toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Sist, P.; Rutishauser, E.; Peña-Claros, M.; Shenkin, A.; Herault, B.; Blanc, L.; Baraloto, C.; Baya, F.; Benedet, F.; da Silva, K.E.; Descroix, L.; Ferreira, J.N.; Gourlet-Fleury, S.; Guedes, M.C.; Bin Harun, I.; Jalonen, R.; Kanashiro, M.; Krisnawati, H.; Kshatriya, M.; Lincoln, P.; Mazzei, L.; Medjibé, V.; Nasi, R.; d'Oliveira, M.V.N.; de Oliveira, L.C.; Picard, N.; Pietsch, S.; Pinard, M.; Priyadi, H.; Putz, F.E.; Rodney, K.; Rossi, V.; Roopsind, A.; Ruschel, A.R.; Shari, N.H.Z.; Rodrigues de Souza, C.; Susanty, F.H.; Sotta, E.D.; Toledo, M.; Vidal, E.; West, T.A.P.; Wortel, V.; Yamada, T. url  openurl
  Title The Tropical managed forests Observatory: A research network addressing the future of tropical logged forests Type Journal Article
  Year 2015 Publication Applied Vegetation Science Abbreviated Journal Appl. Veg. Sci.  
  Volume 18 Issue 1 Pages 171-174  
  Keywords Biodiversity; Carbon cycle; Climate change; Ecosystem resilience; Logging; Silviculture; Tropical forests; Tropical managed forests Observatory  
  Abstract While attention on logging in the tropics has been increasing, studies on the long-term effects of silviculture on forest dynamics and ecology remain scare and spatially limited. Indeed, most of our knowledge on tropical forests arises from studies carried out in undisturbed tropical forests. This bias is problematic given that logged and disturbed tropical forests are now covering a larger area than the so-called primary forests. A new network of permanent sample plots in logged forests, the Tropical managed Forests Observatory (TmFO), aims to fill this gap by providing unprecedented opportunities to examine long-term data on the resilience of logged tropical forests at regional and global scales. TmFO currently includes 24 experimental sites distributed across three tropical regions, with a total of 490 permanent plots and 921 ha of forest inventories. To improve our knowledge of the resilience of tropical logged forests, 20 research institutes are now collaborating on studies on the effects of logging on forest structure, productivity, biodiversity and carbon fluxes at large spatial and temporal scales. These studies are carried out in the Tropical managed Forests Observatory (TmFO), an international network including 24 sites and 490 permanent sample plots across South America, Africa and South East Asia.  
  Address (down) Duke University's Nicholas School of the EnvironmentNorth Carolina, United States  
  Corporate Author Thesis  
  Publisher Wiley-Blackwell Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 14022001 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 12 December 2014; Coden: Avscf; Correspondence Address: Sist, P.; Cirad, UR 105 TA/10CFrance Approved no  
  Call Number EcoFoG @ webmaster @ Serial 571  
Permanent link to this record
 

 
Author Rowland, L.; Stahl, C.; Bonal, D.; Siebicke, L.; Williams, M.; Meir, P. url  openurl
  Title The Response of Tropical Rainforest Dead Wood Respiration to Seasonal Drought Type Journal Article
  Year 2013 Publication Ecosystems Abbreviated Journal Ecosystems  
  Volume 16 Issue 7 Pages 1294-1309  
  Keywords Amazon rainforest; coarse woody debris; respiration; seasonal drought; soil water content; woody moisture content  
  Abstract Coarse woody debris (CWD, dead wood sections ≥10 cm diameter) represents a large store of carbon in tropical forests; however, estimates of the flux of carbon from CWD in these forests remain poorly constrained. The objective of this study was to resolve the dry/wet season response of respiration in CWD (Rcwd), and investigate the importance of biotic and abiotic factors for predicting the seasonal change of Rcwd at the ecosystem level. This study presents a 4-month time series of Rcwd measurements conducted on 42 dead trees (26 species) at the Paracou Research Station in French Guiana. Rcwd measurements were repeated 13 times on each CWD sample from July to November 2011, spanning the transition from wet to dry season, and then from dry season to the following wet season. Seasonal drought caused monthly Rcwd to drop by 20.5 ± 5.1% over the wet-dry transition. Changes in woody tissue moisture content explained 41.9% of the measured seasonal variability in Rcwd, but 60% of the seasonal variability in mean forest Rcwd rates could be modelled using surface soil water content. We estimate that Rcwd is approximately 5% of annual ecosystem respiration (Reco) and that seasonal variations in Rcwd contribute appreciably to seasonal variations of Reco, and should be included in functional models simulating the response of tropical rainforest ecosystems to current and future climate. © 2013 Springer Science+Business Media New York.  
  Address (down) Division of Plant Sciences, Research School of Biology, The Australian National University, ACT, Australian Capital Territory, 0200, Australia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 14329840 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 18 October 2013; Source: Scopus; Coden: Ecosf; doi: 10.1007/s10021-013-9684-x; Language of Original Document: English; Correspondence Address: Rowland, L.; School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom; email: lucy.rowland@ed.ac.uk; Funding Details: NE/F002149/1, NERC, Natural Environment Research Council; Funding Details: NE/J011002/1, NERC, Natural Environment Research Council; Funding Details: FT110100457, ARC, Australian Research Council Approved no  
  Call Number EcoFoG @ webmaster @ Serial 506  
Permanent link to this record
 

 
Author Dejean, A.; Corbara, B.; Azémar, F.; Carpenter, J.M. url  openurl
  Title When attempts at robbing prey turn fatal Type Journal Article
  Year 2012 Publication Naturwissenschaften Abbreviated Journal Naturwissenschaften  
  Volume 99 Issue 7 Pages 579-582  
  Keywords Ant predation; Azteca andreae; Cleptobiosis; Flies and dung beetles; Myrmecophyte; Reduviidae; Socialwasps; Stinglessbees  
  Abstract Because group-hunting arboreal ants spread-eagle insect prey for a long time before retrieving them, these prey can be coveted by predatory flying insects. Yet, attempting to rob these prey is risky if the ant species is also an effective predator. Here, we show that trying to rob prey from Azteca andreae workers is a fatal error as 268 out of 276 potential cleptobionts (97.1 %) were captured in turn. The ant workers hunt in a group and use the “Velcro®” principle to cling firmly to the leaves of their host tree, permitting them to capture very large prey. Exceptions were one social wasp, plus some Trigona spp. workers and flies that landed directly on the prey and were able to take off immediately when attacked. We conclude that in this situation, previously captured prey attract potential cleptobionts that are captured in turn in most of the cases. © Springer-Verlag 2012.  
  Address (down) Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00281042 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 30 July 2012; Source: Scopus; Coden: Natwa; doi: 10.1007/s00114-012-0929-x; Language of Original Document: English; Correspondence Address: Dejean, A.; CNRS, Écologie des Forêts de Guyane (UMR-CNRS 8172), Campus agronomique, BP 316, 97379 Kourou cedex, France; email: alain.dejean@wanadoo.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 417  
Permanent link to this record
 

 
Author Wagner, F.; Rossi, V.; Aubry-Kientz, M.; Bonal, D.; Dalitz, H.; Gliniars, R.; Stahl, C.; Trabucco, A.; Herault, B. pdf  url
openurl 
  Title Pan-tropical analysis of climate effects on seasonal tree growth Type Journal Article
  Year 2014 Publication PLoS ONE Abbreviated Journal PLoS ONE  
  Volume 9 Issue 3 Pages e92337  
  Keywords  
  Abstract Climate models predict a range of changes in tropical forest regions, including increased average temperatures, decreased total precipitation, reduced soil moisture and alterations in seasonal climate variations. These changes are directly related to the increase in anthropogenic greenhouse gas concentrations, primarily CO2. Assessing seasonal forest growth responses to climate is of utmost importance because woody tissues, produced by photosynthesis from atmospheric CO2, water and light, constitute the main component of carbon sequestration in the forest ecosystem. In this paper, we combine intra-annual tree growth measurements from published tree growth data and the corresponding monthly climate data for 25 pan-tropical forest sites. This meta-analysis is designed to find the shared climate drivers of tree growth and their relative importance across pan-tropical forests in order to improve carbon uptake models in a global change context. Tree growth reveals significant intra-annual seasonality at seasonally dry sites or in wet tropical forests. Of the overall variation in tree growth, 28.7% was explained by the site effect, i.e. the tree growth average per site. The best predictive model included four climate variables: precipitation, solar radiation (estimated with extrasolar radiation reaching the atmosphere), temperature amplitude and relative soil water content. This model explained more than 50% of the tree growth variations across tropical forests. Precipitation and solar radiation are the main seasonal drivers of tree growth, causing 19.8% and 16.3% of the tree growth variations. Both have a significant positive association with tree growth. These findings suggest that forest productivity due to tropical tree growth will be reduced in the future if climate extremes, such as droughts, become more frequent. © 2014 Wagner et al.  
  Address (down) Division of Forest, Nature, and Landscape, KU Leuven, Leuven, Belgium  
  Corporate Author Thesis  
  Publisher Public Library of Science Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 19326203 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 30 May 2014; Source: Scopus; Art. No.: e92337; Coden: Polnc; Language of Original Document: English Approved no  
  Call Number EcoFoG @ webmaster @ Serial 543  
Permanent link to this record
 

 
Author Jona Lasinio, G.; Pollice, A.; Marcon, E.; Fano, E.A. doi  openurl
  Title Assessing the role of the spatial scale in the analysis of lagoon biodiversity. A case-study on the macrobenthic fauna of the Po River Delta Type Journal Article
  Year 2017 Publication Ecological Indicators Abbreviated Journal Ecological Indicators  
  Volume 80 Issue Pages 303-315  
  Keywords Biodiversity partitioning; Lagoon biodiversity; Macrobenthic fauna; Mixed effects models; Tsallis entropy  
  Abstract The analysis of benthic assemblages is a valuable tool to describe the ecological status of transitional water ecosystems, but species are extremely sensitive and respond to both microhabitat and seasonal differences. The identification of changes in the composition of the macrobenthic community in specific microhabitats can then be used as an “early warning” for environmental changes which may affect the economic and ecological importance of lagoons, through their provision of Ecosystem Services. From a conservational point of view, the appropriate definition of the spatial aggregation level of microhabitats or local communities is of crucial importance. The main objective of this work is to assess the role of the spatial scale in the analysis of lagoon biodiversity. First, we analyze the variation in the sample coverage for alternative aggregations of the monitoring stations in three lagoons of the Po River Delta. Then, we analyze the variation of a class of entropy indices by mixed effects models, properly accounting for the fixed effects of biotic and abiotic factors and random effects ruled by nested sources of variability corresponding to alternative definitions of local communities. Finally, we address biodiversity partitioning by a generalized diversity measure, namely the Tsallis entropy, and for alternative definitions of the local communities. The main results obtained by the proposed statistical protocol are presented, discussed and framed in the ecological context. © 2017 Elsevier Ltd  
  Address (down) Dipartimento di Scienze della Vita e Biotecnologie, Università degli Studi di Ferrara, Ferrara, Italy  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 12 June 2017 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 755  
Permanent link to this record
 

 
Author Martos, F.; Dulormne, M.; Pailler, T.; Bonfante, P.; Faccio, A.; Fournel, J.; Dubois, M.-P.; Selosse, M.-A. doi  openurl
  Title Independent recruitment of saprotrophic fungi as mycorrhizal partners by tropical achlorophyllous orchids Type Journal Article
  Year 2009 Publication New Phytologist Abbreviated Journal New Phytologist  
  Volume 184 Issue 3 Pages 668-681  
  Keywords Mycoheterotrophy; Mycorrhizas; Orchids; Rainforests; Saprotrophic fungi; Stable isotopes  
  Abstract Mycoheterotrophic orchids have adapted to shaded forest understory by shifting to achlorophylly and receiving carbon from their mycorrhizal fungi. In temperate forests, they associate in a highly specific way with fungi forming ectomycorrhizas on nearby trees, and exploiting tree photosynthates. However, many rainforests lack ectomycorrhizal fungi, and there is evidence that some tropical Asiatic species associate with saprotrophic fungi. To investigate this in different geographic and phylogenetic contexts, we identified the mycorrhizal fungi supporting two tropical mycoheterotrophic orchids from Mascarene (Indian Ocean) and Caribbean islands. We tested their possible carbon sources by measuring natural nitrogen (15N) and carbon (13C) abundances. Saprotrophic basidiomycetes were found: Gastrodia similis associates with a wood-decaying Resinicium (Hymenochaetales); Wullschlaegelia aphylla associates with both litter-decaying Gymnopus and Mycena species, whose rhizomorphs link orchid roots to leaf litter. The 15N and 13C abundances make plausible food chains from dead wood to G. similis and from dead leaves to W. aphylla. We propose that temperature and moisture in rainforests, but not in most temperate forests, may favour sufficient saprotrophic activity to support development of mycoheterotrophs. By enlarging the spectrum of mycorrhizal fungi and the level of specificity in mycoheterotrophic orchids, this study provides new insights on orchid and mycorrhizal biology in the tropics. © 2009 New Phytologist.  
  Address (down) Dipartimento di Biologia Vegetale dell'Università, Istituto per la Protezione Delle Piante – CNR, Viale Mattioli 25, I-10125 Torino, Italy  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Cited By :65; Export Date: 7 February 2017 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 728  
Permanent link to this record
 

 
Author Delaval, M.; Henry, M.; Charles-Dominique, P. openurl 
  Title Interspecific competition and niche partitioning: Example of a neotropical rainforest bat community Type Journal Article
  Year 2005 Publication Revue d'Ecologie (La Terre et la Vie) Abbreviated Journal Rev. Ecol.-Terre Vie  
  Volume 60 Issue 2 Pages 149-165  
  Keywords  
  Abstract To understand the organization of a bat community and the coexistence of sympatric species, it is essential to understand how species use and share common resources. First, we describe a bat community in a primary rainforest of French Guiana. The presence of particular roosting sites, such as caves, and the absence of disturbances are important local factors in structuring communities. In the course of this study, we focused on the three most common species of three vegetarian bat guilds (understorey frugivores, canopy frugivores and nectarivores). The local coexistence of these species is possible thanks to space, food and/or time partitioning. Space partitioning is consistent with the hypothesis that smaller bats with a more manoeuvrable flight tend to occupy more cluttered space less attractive to their competitors and have smaller home range. We observed a time partitioning that is likely to reduce competition among some frugivorous bat species by reducing direct interference during foraging. Besides an interest for the field community ecology, this study of a community living in a primary forest can be used as a reference for non disturbed habitat for conservation purposes.  
  Address (down) Dept Ecol & Gestion Biodivers, UMR 5176, F-91800 Brunoy, France, Email: marguerite.delaval@wanadoo.fr  
  Corporate Author Thesis  
  Publisher SOC NATL PROTECTION NATURE ACCLIMATATION FRANCE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0249-7395 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000230973300005 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 231  
Permanent link to this record
 

 
Author Delaval, M.; Charles-Dominique, P. openurl 
  Title Edge effects on frugivorous and nectarivorous bat communities in a neotropical primary forest in French Guiana Type Journal Article
  Year 2006 Publication Revue d'Ecologie (La Terre et la Vie) Abbreviated Journal Rev. Ecol.-Terre Vie  
  Volume 61 Issue 4 Pages 343-352  
  Keywords  
  Abstract The impact of a road crossing a continuous Guyana primary forest was studied through the analysis of qualitative and quantitative changes in a frugivorous and nectarivorous bat community at different distances from forest edge. Bats were captured along three 3-km forest transects perpendicular to the edge, and at the Nouragues Station located 150 km in the interior of the primary forest block, in an uninhabited area. Along the 3-km transects, we caught over seven times more individuals than in primary forest, this value decreasing according to the distance from the edge. Moreover, at the very edge, species richness was higher than along transects, probably due to exchanges between primary forest and the open habitats. On the contrary, diversity values at forest edges were lower than in primary forest, with a demographic explosion of a few opportunistic phyllostomid species such as Carollia perspicillata and Artibeus jamaicensis. Species restricted to degraded habitat like Glossophaga soricina and Artibeus cinereus were still present 3 km away from the edge, where the proportion of C perspicillata was seven times higher than in primary forest at Nouragues. These changes in the community of bats have important consequences on seed and pollen dispersal. So edge effects may significantly affect both faunal and floral assemblage. We conclude that changes in bat community occur up to at least 3 km from forest edge, i. e. at a greater distance than that found for all other vertebrates previously studied. By their implications our results should be considered in habitat and species conservation management plans.  
  Address (down) Dept Ecol & Gest Biodivers, UMR 5176, F-91800 Brunoy, France, Email: marguerite.delaval@wanadoo.fir  
  Corporate Author Thesis  
  Publisher SOC NATL PROTECTION NATURE ACCLIMATATION FRANCE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0249-7395 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000244361200003 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 168  
Permanent link to this record
 

 
Author Baraloto, C.; Alverga, P.; Quispe, S.B.; Barnes, G.; Chura, N.B.; Da Silva, I.B.; Castro, W.; Da Souza, H.; De Souza Moll, I.; Del Alcazar Chilo, J.; Linares, H.D.; Quispe, J.G.; Kenji, D.; Medeiros, H.; Murphy, S.; Rockwell, C.A.; Shenkin, A.; Silveira, M.; Southworth, J.; Vasquez, G.; Perz, S. pdf  url
openurl 
  Title Trade-offs among forest value components in community forests of southwestern Amazonia Type Journal Article
  Year 2014 Publication Ecology and Society Abbreviated Journal Ecology and Society  
  Volume 19 Issue 4 Pages 56  
  Keywords Açai; Biodiversity conservation; Brazil nut; Carbon stocks; Livelihood; Ntfp; Redd; Rubber; Timber; Tropical rainforest  
  Abstract Contemporary conservation interventions must balance potential trade-offs between multiple ecosystem services. In tropical forests, much attention has focused on the extent to which carbon-based conservation provided by REDD+ policies can also mitigate biodiversity conservation. In the nearly one-third of tropical forests that are community owned or managed, conservation strategies must also balance the multiple uses of forest products that support local livelihoods. Although much discussion has focused on policy options, little empirical evidence exists to evaluate the potential for trade-offs among different tropical forest value components. We assessed multiple components of forest value, including tree diversity, carbon stocks, and both timber and nontimber forest product resources, in forest communities across the trinational frontier of Brazil, Peru, and Bolivia. We installed 69 0.5-ha vegetation plots in local communities, and we characterized 15 components of forest value for each plot. Principal components analyses revealed two major axes of forest value, the first of which defined a trade-off between diversity of woody plant communities (taxonomic and functional) versus aboveground biomass and standing timber volume. The second axis described abundance of commercial species, with strong positive loadings for density of timber and nontimber forest products, including Brazil nut (Bertholletia excelsa) and copaiba oil (Copaifera spp.). The observed trade-off between different components of forest value suggests a potential for management conflicts prioritizing biodiversity conservation versus carbon stocks in the region. We discuss the potential for integrative indices of forest value for tropical forest conservation.  
  Address (down) Department of Sociology and Criminology and Law, University of Florida, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 23 March 2015 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 589  
Permanent link to this record
 

 
Author Paine, C.E.T.; Amissah, L.; Auge, H.; Baraloto, C.; Baruffol, M.; Bourland, N.; Bruelheide, H.; Daïnou, K.; de Gouvenain, R.C.; Doucet, J.-L.; Doust, S.; Fine, P.V.A.; Fortunel, C.; Haase, J.; Holl, K.D.; Jactel, H.; Li, X.; Kitajima, K.; Koricheva, J.; Martínez-Garza, C.; Messier, C.; Paquette, A.; Philipson, C.; Piotto, D.; Poorter, L.; Posada, J.M.; Potvin, C.; Rainio, K.; Russo, S.E.; Ruiz-Jaen, M.; Scherer-Lorenzen, M.; Webb, C.O.; Wright, S.J.; Zahawi, R.A.; Hector, A. url  openurl
  Title Globally, functional traits are weak predictors of juvenile tree growth, and we do not know why Type Journal Article
  Year 2015 Publication Journal of Ecology Abbreviated Journal Journal of Ecology  
  Volume 103 Issue 4 Pages 978-989  
  Keywords Functional ecology; FunDivEurope; Growth; Hierarchical models; Plant population and community dynamics; Relative growth rate; Size-standardized growth rate; TreeDivNet  
  Abstract Plant functional traits, in particular specific leaf area (SLA), wood density and seed mass, are often good predictors of individual tree growth rates within communities. Individuals and species with high SLA, low wood density and small seeds tend to have faster growth rates. If community-level relationships between traits and growth have general predictive value, then similar relationships should also be observed in analyses that integrate across taxa, biogeographic regions and environments. Such global consistency would imply that traits could serve as valuable proxies for the complex suite of factors that determine growth rate, and, therefore, could underpin a new generation of robust dynamic vegetation models. Alternatively, growth rates may depend more strongly on the local environment or growth-trait relationships may vary along environmental gradients. We tested these alternative hypotheses using data on 27 352 juvenile trees, representing 278 species from 27 sites on all forested continents, and extensive functional trait data, 38% of which were obtained at the same sites at which growth was assessed. Data on potential evapotranspiration (PET), which summarizes the joint ecological effects of temperature and precipitation, were obtained from a global data base. We estimated size-standardized relative height growth rates (SGR) for all species, then related them to functional traits and PET using mixed-effect models for the fastest growing species and for all species together. Both the mean and 95th percentile SGR were more strongly associated with functional traits than with PET. PET was unrelated to SGR at the global scale. SGR increased with increasing SLA and decreased with increasing wood density and seed mass, but these traits explained only 3.1% of the variation in SGR. SGR-trait relationships were consistently weak across families and biogeographic zones, and over a range of tree statures. Thus, the most widely studied functional traits in plant ecology were poor predictors of tree growth over large scales. Synthesis. We conclude that these functional traits alone may be unsuitable for predicting growth of trees over broad scales. Determining the functional traits that predict vital rates under specific environmental conditions may generate more insight than a monolithic global relationship can offer. The most widely studied functional traits in plant ecology, specific leaf area, wood density and seed mass, were only weakly associated with tree growth rates over broad scales. Assessing trait-growth relationships under specific environmental conditions may generate more insight than a global relationship can offer. © 2015 British Ecological Society.  
  Address (down) Department of Plant Sciences, University of Oxford, Oxford, United Kingdom  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 3 July 2015 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 609  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: