toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Fortunel, C.; Paine, C.E.T.; Fine, P.V.A.; Kraft, N.J.B.; Baraloto, C. url  openurl
  Title Environmental factors predict community functional composition in Amazonian forests Type Journal Article
  Year 2014 Publication Journal of Ecology Abbreviated Journal J. Ecol.  
  Volume 102 Issue 1 Pages 145-155  
  Keywords Amazonian landscape; Climatic and soil gradients; Determinants of plant community diversity and structure; Environmental filtering; Functional traits; Tree communities; Tropical forests  
  Abstract The consequences of biodiversity loss for ecosystem services largely depend on the functional identities of extirpated species. However, poor descriptions of spatial patterns of community functional composition across landscapes hamper accurate predictions, particularly in highly diverse tropical regions. Therefore, understanding how community functional composition varies across environmental gradients remains an important challenge. We sampled 15 functional traits in 800 Neotropical tree species across 13 forest plots representative of the broad climatic and soil gradients encompassed by three widespread lowland forest habitats (terra firme forests on clay-rich soils, seasonally flooded forests and white-sand forests) at opposite ends of Amazonia (Peru and French Guiana). We combined univariate and multivariate approaches to test the magnitude and predictability of environmental filtering on community leaf and wood functional composition. Directional shifts in community functional composition correlated with environmental changes across the 13 plots, with denser leaves, stems and roots in forests occurring in environments with limited water and soil-nutrient availability. Critically, these relationships allowed us to accurately predict the functional composition of 61 additional forest plots from environmental data alone. Synthesis. Environmental filtering consistently shapes the functional composition of highly diverse tropical forests at large scales across the terra firme, seasonally flooded and white-sand forests of lowland Amazonia. Environmental factors drive and allow the prediction of variation in community functional composition among habitat types in Amazonian forests. © 2013 British Ecological Society.  
  Address (down) Department of Biology, University of Florida, Gainesville, FL, 32611, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00220477 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 31 December 2013; Source: Scopus; Coden: Jecoa; doi: 10.1111/1365-2745.12160; Language of Original Document: English; Correspondence Address: Fortunel, C.; INRA, UMR Ecologie des Forêts de Guyane, BP 709, Kourou Cedex, 97387, France; email: claire.fortunel@ecofog.gf; Funding Details: DEB-0743103/0743800, NSF, National Science Foundation; References: Agrawal, A.A., Fishbein, M., Plant defense syndromes (2006) Ecology, 87, pp. S132-S149; Anderson, L.O., Malhi, Y., Ladle, R.J., Aragao, L., Shimabukuro, Y., Phillips, O.L., Influence of landscape heterogeneity on spatial patterns of wood productivity, wood specific density and above ground biomass in Amazonia (2009) Biogeosciences, 6, pp. 1883-1902; Asner, G.P., Alencar, A., Drought impacts on the Amazon forest: the remote sensing perspective (2010) New Phytologist, 187, pp. 569-578; Asner, G.P., Loarie, S.R., Heyder, U., Combined effects of climate and land-use change on the future of humid tropical forests (2010) Conservation Letters, 3, pp. 395-403; Baraloto, C., Paine, C.E.T., Patiño, S., Bonal, D., Herault, B., Chave, J., Functional trait variation and sampling strategies in species-rich plant communities (2010) Functional Ecology, 24, pp. 208-216; Baraloto, C., Paine, C.E.T., Poorter, L., Beauchene, J., Bonal, D., Domenach, A.M., Hérault, B., Chave, J., Decoupled leaf and stem economics in rain forest trees (2010) Ecology Letters, 13, pp. 1338-1347; Baraloto, C., Rabaud, S., Molto, Q., Blanc, L., Fortunel, C., Hérault, B., Davila, N., Fine, P.V.A., Disentangling stand and environmental correlates of aboveground biomass in Amazonian forests (2011) Global Change Biology, 17, pp. 2677-2688; Baraloto, C., Molto, Q., Rabaud, S., Hérault, B., Valencia, R., Blanc, L., Fine, P.V.A., Thompson, J., Rapid simultaneous estimation of aboveground biomass and tree diversity across Neotropical forests: a comparison of field inventory methods (2013) Biotropica, 45, pp. 288-298; Belyea, L.R., Lancaster, J., Assembly rules within a contingent ecology (1999) Oikos, 86, pp. 402-416; Berry, S.L., Roderick, M.L., Estimating mixtures of leaf functional types using continental-scale satellite and climatic data (2002) Global Ecology and Biogeography, 11, pp. 23-39; Brando, P.M., Nepstad, D.C., Balch, J.K., Bolker, B., Christman, M.C., Coe, M., Putz, F.E., Fire-induced tree mortality in a neotropical forest: the roles of bark traits, tree size, wood density and fire behavior (2012) Global Change Biology, 18, pp. 630-641; Burnham, K.P., Anderson, D.R., Multimodel inference – understanding AIC and BIC in model selection (2004) Sociological Methods & Research, 33, pp. 261-304; Calcagno, V., de Mazancourt, C., glmulti: an R package for easy automated model selection with (generalized) linear models (2010) Journal of Statistical Software, 34, pp. 1-29; Chapin, F.S., BretHarte, M.S., Hobbie, S.E., Zhong, H.L., Plant functional types as predictors of transient responses of arctic vegetation to global change (1996) Journal of Vegetation Science, 7, pp. 347-358; Chaturvedi, R.K., Raghubanshi, A.S., Singh, J.S., Leaf attributes and tree growth in a tropical dry forest (2011) Journal of Vegetation Science, 22, pp. 917-931; Chave, J., Coomes, D., Jansen, S., Lewis, S.L., Swenson, N.G., Zanne, A.E., Towards a worldwide wood economics spectrum (2009) Ecology Letters, 12, pp. 351-366; Cingolani, A.M., Cabido, M., Gurvich, D.E., Renison, D., Diaz, S., Filtering processes in the assembly of plant communities: are species presence and abundance driven by the same traits? (2007) Journal of Vegetation Science, 18, pp. 911-920; Coates, K.D., Lilles, E.B., Astrup, R., Competitive interactions across a soil fertility gradient in a multispecies forest (2013) Journal of Ecology, 101, pp. 806-818; Cornwell, W.K., Ackerly, D.D., Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California (2009) Ecological Monographs, 79, pp. 109-126; Cornwell, W.K., Schwilk, D.W., Ackerly, D.D., A trait-based test for habitat filtering: convex hull volume (2006) Ecology, 87, pp. 1465-1471; Craine, J.M., Reconciling plant strategy theories of Grime and Tilman (2005) Journal of Ecology, 93, pp. 1041-1052; de Deyn, G.B., Cornelissen, J.H.C., Bardgett, R.D., Plant functional traits and soil carbon sequestration in contrasting biomes (2008) Ecology Letters, 11, pp. 516-531; Dray, S., Dufour, A.B., The ade4 package: implementing the duality diagram for ecologists (2007) Journal of Statistical Software, 22, pp. 1-20; Engelbrecht, B.M.J., Comita, L.S., Condit, R., Kursar, T.A., Tyree, M.T., Turner, B.L., Hubbell, S.P., Drought sensitivity shapes species distribution patterns in tropical forests (2007) Nature, 447, pp. 80-82; Farquhar, G.D., Ehleringer, J.R., Hubick, K.T., Carbon isotope discrimination and photosynthesis (1989) Annual Review of Plant Physiology and Plant Molecular Biology, 40, pp. 503-537; Ferry, B., Morneau, F., Bontemps, J.D., Blanc, L., Freycon, V., Higher treefall rates on slopes and waterlogged soils result in lower stand biomass and productivity in a tropical rain forest (2010) Journal of Ecology, 98, pp. 106-116; Fine, P.V.A., Mesones, I., Coley, P.D., Herbivores promote habitat specialization by trees in Amazonian forests (2004) Science, 305, pp. 663-665; Fine, P.V.A., Miller, Z.J., Mesones, I., Irazuzta, S., Appel, H.M., Stevens, M.H.H., Saaksjarvi, I., Coley, P.D., The growth-defense trade-off and habitat specialization by plants in Amazonian forests (2006) Ecology, 87, pp. S150-S162; Fortunel, C., Fine, P.V.A., Baraloto, C., Leaf, stem and root tissue strategies across 758 Neotropical tree species (2012) Functional Ecology, 26, pp. 1153-1161; Fyllas, N.M., Patino, S., Baker, T.R., Nardoto, G.B., Martinelli, L.A., Quesada, C.A., Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate (2009) Biogeosciences, 6, pp. 2677-2708; Grime, J.P., Vegetation classification by reference to strategies (1974) Nature, 250, pp. 26-31; Harrison, S.P., Prentice, I.C., Barboni, D., Kohfeld, K.E., Ni, J., Sutra, J.P., Ecophysiological and bioclimatic foundations for a global plant functional classification (2010) Journal of Vegetation Science, 21, pp. 300-317; Huston, M.A., Precipitation, soils, NPP, and biodiversity: resurrection of Albrecht's curve (2012) Ecological Monographs, 82, pp. 277-296; Ingram, T., Shurin, J.B., Trait-based assembly and phylogenetic structure in northeast Pacific rockfish assemblages (2009) Ecology, 90, pp. 2444-2453; Kadane, J.B., Lazar, N.A., Methods and criteria for model selection (2004) Journal of the American Statistical Association, 99, pp. 279-290; Katabuchi, M., Kurokawa, H., Davies, S.J., Tan, S., Nakashizuka, T., Soil resource availability shapes community trait structure in a species-rich dipterocarp forest (2012) Journal of Ecology, 100, pp. 643-651; Keddy, P.A., Assembly and response rules – two goals for predictive community ecology (1992) Journal of Vegetation Science, 3, pp. 157-164; Keith, D.A., Holman, L., Rodoreda, S., Lemmon, J., Bedward, M., Plant functional types can predict decade-scale changes in fire-prone vegetation (2007) Journal of Ecology, 95, pp. 1324-1337; Kitajima, K., Poorter, L., Tissue-level leaf toughness, but not lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species (2010) New Phytologist, 186, pp. 708-721; Kraft, N.J.B., Valencia, R., Ackerly, D.D., Functional traits and niche-based tree community assembly in an Amazonian forest (2008) Science, 322, pp. 580-582; Landsberg, J., Modelling forest ecosystems: state of the art, challenges, and future directions (2003) Canadian Journal of Forest Research, 33, pp. 385-397; Laughlin, D.C., Fulé, P.Z., Huffman, D.W., Crouse, J., Laliberté, E., Climatic constraints on trait-based forest assembly (2011) Journal of Ecology, 99, pp. 1489-1499; Lavergne, S., Mouquet, N., Thuiller, W., Ronce, O., Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities (2010) Annual Review of Ecology, Evolution, and Systematics, 41, pp. 321-350; Lavorel, S., Grigulis, K., McIntyre, S., Williams, N.S.G., Garden, D., Dorrough, J., Berman, S., Bonis, A., Assessing functional diversity in the field: methodology matters! (2008) Functional Ecology, 22, pp. 134-147; Lebrija-Trejos, E., Perez-Garcia, E.A., Meave, J.A., Bongers, F., Poorter, L., Functional traits and environmental filtering drive community assembly in a species-rich tropical system (2010) Ecology, 91, pp. 386-398; Liu, X., Swenson, N.G., Wright, S.J., Zhang, L., Song, K., Du, Y., Zhang, J., Ma, K., Covariation in plant functional traits and soil fertility within two species-rich forests (2012) PLoS ONE, 7, pp. e34767; Lortie, C.J., Brooker, R.W., Choler, P., Kikvidze, Z., Michalet, R., Pugnaire, F.I., Callaway, R.M., Rethinking plant community theory (2004) Oikos, 107, pp. 433-438; Malhi, Y., Roberts, J.T., Betts, R.A., Killeen, T.J., Li, W.H., Nobre, C.A., Climate change, deforestation, and the fate of the Amazon (2008) Science, 319, pp. 169-172; Muller-Landau, H.C., Interspecific and inter-site variation in wood specific gravity of tropical trees (2004) Biotropica, 36, pp. 20-32; Niinemets, U., Components of leaf dry mass per area – thickness and density – alter leaf photosynthetic capacity in reverse directions in woody plants (1999) New Phytologist, 144, pp. 35-47; Oksanen, J.F., Blanchet, G., Kindt, R., Legendre, P., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Wagner, H., (2012), http://CRAN.R-project.org/package=vegan, vegan: Community Ecology Package. R package version 2.0-3Onoda, Y., Westoby, M., Adler, P.B., Choong, A.M.F., Clissold, F.J., Cornelissen, J.H.C., Global patterns of leaf mechanical properties (2011) Ecology Letters, 14, pp. 301-312; Ordonez, J.C., van Bodegom, P.M., Witte, J.P.M., Wright, I.J., Reich, P.B., Aerts, R., A global study of relationships between leaf traits, climate and soil measures of nutrient fertility (2009) Global Ecology and Biogeography, 18, pp. 137-149; Paine, C.E.T., Stahl, C., Courtois, E.A., Patino, S., Sarmiento, C., Baraloto, C., Functional explanations for variation in bark thickness in tropical rain forest trees (2010) Functional Ecology, 24, pp. 1202-1210; Paine, C.E.T., Baraloto, C., Chave, J., Herault, B., Functional traits of individual trees reveal ecological constraints on community assembly in tropical rain forests (2011) Oikos, 120, pp. 720-727; Parolin, P., Morphological and physiological adjustments to waterlogging and drought in seedlings of Amazonian floodplain trees (2001) Oecologia, 128, pp. 326-335; Parolin, P., De Simone, O., Haase, K., Waldhoff, D., Rottenberger, S., Kuhn, U., Kesselmeier, J., Junk, W.J., Central Amazonian floodplain forests: tree adaptations in a pulsing system (2004) Botanical Review, 70, pp. 357-380; Phillips, O.L., Vasquez Martinez, R., Nunez Vargas, P., Lorenzo Monteagudo, A., Chuspe Zans, M.E., Galiano Sanchez, W., Pena Cruz, A., Rose, S., Efficient plot-based floristic assessment of tropical forests (2003) Journal of Tropical Ecology, 19, pp. 629-645; Poorter, L., Wright, S.J., Paz, H., Ackerly, D.D., Condit, R., Ibarra-Manriques, G., Are functional traits good predictors of demographic rates? Evidence from five neotropical forests (2008) Ecology, 89, pp. 1908-1920; Quesada, C.A., Lloyd, J., Anderson, L.O., Fyllas, N.M., Schwarz, M., Czimczik, C.I., Soils of Amazonia with particular reference to the RAINFOR sites (2011) Biogeosciences, 8, pp. 1415-1440; Quesada, C.A., Phillips, O.L., Schwarz, M., Czimczik, C.I., Baker, T.R., Patino, S., Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate (2012) Biogeosciences, 9, pp. 2203-2246; (2011), http://www.R-project.org, R Development Core TeamReich, P.B., Walters, M.B., Ellsworth, D.S., From tropics to tundra: global convergence in plant functioning (1997) Proceedings of the National Academy of Sciences of the United States of America, 94, pp. 13730-13734; Reu, B., Zaehle, S., Proulx, R., Bohn, K., Kleidon, A., Pavlick, R., Schmidtlein, S., The role of plant functional trade-offs for biodiversity changes and biome shifts under scenarios of global climatic change (2011) Biogeosciences, 7, pp. 7449-7473; Ryan, C.M., Hill, T., Woollen, E., Ghee, C., Mitchard, E., Cassells, G., Grace, J., Williams, M., Quantifying small-scale deforestation and forest degradation in African woodlands using radar imagery (2012) Global Change Biology, 18, pp. 243-257; Smith, M.J., Sibly, R.M., Identification of trade-offs underlying the primary strategies of plants (2008) Evolutionary Ecology Research, 10, pp. 45-60; ter Steege, H., Sabatier, D., Castellanos, H., Van Andel, T., Duivenvoorden, J., De Oliveira, A.A., Ek, R., Mori, S., An analysis of the floristic composition and diversity of Amazonian forests including those of the Guiana Shield (2000) Journal of Tropical Ecology, 16, pp. 801-828; ter Steege, H., Pitman, N.C.A., Phillips, O.L., Chave, J., Sabatier, D., Duque, A., Molino, J.F., Vasquez, R., Continental-scale patterns of canopy tree composition and function across Amazonia (2006) Nature, 443, pp. 444-447; Suding, K.N., Goldstein, L.J., Testing the Holy Grail framework: using functional traits to predict ecosystem change (2008) New Phytologist, 180, pp. 559-562; Swenson, N.G., Anglada-Cordero, P., Barone, J.A., Deterministic tropical tree community turnover: evidence from patterns of functional beta diversity along an elevational gradient (2010) Proceedings of the Royal Society of London. Series B, Biological Sciences, 278, pp. 877-884; Swenson, N.G., Enquist, B.J., Opposing assembly mechanisms in a neotropical dry forest: implications for phylogenetic and functional community ecology (2009) Ecology, 90, pp. 2161-2170; Swenson, N.G., Stegen, J.C., Davies, S.J., Erickson, D.L., Forero-Montaña, J., Hurlbert, A.H., Kress, W.J., Zimmerman, J.K., Temporal turnover in the composition of tropical tree communities: functional determinism and phylogenetic stochasticity (2012) Ecology, 93, pp. 490-499; Tilman, D., Constraints and tradeoffs – toward a predictive theory of competition and succession (1990) Oikos, 58, pp. 3-15; Wagner, F., Herault, B., Stahl, C., Bonal, D., Rossi, V., Modeling water availability for trees in tropical forests (2011) Agricultural and Forest Meteorology, 151, pp. 1202-1213; Wand, M.P., Fast computation of multivariate kernel estimators (1994) Journal of Computational and Graphical Statistics, 3, pp. 433-445; Warton, D.I., Wright, I.J., Falster, D.S., Westoby, M., Bivariate line-fitting methods for allometry (2006) Biological Reviews, 81, pp. 259-291; Webb, C.T., Hoeting, J.A., Ames, G.M., Pyne, M.I., Poff, N.L., A structured and dynamic framework to advance traits-based theory and prediction in ecology (2010) Ecology Letters, 13, pp. 267-283; Williamson, G.B., Wiemann, M.C., Measuring wood specific gravity ... correctly (2010) American Journal of Botany, 97, pp. 519-524; Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., The worldwide leaf economics spectrum (2004) Nature, 428, pp. 821-827; Wright, I.J., Reich, P.B., Cornelissen, J.H.C., Falster, D.S., Garnier, E., Hikosaka, K., Assessing the generality of global leaf trait relationships (2005) New Phytologist, 166, pp. 485-496; Wright, I.J., Falster, D.S., Pickup, M., Westoby, M., Cross-species patterns in the coordination between leaf and stem traits, and their implications for plant hydraulics (2006) Physiologia Plantarum, 127, pp. 445-456; Wright, I.J., Ackerly, D.D., Bongers, F., Harms, K.E., Ibarra-Manriquez, G., Martinez-Ramos, M., Relationships among ecologically important dimensions of plant trait variation in seven Neotropical forests (2007) Annals of Botany, 99, pp. 1003-1015; Wright, S.J., Kitajima, K., Kraft, N.J.B., Reich, P.B., Wright, I.J., Bunker, D.E., Functional traits and the growth-mortality trade-off in tropical trees (2010) Ecology, 91, pp. 3664-3674 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 520  
Permanent link to this record
 

 
Author Lamarre, G.P.A.; Mendoza, I.; Fine, P.V.A.; Baraloto, C. url  openurl
  Title Leaf synchrony and insect herbivory among tropical tree habitat specialists Type Journal Article
  Year 2014 Publication Plant Ecology Abbreviated Journal Plant Ecol.  
  Volume 215 Issue 2 Pages 209-220  
  Keywords Escape; French Guiana; Herbivorous insects; Phenology; Resource availability; Time lag  
  Abstract Growth defense tradeoff theory predicts that plants in low-resource habitats invest more energy in defense mechanisms against natural enemies than growth, whereas plants in high-resource habitats can afford higher leaf loss rates. A less-studied defense against herbivores involves the synchrony of leaf production, which can be an effective defense strategy if leaf biomass production exceeds the capacity of consumption by insects. The aim of this study was to determine whether leaf synchrony varied across habitats with different available resources and whether insects were able to track young leaf production among tree habitat specialists in a tropical forest of French Guiana. We predicted that high-resource habitats would exhibit more synchrony in leaf production due to the low cost and investment to replace leaf tissue. We also expected closer patterns of leaf synchrony and herbivory within related species, assuming that they shared herbivores. We simultaneously monitored leaf production and herbivory rates of five pairs of tree species, each composed of a specialist of terra firme or white-sand forests within the same lineage. Our prediction was not supported by the strong interaction of habitat and lineage for leaf synchrony within individuals of the same species; although habitat specialists differed in leaf synchrony within four of five lineages, the direction of the effect was variable. All species showed short time lags for the correlation between leaf production and herbivory, suggesting that insects are tightly tracking leaf production, especially for the most synchronous species. Leaf synchrony may provide an important escape defense against herbivores, and its expression appears to be constrained by both evolutionary history and environmental factors. © 2014 Springer Science+Business Media Dordrecht.  
  Address (down) Department of Biology, University of Florida, Gainesville, FL, 32611, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 13850237 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 24 February 2014; Source: Scopus; Coden: Plecf; Language of Original Document: English; Correspondence Address: Lamarre, G. P. A.; Université Antilles Guyane, UMR Ecologie des Forêts de Guyane, 97310 Kourou, French Guiana; email: greglamarre973@gmail.com; Funding Details: DEB-0743103/0743800, NSF, National Science Foundation Approved no  
  Call Number EcoFoG @ webmaster @ Serial 530  
Permanent link to this record
 

 
Author Fortunel, C.; Ruelle, J.; Beauchene, J.; Fine, P.V.A.; Baraloto, C. url  openurl
  Title Wood specific gravity and anatomy of branches and roots in 113 Amazonian rainforest tree species across environmental gradients Type Journal Article
  Year 2014 Publication New Phytologist Abbreviated Journal New Phytol.  
  Volume 202 Issue 1 Pages 79-94  
  Keywords Amazonian forests; Branch; Environmental gradients; Neotropical trees; Root; Wood anatomical traits; Wood density; Wood functions  
  Abstract Wood specific gravity (WSG) is a strong predictor of tree performance across environmental gradients. Yet it remains unclear how anatomical elements linked to different wood functions contribute to variation in WSG in branches and roots across tropical forests. We examined WSG and wood anatomy in white sand, clay terra firme and seasonally flooded forests in French Guiana, spanning broad environmental gradients found throughout Amazonia. We measured 15 traits relating to branches and small woody roots in 113 species representing the 15 most abundant species in each habitat and representative species from seven monophyletic lineages occurring in all habitats. Fiber traits appear to be major determinants of WSG, independent of vessel traits, in branches and roots. Fiber traits and branch and root WSG increased from seasonally flooded species to clay terra firme species and lastly to white sand species. Branch and root wood traits were strongly phylogenetically constrained. Lineages differed in wood design, but exhibited similar variation in wood structure across habitats. We conclude that tropical trees can invest differently in support and transport to respond to environmental conditions. Wind disturbance and drought stress represent significant filters driving tree distribution of Amazonian forests; hence we suggest that biophysical explanations should receive more attention. © 2013 New Phytologist Trust.  
  Address (down) Department of Biology, University of Florida, Gainesville, FL, 32611, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028646x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 10 March 2014; Source: Scopus; Coden: Nepha; Language of Original Document: English; Correspondence Address: Fortunel, C.; INRA, UMR Ecologie des Forêts de Guyane, BP 709, Kourou Cedex, 97387, France; email: claire.fortunel@ecofog.gf; Funding Details: DEB-0743103, NSF, National Science Foundation; Funding Details: DEB-0743800, NSF, National Science Foundation Approved no  
  Call Number EcoFoG @ webmaster @ Serial 531  
Permanent link to this record
 

 
Author Herault, B.; Bachelot, B.; Poorter, L.; Rossi, V.; Bongers, F.; Chave, J.; Paine, C.E.T.; Wagner, F.; Baraloto, C. url  openurl
  Title Functional traits shape ontogenetic growth trajectories of rain forest tree species Type Journal Article
  Year 2011 Publication Journal of Ecology Abbreviated Journal J. Ecol.  
  Volume 99 Issue 6 Pages 1431-1440  
  Keywords Bayesian modelling; Functional traits; Growth modelling; Leaf economics; Leaf-height-seed strategy; Plant development and life-history traits; Plant strategy; Stem economics; Tropical rain forest  
  Abstract 1.Functional traits are posited to explain interspecific differences in performance, but these relationships are difficult to describe for long-lived organisms such as trees, which exhibit strong ontogenetic changes in demographic rates. Here, we use a size-dependent model of tree growth to test the extent to which of 17 functional traits related to leaf and stem economics, adult stature and seed size predict the ontogenetic trajectory of tree growth. 2.We used a Bayesian modelling framework to parameterize and contrast three size-dependent diameter growth models using 16years of census data from 5524 individuals of 50 rain forest tree species: a size-dependent model, a size-dependent model with species-specific parameters and a size-dependent model based on functional traits. 3.Most species showed clear hump-shaped ontogenetic growth trajectories and, across species, maximum growth rate varied nearly tenfold, from 0.58 to 5.51mmyear-1. Most species attained their maximum growth at 60% of their maximum size, whereas the magnitude of ontogenetic changes in growth rate varied widely among species. 4.The Trait-Model provided the best compromise between explained variance and model parsimony and needed considerably fewer parameters than the model with species terms. 5.Stem economics and adult stature largely explained interspecific differences in growth strategy. Maximum absolute diameter growth rates increased with increasing adult stature and leaf δ13C and decreased with increasing wood density. Species with light wood had the greatest potential to modulate their growth, resulting in hump-shaped ontogenetic growth curves. Seed size and leaf economics, generally thought to be of paramount importance for plant performance, had no significant relationships with the growth parameters. 6.Synthesis. Our modelling approach offers a promising way to link demographic parameters to their functional determinants and hence to predict growth trajectories in species-rich communities with little parameter inflation, bridging the gap between functional ecology and population demography. © 2011 The Authors. Journal of Ecology © 2011 British Ecological Society.  
  Address (down) Department of Biology, University of Florida, Gainesville, FL 32611, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00220477 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 21 October 2011; Source: Scopus; Coden: Jecoa; doi: 10.1111/j.1365-2745.2011.01883.x; Language of Original Document: English; Correspondence Address: Hérault, B.; Université des Antilles et de la Guyane, UMR Ecologie des Forêts de Guyane, 97387 Kourou Cedex, France; email: bruno.herault@ecofog.gf Approved no  
  Call Number EcoFoG @ webmaster @ Serial 342  
Permanent link to this record
 

 
Author Paine, C.E.T.; Norden, N.; Chave, J.; Forget, P.-M.; Fortunel, C.; Dexter, K.G.; Baraloto, C. url  openurl
  Title Phylogenetic density dependence and environmental filtering predict seedling mortality in a tropical forest Type Journal Article
  Year 2012 Publication Ecology Letters Abbreviated Journal Ecol. Lett.  
  Volume 15 Issue 1 Pages 34-41  
  Keywords Community assembly; Density dependence; French Guiana; Generalised linear mixed models; Janzen-Connell hypothesis; Seedling recruitment; Species coexistence; Survival  
  Abstract Negative density dependence (NDD) and environmental filtering (EF) shape community assembly, but their relative importance is poorly understood. Recent studies have shown that seedling's mortality risk is positively related to the phylogenetic relatedness of neighbours. However, natural enemies, whose depredations often cause NDD, respond to functional traits of hosts rather than phylogenetic relatedness per se. To understand the roles of NDD and EF in community assembly, we assessed the effects on seedling mortality of functional similarity, phylogenetic relatedness and stem density of neighbouring seedlings and adults in a species-rich tropical forest. Mortality risks increased for common species when their functional traits departed substantially from the neighbourhood mean, and for all species when surrounded by close relatives. This indicates that NDD affects community assembly more broadly than does EF, and leads to the tentative conclusion that natural enemies respond to phylogenetically correlated traits. Our results affirm the prominence of NDD in structuring species-rich communities. © 2011 Blackwell Publishing Ltd/CNRS.  
  Address (down) Department of Biology, University of Florida, Gainesville, FL 32611, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1461023x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 13 December 2011; Source: Scopus; Coden: Eclef; doi: 10.1111/j.1461-0248.2011.01705.x; Language of Original Document: English; Correspondence Address: Paine, C.E.T.; Institut für Evolutionsbiologie und Umweltwissenschaften, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland; email: timothy.paine@ieu.uzh.ch Approved no  
  Call Number EcoFoG @ webmaster @ Serial 373  
Permanent link to this record
 

 
Author Lamarre, G.P.A.; Molto, Q.; Fine, P.V.A.; Baraloto, C. pdf  url
openurl 
  Title A comparison of two common flight interception traps to survey tropical arthropods Type Journal Article
  Year 2012 Publication ZooKeys Abbreviated Journal ZooKeys  
  Volume 216 Issue Pages 43-55  
  Keywords Flight interception trap; French Guiana; Malaise trap; Performance; Sampling strategies; Tropical forest; Windowpane trap  
  Abstract Tropical forests are predicted to harbor most of the insect diversity on earth, but few studies have been conducted to characterize insect communities in tropical forests. One major limitation is the lack of consensus on methods for insect collection. Deciding which insect trap to use is an important consideration for ecologists and entomologists, yet to date few study has presented a quantitative comparison of the results generated by standardized methods in tropical insect communities. Here, we investigate the relative performance of two flight interception traps, the windowpane trap, and the more widely used malaise trap, across a broad gradient of lowland forest types in French Guiana. The windowpane trap consistently collected significantly more Coleoptera and Blattaria than the malaise trap, which proved most effective for Diptera, Hymenoptera, and Hemiptera. Orthoptera and Lepidoptera were not well represented using either trap, suggesting the need for additional methods such as bait traps and light traps. Our results of contrasting trap performance among insect orders underscore the need for complementary trapping strategies using multiple methods for community surveys in tropical forests.  
  Address (down) Department of Biology, University of Florida, Gainesville, FL 32611, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 13132989 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 4 October 2012; Source: Scopus; doi: 10.3897/zookeys.216.3332; Language of Original Document: English; Correspondence Address: Lamarre, G. P. A.; UniversitéAntilles-Guyane, UMR Ecologie des Forèts de Guyane, Campus agronomique de Kourou. Avenue de France, 97310 Kourou, French Guiana; email: Greg.Lamarre@ecofog.gf Approved no  
  Call Number EcoFoG @ webmaster @ Serial 438  
Permanent link to this record
 

 
Author Perz, S.G.; Qiu, Y.; Xia, Y.; Southworth, J.; Sun, J.; Marsik, M.; Rocha, K.; Passos, V.; Rojas, D.; Alarcón, G.; Barnes, G.; Baraloto, C. url  openurl
  Title Trans-boundary infrastructure and land cover change: Highway paving and community-level deforestation in a tri-national frontier in the Amazon Type Journal Article
  Year 2013 Publication Land Use Policy Abbreviated Journal  
  Volume 34 Issue Pages 27-41  
  Keywords Amazon; Brazil, Peru; Globalization; Infrastructure; Land  
  Abstract Economic globalization manifests in landscapes through regional integration initiatives involving trans-boundary infrastructure. While the relationships of roads, accessibility and land cover are well-understood, they have rarely been considered across borders in national frontier regions. We therefore pursue an analysis of infrastructure connectivity and land cover change in the tri-national frontier of the southwestern Amazon where Bolivia, Brazil and Peru meet, and where the Inter-Oceanic Highway has recently been paved. We integrate satellite, survey, climate and other data for a sample of rural communities that differ in terms of highway paving across the tri-national frontier. We employ a suite of explanatory variables tied to road paving and other factors that vary both across and within the three sides of the frontier in order to model their importance for deforestation. A multivariate analysis of non-forest land cover during 2005-2010 confirms the importance of paving status and travel times, as well as land tenure and other factors. These findings indicate that integration affects land cover, but does not eliminate the effects of other factors that vary across the frontier, which bears implications for the study of globalization, trans-boundary infrastructure, environmental governance and land cover change. © 2013 Elsevier Ltd.  
  Address (down) Department of Biology, University of Florida, Gainesville, FL 32611, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 14 March 2013; Source: Scopus Approved no  
  Call Number EcoFoG @ webmaster @ Serial 475  
Permanent link to this record
 

 
Author Fine, P.V.A.; Metz, M.R.; Lokvam, J.; Mesones, I.; Zuniga, J.M.A.; Lamarre, G.P.A.; Pilco, M.V.; Baraloto, C. url  openurl
  Title Insect herbivores, chemical innovation, and the evolution of habitat specialization in Amazonian trees Type Journal Article
  Year 2013 Publication Ecology Abbreviated Journal Ecology  
  Volume 94 Issue 8 Pages 1764-1775  
  Keywords Amazonia; Ecological speciation; Ecotypes; Herbivory; Natural enemies; Plant defense; Protium subserratum; Terra firme forests; Tropical rain forests; White-sand forests  
  Abstract Herbivores are often implicated in the generation of the extraordinarily diverse tropical flora. One hypothesis linking enemies to plant diversification posits that the evolution of novel defenses allows plants to escape their enemies and expand their ranges. When range expansion involves entering a new habitat type, this could accelerate defense evolution if habitats contain different assemblages of herbivores and/or divergent resource availabilities that affect plant defense allocation. We evaluated this hypothesis by investigating two sister habitat specialist ecotypes of Protium subserratum (Burseraceae), a common Amazonian tree that occurs in white-sand and terra firme forests. We collected insect herbivores feeding on the plants, assessed whether growth differences between habitats were genetically based using a reciprocal transplant experiment, and sampled multiple populations of both lineages for defense chemistry. Protium subserratum plants were attacked mainly by chrysomelid beetles and cicadellid hemipterans. Assemblages of insect herbivores were dissimilar between populations of ecotypes from different habitats, as well as from the same habitat 100 km distant. Populations from terra firme habitats grew significantly faster than white-sand populations; they were taller, produced more leaf area, and had more chlorophyll. White-sand populations expressed more dry mass of secondary compounds and accumulated more flavone glycosides and oxidized terpenes, whereas terra firme populations produced a coumaroylquinic acid that was absent from white-sand populations. We interpret these results as strong evidence that herbivores and resource availability select for divergent types and amounts of defense investment in white-sand and terra firme lineages of Protium subserratum, which may contribute to habitat-mediated speciation in these trees. © 2013 by the Ecological Society of America.  
  Address (down) Department of Biology, University of Florida, Gainesville, FL 32611, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00129658 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 30 August 2013; Source: Scopus; Coden: Ecola; doi: 10.1890/12-1920.1; Language of Original Document: English; Correspondence Address: Department of Integrative Biology, 1005 Valley Life Sciences Building 3140, University of California, Berkeley, CA 94720-3140, United States Approved no  
  Call Number EcoFoG @ webmaster @ Serial 500  
Permanent link to this record
 

 
Author Ziegler, C.; Dusenge, M.E.; Nyirambangutse, B.; Zibera, E.; Wallin, G.; Uddling, J. doi  openurl
  Title Contrasting Dependencies of Photosynthetic Capacity on Leaf Nitrogen in Early- and Late-Successional Tropical Montane Tree Species Type Journal Article
  Year 2020 Publication Frontiers in Plant Science Abbreviated Journal Front. Plant Sci.  
  Volume 11 Issue Pages 500479  
  Keywords allocation; early successional; late successional; nitrogen; photosynthesis; tropical montane forests  
  Abstract Differences in photosynthetic capacity among tree species and tree functional types are currently assumed to be largely driven by variation in leaf nutrient content, particularly nitrogen (N). However, recent studies indicate that leaf N content is often a poor predictor of variation in photosynthetic capacity in tropical trees. In this study, we explored the relative importance of area-based total leaf N content (Ntot) and within-leaf N allocation to photosynthetic capacity versus light-harvesting in controlling the variation in photosynthetic capacity (i.e. Vcmax, Jmax) among mature trees of 12 species belonging to either early (ES) or late successional (LS) groups growing in a tropical montane rainforest in Rwanda, Central Africa. Photosynthetic capacity at a common leaf temperature of 25˚C (i.e. maximum rates of Rubisco carboxylation, Vcmax25 and of electron transport, Jmax25) was higher in ES than in LS species (+ 58% and 68% for Vcmax25 and Jmax25, respectively). While Ntot did not significantly differ between successional groups, the photosynthetic dependency on Ntot was markedly different. In ES species, Vcmax25 was strongly and positively related to Ntot but this was not the case in LS species. However, there was no significant trade-off between relative leaf N investments in compounds maximizing photosynthetic capacity versus compounds maximizing light harvesting. Both leaf dark respiration at 25˚C (+ 33%) and, more surprisingly, apparent photosynthetic quantum yield (+ 35%) was higher in ES than in LS species. Moreover, Rd25 was positively related to Ntot for both ES and LS species. Our results imply that efforts to quantify carbon fluxes of tropical montane rainforests would be improved if they considered contrasting within-leaf N allocation and photosynthetic Ntot dependencies between species with different successional strategies. © Copyright © 2020 Ziegler, Dusenge, Nyirambangutse, Zibera, Wallin and Uddling.  
  Address (down) Department of Biology, The University of Western Ontario, London, ON, Canada  
  Corporate Author Thesis  
  Publisher Frontiers Media S.A. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1664462x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 953  
Permanent link to this record
 

 
Author Houadria, M.; Salas-Lopez, A.; Orivel, J.; Blüthgen, N.; Menzel, F. doi  openurl
  Title Dietary and Temporal Niche Differentiation in Tropical Ants-Can They Explain Local Ant Coexistence? Type Journal Article
  Year 2015 Publication Biotropica Abbreviated Journal Biotropica  
  Volume 47 Issue 2 Pages 208-217  
  Keywords Ants; Baiting; Dietary specialization; Functional traits; Niche breadth; Partitioning; Temporal distribution  
  Abstract How species with similar ecological requirements avoid competitive exclusion remains contentious, especially in the species-rich tropics. Niche differentiation has been proposed as a major mechanism for species coexistence. However, different niche dimensions must be studied simultaneously to assess their combined effects on diversity and composition of a community. In most terrestrial ecosystems, ants are among the most abundant and ubiquitous animals. Since they display direct, aggressive competition and often competitively displace subordinate species from resources, niche differentiation may be especially relevant among ants. We studied temporal and trophic niche differentiation in a ground ant community in a forest fragment in French Guiana. Different baits were presented during day and night to assess the temporal and dietary niches of the local species. They represented natural food resources such as sugars, carrion, excrements, seeds, and live prey. In addition, pitfalls provided a background measure of ant diversity. The communities attracted to the different baits significantly differed from each other, and even less attractive baits yielded additional species. We detected species specialized on living grasshoppers, sucrose, seeds, or dead insects. Community-level differences between day and night were larger than those between baits, and many species were temporally specialized. In contrast to commonness, foraging efficiency of species was correlated to food specialization. We conclude that many ant species occupy different temporal or dietary niches. However, for many generalized species, the dietary, and temporal niche differentiation brought forward through our sampling effort, cannot alone explain their coexistence.  
  Address (down) Department of Biology, Technical University of DarmstadtDarmstadt, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 17 March 2015 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 585  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: