal variations in E (s) in each habitat. Both soil drought and flooded conditions induced a decrease in E (s). Conclusion Our results emphasize the need to integrate the influence of soil water content on E (s) into global models that simulate the response of forest ecosystem fluxes to climate changes.  
  Address (up) [Bonal, D] INRA, UMR INRA UHP Ecol & Ecophysiol Forestiere 1137, F-54280 Champenoux, France, Email: bonal@nancy.inra.fr  
  Corporate Author Thesis  
  Publisher Springer France Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1286-4560 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000292553400011 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 327  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: