toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Shipley, B.; Timothy Paine, C.E.; Baraloto, C. url  openurl
  Title Quantifying the importance of local niche-based and stochastic processes to tropical tree community assembly Type Journal Article
  Year 2012 Publication Ecology Abbreviated Journal Ecology  
  Volume 93 Issue 4 Pages 760-769  
  Keywords Community Assembly by Trait Selection, CATS; Demographic stochasticity; Dispersal limitation; Environmental filtering; French Guiana; Functional traits; Maxent; Neutral assembly; Tropical forests  
  Abstract Although niche-based and stochastic processes, including dispersal limitation and demographic stochasticity, can each contribute to community assembly, it is difficult to quantify the relative importance of each process in natural vegetation. Here, we extend Shipley's maxent model (Community Assembly by Trait Selection, CATS) for the prediction of relative abundances to incorporate both trait-based filtering and dispersal limitation from the larger landscape and develop a statistical decomposition of the proportions of the total information content of relative abundances in local communities that are attributable to traitbased filtering, dispersal limitation, and demographic stochasticity. We apply the method to tree communities in a mature, species-rich, tropical forest in French Guiana at 1-, 0.25-and 0.04-ha scales. Trait data consisted of species' means of 17 functional traits measured over both the entire meta-community and separately in each of nine 1-ha plots. Trait means calculated separately for each site always gave better predictions. There was clear evidence of trait-based filtering at all spatial scales. Trait-based filtering was the most important process at the 1-ha scale (34%), whereas demographic stochasticity was the most important at smaller scales (37-53%). Dispersal limitation from the meta-community was less important and approximately constant across scales (∼9%), and there was also an unresolved association between site-specific traits and meta-community relative abundances. Our method allows one to quantify the relative importance of local niche-based and meta-community processes and demographic stochasticity during community assembly across spatial and temporal scales. © 2012 by the Ecological Society of America.  
  Address (down) INRA, UMR, Écologie des Forêts de Guyane, 97387 Kourou cedex, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00129658 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 6 June 2012; Source: Scopus; Coden: Ecola; doi: 10.1890/11-0944.1; Language of Original Document: English; Correspondence Address: Shipley, B.; Département de Biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; email: Bill.Shipley@USherbrooke.ca Approved no  
  Call Number EcoFoG @ webmaster @ Serial 401  
Permanent link to this record
 

 
Author Santiago, L.S.; De Guzman, M.E.; Baraloto, C.; Vogenberg, J.E.; Brodie, M.; Hérault, B.; Fortunel, C.; Bonal, D. url  doi
openurl 
  Title Coordination and trade-offs among hydraulic safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species Type Journal Article
  Year 2018 Publication New Phytologist Abbreviated Journal New Phytol.  
  Volume 218 Issue 3 Pages 1015-1024  
  Keywords Amazonian forest; cavitation; drought; hydraulic conductivity; sapwood capacitance; turgor loss point; wood density; xylem; cavitation; climate change; drought; forest canopy; forest ecosystem; hydraulic conductivity; rainforest; species diversity; tree; tropical forest; vulnerability; wood; Amazonia; French Guiana; Paracou  
  Abstract Predicting responses of tropical forests to climate change-type drought is challenging because of high species diversity. Detailed characterization of tropical tree hydraulic physiology is necessary to evaluate community drought vulnerability and improve model parameterization. Here, we measured xylem hydraulic conductivity (hydraulic efficiency), xylem vulnerability curves (hydraulic safety), sapwood pressure–volume curves (drought avoidance) and wood density on emergent branches of 14 common species of Eastern Amazonian canopy trees in Paracou, French Guiana across species with the densest and lightest wood in the plot. Our objectives were to evaluate relationships among hydraulic traits to identify strategies and test the ability of easy-to-measure traits as proxies for hard-to-measure hydraulic traits. Xylem efficiency was related to capacitance, sapwood water content and turgor loss point, and other drought avoidance traits, but not to xylem safety (P50). Wood density was correlated (r = −0.57 to −0.97) with sapwood pressure–volume traits, forming an axis of hydraulic strategy variation. In contrast to drier sites where hydraulic safety plays a greater role, tropical trees in this humid tropical site varied along an axis with low wood density, high xylem efficiency and high capacitance at one end of the spectrum, and high wood density and low turgor loss point at the other.  
  Address (down) INRA, UMR Silva, AgroParisTech, Université de Lorraine, Nancy, 54000, France  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028646x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Cited By :6; Export Date: 3 December 2018; Coden: Nepha; Correspondence Address: Santiago, L.S.; Department of Botany & Plant Sciences, University of California, 2150 Batchelor Hall, United States; email: santiago@ucr.edu; Funding details: Centre de Coopération Internationale en Recherche Agronomique pour le Développement, CIRAD, FEDER 2014–2020; Funding details: Centre de Coopération Internationale en Recherche Agronomique pour le Développement, CIRAD, Project; Funding details: Centre de Coopération Internationale en Recherche Agronomique pour le Développement, CIRAD, GY0006894; Funding details: University of California, UC; Funding details: National Institute of Food and Agriculture, NIFA; Funding details: ANR-10-LABX-0025; Funding text 1: We would like to thank Benôıt Burban and Jean-Yves Goret for laboratory support, Jocelyn Cazal and Valentine Alt for skillfully climbing trees for samples, Aurelie Dourdain for database support, and Clement Stahl, John Sperry, Sean Gleason, Todd Dawson, Steve Davis, JoséLuiz Silva, Aleyda Acosta Rangel and three anonymous reviewers for comments and discussions on the data presented. The study has been supported by the TRY initiative on plant traits (http://www.try-db.org). The TRY initiative and database is hosted, developed and maintained by J. Kattge and G. Boenisch (Max Planck Institute for Biogeochemistry, Jena, Germany). TRY is currently supported by Future Earth/ bioDISCOVERY and the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig. We also acknowledge the University of California, Botany and Plant Sciences Department and the USDA National Institute of Food and Agriculture for support. We are grateful to the CIRAD and the GFclim project (FEDER 2014–2020, Project GY0006894) for financial support of the Paracou research station. Funding for fieldwork and data acquisition was provided by Investissement d’Avenir grants of the French ANR (CEBA: ANR-10-LABX-0025), through the ‘DRAMA’ and ‘HydroSTAT’ projects.; References: Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Hogg, E.H., A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests (2010) Forest Ecology and Management, 259, pp. 660-684; Anderegg, W.R.L., Berry, J.A., Smith, D.D., Sperry, J.S., Anderegg, L.D.L., Field, C.B., The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off (2012) Proceedings of the National Academy of Sciences, USA, 109, pp. 233-237; Anderegg, W.R.L., Klein, T., Bartlett, M., Sack, L., Pellegrini, A.F.A., Choat, B., Jansen, S., Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe (2016) Proceedings of the National Academy of Sciences, USA, 113, pp. 5024-5029; Baraloto, C., Goldberg, D.E., Bonal, D., Performance trade-offs among tropical tree seedlings in contrasting microhabitats (2005) Ecology, 86, pp. 2461-2472; Baraloto, C., Hardy, O.J., Paine, C., Dexter, K.G., Cruaud, C., Dunning, L.T., Gonzalez, M.A., Savolainen, V., Using functional traits and phylogenetic trees to examine the assembly of tropical tree communities (2012) Journal of Ecology, 100, pp. 690-701; Barnard, D.M., Meinzer, F.C., Lachenbruch, B., McCulloh, K.A., Johnson, D.M., Woodruff, D.R., Climate-related trends in sapwood biophysical properties in two conifers: avoidance of hydraulic dysfunction through coordinated adjustments in xylem efficiency, safety and capacitance (2011) Plant, Cell & Environment, 34, pp. 643-654; Bartlett, M.K., Scoffoni, C., Sack, L., The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis (2012) Ecology Letters, 15, pp. 393-405; Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rodenbeck, C., Bonan, G.B., Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate (2010) Science, 329, pp. 834-838; Benjamini, Y., Hochberg, Y., On the adaptive control of the false discovery rate in multiple testing with independent statistics (2000) Journal of educational and Behavioral Statistics, 25, pp. 60-83; Bonal, D., Bosc, A., Ponton, S., Goret, J.-Y., Burban, B., Gross, P., Bonnefond, J., Epron, D., Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana (2008) Global Change Biology, 14, pp. 1917-1933; Bonal, D., Burban, B., Stahl, C., Wagner, F., Herault, B., The response of tropical rainforests to drought-lessons from recent research and future prospects (2016) Annals of Forest Science, 73, pp. 27-44; Borchert, R., Pockman, W.T., Water storage capacitance and xylem tension in isolated branches of temperate and tropical trees (2005) Tree Physiology, 25, pp. 457-466; Bucci, S.J., Goldstein, G., Scholz, F.G., Meinzer, F.C., Physiological significance of hydraulic segmentation, nocturnal transpiration and capacitance in tropical trees: paradigms revisited (2016) Tropical tree physiology: adaptations and responses in a changing environment, pp. 205-225. , In, Goldstein G, Santiago LS, eds., Cham, Switzerland, Springer International; Chave, J., Coomes, D., Jansen, S., Lewis, S.L., Swenson, N.G., Zanne, A.E., Towards a worldwide wood economics spectrum (2009) Ecology Letters, 12, pp. 351-366; Choat, B., Drayton, W.M., Brodersen, C., Matthews, M.A., Shackel, K.A., Wada, H., McElrone, A.J., Measurement of vulnerability to water stress-induced cavitation in grapevine: a comparison of four techniques applied to a long-vesseled species (2010) Plant, Cell & Environment, 33, pp. 1502-1512; Choat, B., Jansen, S., Brodribb, T.J., Cochard, H., Delzon, S., Bhaskar, R., Bucci, S.J., Hacke, U.G., Global convergence in the vulnerability of forests to drought (2012) Nature, 491, pp. 752-755; Christoffersen, B.O., Gloor, M., Fauset, S., Fyllas, N.M., Galbraith, D.R., Baker, T.R., Kruijt, B., Binks, O.J., Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v. 1-Hydro) (2016) Geoscientific Model Development, 9, pp. 4227-4255; De Guzman, M.E., Santiago, L.S., Schnitzer, S.A., Álvarez-Cansino, L., Trade-offs between water transport capacity and drought resistance in neotropical canopy liana and tree species (2017) Tree Physiology, 37, pp. 1404-1414; Dray, S., Dufour, A.-B., The ade4 package: implementing the duality diagram for ecologists (2007) Journal of Statistical Software, 22, pp. 1-20; Fortunel, C., Ruelle, J., Beauchene, J., Fine, P.V.A., Baraloto, C., Wood specific gravity and anatomy of branches and roots in 113 Amazonian rainforest tree species across environmental gradients (2014) New Phytologist, 202, pp. 79-94; Fu, R., Yin, L., Li, W.H., Arias, P.A., Dickinson, R.E., Huang, L., Chakraborty, S., Fisher, R., Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection (2013) Proceedings of the National Academy of Sciences, USA, 110, pp. 18110-18115; Gleason, S.M., Westoby, M., Jansen, S., Choat, B., Hacke, U.G., Pratt, R.B., Bhaskar, R., Cao, K.-F., Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world's woody plant species (2016) New Phytologist, 209, pp. 123-136; Gourlet-Fleury, S., Guehl, J.-M., Laroussinie, O., (2004) Ecology and management of a neotropical rainforest. Lessons drawn from Paracou, a long-term experimental research site in French Guiana, , Paris, France, Elsevier; Hacke, U.G., Sperry, J.S., Wheeler, J.K., Castro, L., Scaling of angiosperm xylem structure with safety and efficiency (2006) Tree Physiology, 26, pp. 689-701; Holtum, J.A.M., Winter, K., Elevated [CO2] and forest vegetation: more a water issue than a carbon issue? (2010) Functional Plant Biology, 37, pp. 694-702; Huntingford, C., Zelazowski, P., Galbraith, D., Mercado, L.M., Sitch, S., Fisher, R., Lomas, M., Booth, B.B.B., Simulated resilience of tropical rainforests to CO2-induced climate change (2013) Nature Geoscience, 6, pp. 268-273; Joetzjer, E., Delire, C., Douville, H., Ciais, P., Decharme, B., Fisher, R., Christoffersen, B., Ferreira, L.V., Predicting the response of the Amazon rainforest to persistent drought conditions under current and future climates: a major challenge for global land surface models (2014) Geoscientific Model Development, 7, pp. 2933-2950; Joetzjer, E., Douville, H., Delire, C., Ciais, P., Present-day and future Amazonian precipitation in global climate models: CMIP5 versus CMIP3 (2013) Climate Dynamics, 41, pp. 2921-2936; Kattge, J., Díaz, S., Lavorel, S., Prentice, I.C., Leadley, P., Bönisch, G., Garnier, E., Wright, I.J., TRY – a global database of plant traits (2011) Global Change Biology, 17, pp. 2905-2935; Maherali, H., Pockman, W.T., Jackson, R.B., Adaptive variation in the vulnerability of woody plants to xylem cavitation (2004) Ecology, 85, pp. 2184-2199; Manzoni, S., Vico, G., Katul, G., Palmroth, S., Jackson, R.B., Porporato, A., Hydraulic limits on maximum plant transpiration and the emergence of the safety–efficiency trade-off (2013) New Phytologist, 198, pp. 169-178; Maréchaux, I., Bartlett, M.K., Sack, L., Baraloto, C., Engel, J., Joetzjer, E., Chave, J., Drought tolerance as predicted by leaf water potential at turgor loss point varies strongly across species within an Amazonian forest (2015) Functional Ecology, 29, pp. 1268-1277; Martínez-Vilalta, J., Piñol, J., Beven, K., A hydraulic model to predict drought-induced mortality in woody plants: an application to climate change in the Mediterranean (2002) Ecological Modelling, 155, pp. 127-147; Medlyn, B.E., De Kauwe, M.G., Duursma, R.A., New developments in the effort to model ecosystems under water stress (2016) New Phytologist, 212, pp. 5-7; Meinzer, F.C., Goldstein, G., Scaling up from leaves to whole plants and canopies for photosynthetic gas exchange (1996) Tropical forest plant ecophysiology, pp. 114-138. , In, Mulkey SS, Chazdon RL, Smith AP, eds., New York, NY, USA, Chapman & Hall; Meinzer, F.C., James, S.A., Goldstein, G., Woodruff, D., Whole-tree water transport scales with sapwood capacitance in tropical forest canopy trees (2003) Plant, Cell & Environment, 26, pp. 1147-1155; Meinzer, F.C., Johnson, D.M., Lachenbruch, B., McCulloh, K.A., Woodruff, D.R., Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance (2009) Functional Ecology, 23, pp. 922-930; Meinzer, F.C., Woodruff, D.R., Domec, J.C., Goldstein, G., Campanello, P.I., Gatti, M.G., Villalobos-Vega, R., Coordination of leaf and stem water transport properties in tropical forest trees (2008) Oecologia, 156, pp. 31-41; Mencuccini, M., Minunno, F., Salmon, Y., Martínez-Vilalta, J., Hölttä, T., Coordination of physiological traits involved in drought-induced mortality of woody plants (2015) New Phytologist, 208, pp. 396-409; Morris, H., Plavcova, L., Cvecko, P., Fichtler, E., Gillingham, M.A.F., Martinez-Cabrera, H.I., McGlinn, D.J., Zieminska, K., A global analysis of parenchyma tissue fractions in secondary xylem of seed plants (2016) New Phytologist, 209, pp. 1553-1565; Phillips, O.L., van der Heijden, G., Lewis, S.L., Lopez-Gonzalez, G., Aragao, L., Lloyd, J., Malhi, Y., Davila, E.A., Drought-mortality relationships for tropical forests (2010) New Phytologist, 187, pp. 631-646; Pike, N., Using false discovery rates for multiple comparisons in ecology and evolution (2011) Methods in Ecology and Evolution, 2, pp. 278-282; Pivovaroff, A.L., Pasquini, S.C., De Guzman, M.E., Alstad, K.P., Stemke, J., Santiago, L.S., Multiple strategies for drought survival among woody plant species (2016) Functional Ecology, 30, pp. 517-526; Pockman, W.T., Sperry, J.S., Vulnerability to xylem cavitation and the distribution of Sonoran desert vegetation (2000) American Journal of Botany, 87, pp. 1287-1299; Preston, K.A., Cornwell, W.K., DeNoyer, J.L., Wood density and vessel traits as distinct correlates of ecological strategy in 51 California coast range angiosperms (2006) New Phytologist, 170, pp. 807-818; (2015) R: a language and environment for statistical computing, , Vienna, Austria, R Core Development Team; Saatchi, S.S., Harris, N.L., Brown, S., Lefsky, M., Mitchard, E.T.A., Salas, W., Zutta, B.R., Hagen, S., Benchmark map of forest carbon stocks in tropical regions across three continents (2011) Proceedings of the National Academy of Sciences, USA, 108, pp. 9899-9904; Sack, L., Pasquet-Kok, J., (2011) Leaf pressure–volume curve parameters, , http://prometheuswiki.publish.csiro.au/tiki-index.php?page=Leaf+pressure-volume+curve+parameters, [WWW document] URL, [accessed 9 August 2016] In Prometheus Wiki; Santiago, L.S., Bonal, D., De Guzman, M.E., Ávila-Lovera, E., Drought survival strategies of tropical trees (2016) Tropical tree physiology: adaptations and responses in a changing environment, pp. 243-258. , In, Goldstein G, Santiago LS, eds., Cham, Switzerland, Springer International; Santiago, L.S., Goldstein, G., Meinzer, F.C., Fisher, J.B., Machado, K., Woodruff, D., Jones, T., Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees (2004) Oecologia, 140, pp. 543-550; Scholz, F.G., Bucci, S.J., Goldstein, G., Meinzer, F.C., Franco, A.C., Miralles-Wilhelm, F., Biophysical properties and functional significance of stem water storage tissues in Neotropical savanna trees (2007) Plant, Cell & Environment, 30, pp. 236-248; Scholz, F., Phillips, N., Bucci, S., Meinzer, F., Goldstein, G., Hydraulic capacitance: biophysics and functional significance of internal water sources in relation to tree size (2011) Size- and age-related changes in tree structure and function, pp. 341-361. , In, Meinzer FC, Lachenbruch B, Dawson TE, eds., Dordrecht, the Netherlands, Springer; Sperry, J.S., Donnelly, J.R., Tyree, M.T., A method for measuring hydraulic conductivity and embolism in xylem (1988) Plant, Cell & Environment, 11, pp. 35-40; Sperry, J.S., Meinzer, F.C., McCulloh, K.A., Safety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees (2008) Plant, Cell & Environment, 31, pp. 632-645; ter Steege, H., Pitman, N.C.A., Phillips, O.L., Chave, J., Sabatier, D., Duque, A., Molino, J.-F., Castellanos, H., Continental-scale patterns of canopy tree composition and function across Amazonia (2006) Nature, 443, pp. 444-447; Taiz, L., Zeiger, E., Møller, I.M., Murphy, A., (2015) Plant physiology and development, , Sunderland, MA, USA, Sinauer Associates; Tyree, M., Negative turgor pressure in plant cells: fact or fallacy? (1976) Canadian Journal of Botany, 54, pp. 2738-2746; Tyree, M.T., Davis, S.D., Cochard, H., Biophysical perspectives of xylem evolution: is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction? (1994) IAWA Journal, 15, pp. 335-360; Tyree, M.T., Ewers, F.W., The hydraulic architecture of trees and other woody plants (1991) New Phytologist, 119, pp. 345-360; Webb, C.O., Donoghue, M.J., Phylomatic: tree assembly for applied phylogenetics (2005) Molecular Ecology Notes, 5, pp. 181-183; Wheeler, J.K., Sperry, J.S., Hacke, U.G., Hoang, N., Inter-vessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport (2005) Plant, Cell & Environment, 28, pp. 800-812; Xu, C., McDowell, N.G., Sevanto, S., Fisher, R.A., Our limited ability to predict vegetation dynamics under water stress (2013) New Phytologist, 200, pp. 298-300; Xu, X.T., Medvigy, D., Powers, J.S., Becknell, J.M., Guan, K.Y., Diversity in plant hydraulic traits explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests (2016) New Phytologist, 212, pp. 80-95; Zanne, A.E., Tank, D.C., Cornwell, W.K., Eastman, J.M., Smith, S.A., FitzJohn, R.G., McGlinn, D.J., Reich, P.B., Three keys to the radiation of angiosperms into freezing environments (2014) Nature, 506, pp. 89-92; Zanne, A.E., Westoby, M., Falster, D.S., Ackerly, D.D., Loarie, S.R., Arnold, S.E.J., Coomes, D.A., Angiosperm wood structure: global patterns in vessel anatomy and their relation to wood density and potential conductivity (2010) American Journal of Botany, 97, pp. 207-215 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 842  
Permanent link to this record
 

 
Author Wagner, F.; Rossi, V.; Stahl, C.; Bonal, D.; Herault, B. pdf  url
openurl 
  Title Asynchronism in leaf and wood production in tropical forests: A study combining satellite and ground-based measurements Type Journal Article
  Year 2013 Publication Biogeosciences Abbreviated Journal Biogeosciences  
  Volume 10 Issue 11 Pages 7307-7321  
  Keywords  
  Abstract The fixation of carbon in tropical forests mainly occurs through the production of wood and leaves, both being the principal components of net primary production. Currently field and satellite observations are independently used to describe the forest carbon cycle, but the link between satellite-derived forest phenology and field-derived forest productivity remains opaque. We used a unique combination of a MODIS enhanced vegetation index (EVI) dataset, a wood production model based on climate data and direct litterfall observations at an intra-annual timescale in order to question the synchronism of leaf and wood production in tropical forests. Even though leaf and wood biomass fluxes had the same range (respectively 2.4 ± 1.4 and 2.2 ± 0.4 Mg C ha-1 yr-1), they occurred separately in time. EVI increased with leaf renewal at the beginning of the dry season, when solar irradiance was at its maximum. At this time, wood production stopped. At the onset of the rainy season, when new leaves were fully mature and water available again, wood production quickly increased to reach its maximum in less than a month, reflecting a change in carbon allocation from short-lived pools (leaves) to long-lived pools (wood). The time lag between peaks of EVI and wood production (109 days) revealed a substantial decoupling between the leaf renewal assumed to be driven by irradiance and the water-driven wood production. Our work is a first attempt to link EVI data, wood production and leaf phenology at a seasonal timescale in a tropical evergreen rainforest and pave the way to develop more sophisticated global carbon cycle models in tropical forests. © 2013 Author(s).  
  Address (down) INRA, UMR EEF 1137, 54280 Champenoux, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 17264170 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 2 December 2013; Source: Scopus; doi: 10.5194/bg-10-7307-2013; Language of Original Document: English; Correspondence Address: Wagner, F.; CIRAD, UMR Ecologie des Forêts de Guyane, Kourou, French Guiana, French Guiana; email: wagner.h.fabien@gmail.com; References: Allen, R., Smith, M., Pereira, L., Perrier, A., An update for the calculation of reference evapotranspiration (1994) Journal of the ICID, 43, pp. 35-92; Anderson, L.O., Biome-scale forest properties in Amazonia based on field and satellite observations (2012) Remote Sens., 4, pp. 1245-1271. , doi:10.3390/rs4051245; Arias, P.A., Fu, R., Hoyos, C.D., Li, W., Zhou, L., Changes in cloudiness over the Amazon rainforests during the last two decades: Diagnostic and potential causes (2011) Clim. Dynam., 37, pp. 1151-1164. , doi:10.1007/s00382-010-0903-2; Asner, G., Townsend, A., Braswell, B., Satellite observation of El Nino effects on Amazon forest phenology and productivity (2000) Geophys. Res. Lett., 27, pp. 981-984. , doi:10.1029/1999GL011113; Asner, G.P., Nepstad, D., Cardinot, G., Ray, D., Drought stress and carbon uptake in an Amazon forest measured with spaceborne imaging spectroscopy (2004) Proceedings of the National Academy of Sciences of the United States of America, 101 (16), pp. 6039-6044. , DOI 10.1073/pnas.0400168101; Baccini, A., Goetz, S.J., Walker, W.S., Laporte, N.T., Sun, M., Sulla-Menashe, D., Hackler, J., Houghton, R.A., Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps (2012) Nat. Clim. Change, 2, pp. 182-185. , doi:10.1038/NCLIMATE1354; Baker, T.R., Burslem, D.F.R.P., Swaine, M.D., Associations between tree growth, soil fertility and water availability at local and regional scales in Ghanaian tropical rain forest (2003) Journal of Tropical Ecology, 19 (2), pp. 109-125. , DOI 10.1017/S0266467403003146; Baraloto, C., Paine, C.E.T., Poorter, L., Beauchene, J., Bonal, D., Domenach, A.-M., Herault, B., Chave, J., Decoupled leaf and stem economics in rain forest trees (2010) Ecol. Lett., 13, pp. 1338-1347. , doi:10.1111/j.1461- 0248.2010.01517.x; Barnett, A., Dobson, A., (2010) Analysing Seasonal Health Data, , Springer; Bonal, D., Bosc, A., Ponton, S., Goret, J.-Y., Burban, B.T., Gross, P., Bonnefond, J.-M., Granier, A., Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana (2008) Global Change Biology, 14 (8), pp. 1917-1933. , DOI 10.1111/j.1365-2486.2008.01610.x; Bradley, A.V., Gerard, F.F., Barbier, N., Weedon, G.P., Anderson, L.O., Huntingford, C., Aragao, L.E.O.C., Arai, E., Relationships between phenology, radiation and precipitation in the Amazon region (2011) Glob. Change Biol., 17, pp. 2245-2260. , doi:10.1111/j.1365-2486.2011.02405.x; Brando, P.M., Goetz, S.J., Baccini, A., Nepstad, D.C., Beck, P.S.A., Christman, M.C., Seasonal and interannual variability of climate and vegetation indices across the Amazon (2010) P. Natl. Acad. Sci. USA, 107, pp. 14685-14690. , doi:10.1073/pnas.0908741107; Caldararu, S., Palmer, P.I., Purves, D.W., Inferring Amazon leaf demography from satellite observations of leaf area index (2012) Biogeosciences, 9, pp. 1389-1404. , doi:10.5194/bg-9-1389-2012; Chambers, J.Q., Silver, W.L., Some aspects of ecophysiological and biogeochemical responses of tropical forests to atmospheric change (2004) Philosophical Transactions of the Royal Society B: Biological Sciences, 359 (1443), pp. 463-476. , DOI 10.1098/rstb.2003.1424; Chave, J., Navarrete, D., Almeida, S., Álvarez, E., Aragão, L.E.O.C., Bonal, D., Châtelet, P., Malhi, Y., Regional and seasonal patterns of litterfall in tropical South America (2010) Biogeosciences, 7, pp. 43-55. , doi:10.5194/bg-7-43-2010; Clark, D.B., Clark, D.A., Oberbauer, S.F., Annual wood production in a tropical rain forest in NE Costa Rica linked to climatic variation but not to increasing CO2 (2010) Glob. Change Biol., 16, pp. 747-759. , doi:10.1111/j.1365-2486.2009.02004.x; Delegido, J., Vergara, C., Verrelst, J., Gandia, S., Moreno, J., Remote estimation of crop chlorophyll content by means of highspectral- resolution reflectance techniques (2011) Agron. J., 103, pp. 1834-1842. , doi:10.2134/agronj2011.0101; De Weirdt, M., Verbeeck, H., Maignan, F., Peylin, P., Poulter, B., Bonal, D., Ciais, P., Steppe, K., Seasonal leaf dynamics for tropical evergreen forests in a process-based global ecosystem model (2012) Geosci. Model Dev., 5, pp. 1091-1108. , doi:10.5194/gmd-5-1091-2012; Doughty, C.E., An in situ leaf and branch warming experiment in the amazon (2011) Biotropica, 43, pp. 658-665. , doi:10.1111/j.1744- 7429.2010.00746.x; Doughty, C.E., Goulden, M.L., Are tropical forests near a high temperature threshold? (2008) J. Geophys. Res.-Biogeo., 113, pp. G00B07. , doi:10.1029/2007JG000632; Ekstrom, M., Jones, P.D., Fowler, H.J., Lenderink, G., Buishand, T.A., Conway, D., Regional climate model data used within the SWURVE project projected changes in seasonal patterns and estimation of PET (2007) Hydrology and Earth System Sciences, 11 (3), pp. 1069-1083; Enquist, B.J., Leffler, A.J., Long-term tree ring chronologies from sympatric tropical dry-forest trees: Individualistic responses to climatic variation (2001) Journal of Tropical Ecology, 17 (1), pp. 41-60. , DOI 10.1017/S0266467401001031; (2008) ESA SP-1313/4 Candidate Earth Explorer Core Missions – Reports for Assessment: FLEX – FLuorescence Explorer, , http://esamultimedia.esa.int/docs/SP1313-4_FLEX.pdf, European Space Agency, Tech. rep., published by ESA Communication Production Office, Noordwijk, The Netherlands; Fichtler, E., Clark, D.A., Worbes, M., Age and Long-term Growth of Trees in an Old-growth Tropical Rain Forest, Based on Analyses of Tree Rings and 14C (2003) Biotropica, 35 (3), pp. 306-317; Figueira, A., Miller, S., De Sousa, C., Menton, M., Maia, A., Da Rocha, H., Goulden, M., (2011) LBA-ECO CD-04 Dendrometry, Km 83 Tower Site, , http://daac.ornl.gov, Tapajos National Forest, Brazil, Data set, Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA, doi:10.3334/ORNLDAAC/989; Galvao, L.S., Breunig, F.M., Dos Santos, J.R., De Moura, Y.M., View-illumination effects on hyperspectral vegetation indices in the Amazonian tropical forest (2013) Int. J. Appl. Earth Obs., 21, pp. 291-300. , doi:10.1016/j.jag.2012.07.005; Gao, X., Huete, A.R., Ni, W., Miura, T., Optical-biophysical relationships of vegetation spectra without background contamination (2000) Remote Sensing of Environment, 74 (3), pp. 609-620. , DOI 10.1016/S0034-4257(00)00150-4, PII S0034425700001504; Gond, V., Freycon, V., Molino, J.-F., Brunaux, O., Ingrassia, F., Joubert, P., Pekel, J.-F., Sabatier, D., Broad-scale spatial pattern of forest landscape types in the Guiana Shield (2011) Int. J. Appl. Earth Obs., 13, pp. 357-367. , doi:10.1016/j.jag.2011.01.004; Gourlet-Fleury, S., Guehl, J.M., Laroussinie, O., (2004) Ecology and Management of A Neotropical Rainforest – Lessons Drawn from Paracou, A Long-term Experimental Research Site in French Guiana, , Elsevier; Graham, E.A., Mulkey, S.S., Kitajima, K., Phillips, N.G., Wright, S.J., Cloud cover limits net CO2 uptake and growth of a rainforest tree during tropical rainy seasons (2003) Proceedings of the National Academy of Sciences of the United States of America, 100 (2), pp. 572-576. , DOI 10.1073/pnas.0133045100; Grogan, J., Schulze, M., The impact of annual and seasonal rainfall patterns on growth and phenology of emergent tree species in Southeastern Amazonia, Brazil (2012) Biotropica, 44, pp. 331-340. , doi:10.1111/j.1744-7429.2011.00825.x; Harris, P.P., Huntingford, C., Cox, P.M., Amazon Basin climate under global warming: The role of the sea surface temperature (2008) Philosophical Transactions of the Royal Society B: Biological Sciences, 363 (1498), pp. 1753-1759. , DOI 10.1098/rstb.2007.0037, PII M322R63897015H77; Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., Ferreira, L.G., Overview of the radiometric and biophysical performance of the MODIS vegetation indices (2002) Remote Sensing of Environment, 83 (1-2), pp. 195-213. , DOI 10.1016/S0034-4257(02)00096-2, PII S0034425702000962; Huete, A.R., Didan, K., Shimabukuro, Y.E., Ratana, P., Saleska, S.R., Hutyra, L.R., Yang, W.Z., Myneni, R., Amazon rainforests green-up with sunlight in dry season (2006) Geophys. Res. Lett., 33, pp. L06405. , doi:10.1029/2005GL025583; Hutyra, L.R., Munger, J.W., Saleska, S.R., Gottlieb, E., Daube, B.C., Dunn, A.L., Amaral, D.F., Wofsy, S.C., Seasonal controls on the exchange of carbon and water in an Amazonian rain forest (2007) Journal of Geophysical Research G: Biogeosciences, 112 (3), pp. G03008. , DOI 10.1029/2006JG000365; Janzen, D., Wilson, D., The cost of being dormant in the tropics (1974) Biotropica, 6, pp. 260-262; Justice, C.O., Vermote, E., Townshend, J.R.G., Defries, R., Roy, D.P., Hall, D.K., Salomonson, V.V., Barnsley, M.J., The moderate resolution imaging spectroradiometer (MODIS): Land remote sensing for global change research (1998) IEEE Transactions on Geoscience and Remote Sensing, 36 (4), pp. 1228-1249. , PII S0196289298047512; Kozlowski, T., Carbohydrate sources and sinks in woody-plants (1992) Bot. Rev., 58, pp. 107-222. , doi:10.1007/BF02858600; Krepkowski, J., Bräuning, A., Gebrekirstos, A., Strobl, S., Cambial growth dynamics and climatic control of different tree life forms in tropical mountain forest in Ethiopia (2011) Trees, 25, pp. 59-70. , doi:10.1007/s00468-010-0460-7; Lewis, S.L., Malhi, Y., Phillips, O.L., Fingerprinting the impacts of global change on tropical forests (2004) Philosophical Transactions of the Royal Society B: Biological Sciences, 359 (1443), pp. 437-462. , DOI 10.1098/rstb.2003.1432; Lisi, C.S., Tomazello Fo., M., Botosso, P.C., Roig, F.A., Maria, V.R.B., Ferreira-Fedele, L., Voigt, A.R.A., Tree-ring formation, radial increment periodicity, and phenology of tree species from a seasonal semi-deciduous forest in southeast Brazil (2008) IAWA Journal, 29 (2), pp. 189-207; Lloyd, J., Farquhar, G.D., Effects of rising temperatures and [CO2] on the physiology of tropical forest trees (2008) Philosophical Transactions of the Royal Society B: Biological Sciences, 363 (1498), pp. 1811-1817. , DOI 10.1098/rstb.2007.0032, PII C14L2U757H282731; Da Costa Lola, A.C., Galbraith, D., Almeida, S., Tanaka Portela, B.T., Da Costa, M., De Athaydes Silva Jr., J., Braga, A.P., Meir, P., Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest (2010) New Phytol., 187, pp. 579-591. , doi:10.1111/j.1469-8137.2010.03309.x; Loubry, D., Phenology of deciduous trees in a French-Guianan forest (5 degrees latitude North) – Case of a determinism with endogenous and exogenous components (1994) Can. J. Bot., 72, pp. 1843-1857; Malhi, Y., Grace, J., Tropical forests and atmospheric carbon dioxide (2000) Trends in Ecology and Evolution, 15 (8), pp. 332-337. , DOI 10.1016/S0169-5347(00)01906-6, PII S0169534700019066; Malhi, Y., Aragao, L.E.O.C., Galbraith, D., Huntingford, C., Fisher, R., Zelazowski, P., Sitch, S., Meir, P., Exploring the likelihood and mechanism of a climatechange- induced dieback of the Amazon rainforest (2009) P. Natl. Acad. Sci. USA, 106, pp. 20610-20615. , doi:10.1073/pnas.0804619106; Malhi, Y., Doughty, C., Galbraith, D., The allocation of ecosystem net primary productivity in tropical forests (2011) Philos. T. R. Soc. B, 366, pp. 3225-3245. , doi:10.1098/rstb.2011.0062; Meroni, M., Busetto, L., Colombo, R., Guanter, L., Moreno, J., Verhoef, W., Performance of spectral fitting methods for vegetation fluorescence quantification (2010) Remote Sens. Environ., 114, pp. 363-374. , doi:10.1016/j.rse.2009.09.010; Michelot, A., Simard, S., Rathgeber, C., Dufrene, E., Damesin, C., Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and nonstructural carbohydrate dynamics (2012) Tree Physiol., 32, pp. 1033-1045. , doi:10.1093/treephys/tps052; Mitchell, T.D., Jones, P.D., An improved method of constructing a database of monthly climate observations and associated high-resolution grids (2005) International Journal of Climatology, 25 (6), pp. 693-712. , DOI 10.1002/joc.1181; Molto, Q., Rossi, V., Blanc, L., Error propagation in biomass estimation in tropical forests (2013) Meth. Ecol. Evolut., 4, pp. 175-183. , doi:10.1111/j.2041-210x.2012.00266.x; Moura, Y.M., Galvao, L.S., Dos Santos, J.R., Roberts, D.A., Breunig, F.M., Use of MISR/Terra data to study intra- and interannual EVI variations in the dry season of tropical forest (2012) Remote Sens. Environ., 127, pp. 260-270. , doi:10.1016/j.rse.2012.09.013; Myneni, R.B., Hall, F.G., Sellers, P.J., Marshak, A.L., The meaning of spectral vegetation indices (1995) IEEE T. Geosci. Remote, 33, pp. 481-486; Myneni, R.B., Yang, W., Nemani, R.R., Huete, A.R., Dickinson, R.E., Knyazikhin, Y., Didan, K., Salomonson, V.V., Large seasonal swings in leaf area of Amazon rainforests (2007) Proceedings of the National Academy of Sciences of the United States of America, 104 (12), pp. 4820-4823. , DOI 10.1073/pnas.0611338104; Nath, C.D., Dattaraja, H.S., Suresh, H.S., Joshi, N.V., Sukumar, R., Patterns of tree growth in relation to environmental variability in the tropical dry deciduous forest at Mudumalai, southern India (2006) Journal of Biosciences, 31 (5), pp. 651-669. , http://www.ias.ac.in/jbiosci/dec2006/651-669.pdf, DOI 10.1007/BF02708418; Nemani, R.R., Keeling, C.D., Hashimoto, H., Jolly, W.M., Piper, S.C., Tucker, C.J., Myneni, R.B., Running, S.W., Climate-driven increases in global terrestrial net primary production from 1982 to 1999 (2003) Science, 300 (5625), pp. 1560-1563. , DOI 10.1126/science.1082750; Nepstad, D., Moutinho, P., Dias, M., Davidson, E., Cardinot, G., Markewitz, D., Figueiredo, R., Schwalbe, K., The effects of partial throughfall exclusion on canopy processes, aboveground production, and biogeochemistry of an Amazon forest (2002) J. Geophys. Res.-Atmos., 107, p. 8085. , doi:10.1029/2001JD000360; O'Brien, J.J., Oberbauer, S.F., Clark, D.B., Clark, D.A., Phenology and stem diameter increment seasonality in a Costa Rican wet tropical forest (2008) Biotropica, 40 (2), pp. 151-159. , DOI 10.1111/j.1744-7429.2007.00354.x; Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., Hayes, D., A large and persistent carbon sink in the world's forests (2011) Science, 333, pp. 988-993. , doi:10.1126/science.1201609; Pennec, A., Gond, V., Sabatier, D., Tropical forest phenology in French Guiana from MODIS time series (2011) Remote Sens. Lett., 2, pp. 337-345; Phillips, O.L., Aragao, L.E.O.C., Lewis, S.L., Fisher, J.B., Lloyd, J., Lopez-Gonzalez, G., Malhi, Y., Torres-Lezama, A., Drought sensitivity of the Amazon rainforest (2009) Science, 323, pp. 1344-1347. , doi:10.1126/science.1164033; Poorter, L., Kitajima, K., Carbohydrate storage and light requirements of tropical moist and dry forest tree species (2007) Ecology, 88 (4), pp. 1000-1011. , http://www.esajournals.org/pdfserv/i0012-9658-088-04-1000.pdf, DOI 10.1890/06-0984; Rice, A.H., Pyle, E.H., Saleska, S.R., Hutyra, L., Palace, M., Keller, M., De Camargo, P.B., Wofsy, S.C., Carbon balance and vegetation dynamics in an old-growth Amazonian forest (2004) Ecological Applications, 14 (4 SUPPL.), pp. S55-S71; Richardson, A.D., Carbone, M.S., Keenan, T.F., Czimczik, C.I., Hollinger, D.Y., Murakami, P., Schaberg, P.G., Xu, X., Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees (2013) New Phytol., 197, pp. 850-861. , doi:10.1111/nph.12042; Rocha, A.V., Tracking carbon within the trees (2013) New Phytol., 197, pp. 685-686. , doi:10.1111/nph.12095; Rutishauser, E., Wagner, F., Herault, B., Nicolini, E.-A., Blanc, L., Contrasting above-ground biomass balance in a neotropical rain forest (2010) J. Veg. Sci., 21, pp. 672-682. , doi:10.1111/j.1654-1103.2010.01175.x; Rowland, L., Hill, T.C., Stahl, C., Siebicke, L., Burban, B., Zaragoza-Castells, J., Ponton, S., Williams, M., Evidence for strong seasonality in the carbon storage and carbon use efficiency of an Amazonian forest (2013) Glob. Change Biol., , doi:10.1111/gcb.12375; Sabatier, D., Puig, H., Phénologie et saisonnalité de la floraison et de la fructification en forêt dense guyanaise (1986) Memoir. Mus. Natl. Hist. A-Zool., 132, pp. 173-184; Sabatier, D., Grimaldi, M., Prevost, M., Guillaume, J., Godron, M., Dosso, M., Curmi, P., The influence of soil cover organization on the floristic and structural heterogeneity of a Guianan rain forest (1997) Plant Ecol., 131, pp. 81-108; Saleska, S.R., Miller, S.D., Matross, D.M., Goulden, M.L., Wofsy, S.C., Da Rocha, H.R., De Camargo, P.B., Silva, H., Carbon in Amazon Forests: Unexpected Seasonal Fluxes and Disturbance-Induced Losses (2003) Science, 302 (5650), pp. 1554-1557. , DOI 10.1126/science.1091165; Saleska, S.R., Didan, K., Huete, A.R., Da Rocha, H.R., Amazon forests green-up during 2005 drought (2007) Science, 318 (5850), p. 612. , DOI 10.1126/science.1146663; Samanta, A., Ganguly, S., Hashimoto, H., Devadiga, S., Vermote, E., Knyazikhin, Y., Nemani, R.R., Myneni, R.B., Amazon forests did not green-up during the 2005 drought (2010) Geophys. Res. Lett., 37, pp. L05401. , doi:10.1029/2009GL042154; Schongart, J., Piedade, M.T.F., Ludwigshausen, S., Horna, V., Worbes, M., Phenology and stem-growth periodicity of tree species in Amazonian floodplain forests (2002) Journal of Tropical Ecology, 18 (4), pp. 581-597. , DOI 10.1017/S0266467402002389; Solano, R., Didan, K., Jacobson, A., Huete, A., (2010) Terrestrial Biophysics and Remote Sensing Lab – The University of Arizona, MODIS Vegetation Indices (MOD13) C5 User's Guide, Version 1.00; Solomon, S., Qin, D., Manning, M., Marquis, M., Averyt, K., Tignor, M.M.H., Leroy Miller, J., Chen, Z., (2007) Climate Change 2007, the Fourth Assessment Report (AR4), Intergovernmental Panel on Climate Change; Solomon, S., Plattner, G.-K., Knutti, R., Friedlingstein, P., Irreversible climate change due to carbon dioxide emissions (2009) P. Natl. Acad. Sci. USA, 106, pp. 1704-1709. , doi:10.1073/pnas.0812721106; Stahl, C., Burban, B., Bompy, F., Jolin, Z.B., Sermage, J., Bonal, D., Seasonal variation in atmospheric relative humidity contributes to explaining seasonal variation in trunk circumference of tropical rain-forest trees in French Guiana (2010) J. Trop. Ecol., 26, pp. 393-405. , doi:10.1017/S0266467410000155; Stahl, C., Burban, B., Wagner, F., Goret, J.-Y., Bompy, F., Bonal, D., Influence of seasonal variations in soil water availability on gas exchange of tropical canopy trees (2013) Biotropica, 45, pp. 155-164; Tian, H., Melillo, J.M., Kicklighter, D.W., David McGuire, A., Helfrich III, J.V.K., Moore III, B., Vorosmarty, C.J., Effect of interannual climate variability on carbon storage in Amazonian ecosystems (1998) Nature, 396 (6712), pp. 664-667. , DOI 10.1038/25328; Verbeeck, H., Peylin, P., Bacour, C., Bonal, D., Steppe, K., Ciais, P., Seasonal patterns of CO2 fluxes in Amazon forests: Fusion of eddy covariance data and the ORCHIDEE model (2011) J. Geophys. Res.-Biogeo., 116, pp. G02018. , doi:10.1029/2010JG001544; Wagner, F., Hérault, B., Stahl, C., Bonal, D., Rossi, V., Modeling water availability for trees in tropical forests (2010) Agr. Forest Meteorol., pp. 1202-1213. , doi:10.1016/j.agrformet.2011.04.012; Wagner, F., Rutishauser, E., Blanc, L., Herault, B., Effects of plot size and census interval on descriptors of forest structure and dynamics (2010) Biotropica, 42, pp. 664-671; Wagner, F., Rossi, V., Stahl, C., Bonal, D., Herault, B., Water availability is the main climate driver of neotropical tree growth (2012) Plos One, 7, pp. e34074. , doi:10.1371/journal.pone.0034074; Worbes, M., Annual growth rings, rainfall-dependent growth and long-term growth patterns of tropical trees from the Caparo Forest Reserve in Venezuela (1999) Journal of Ecology, 87 (3), pp. 391-403. , DOI 10.1046/j.1365-2745.1999.00361.x; Wright, S., Vanschaik, C., Light and the phenology of tropical trees (1994) Am. Nat., 143, pp. 192-199. , doi:10.1086/285600; Wurth, M.K.R., Pelaez-Riedl, S., Wright, S.J., Korner, C., Non-structural carbohydrate pools in a tropical forest (2005) Oecologia, 143 (1), pp. 11-24. , DOI 10.1007/s00442-004-1773-2; Zalamea, M., Gonzalez, G., Leaffall phenology in a subtropical wet forest in Puerto Rico: From species to community patterns (2008) Biotropica, 40 (3), pp. 295-304. , DOI 10.1111/j.1744-7429.2007.00389.x; Zhang, X., Friedl, M.A., Schaaf, C.B., Strahler, A.H., Hodges, J.C.F., Gao, F., Reed, B.C., Huete, A., Monitoring vegetation phenology using MODIS (2003) Remote Sensing of Environment, 84 (3), pp. 471-475. , DOI 10.1016/S0034-4257(02)00135-9, PII S0034425702001359 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 512  
Permanent link to this record
 

 
Author Stahl, C.; Herault, B.; Rossi, V.; Burban, B.; Bréchet, C.; Bonal, D. url  openurl
  Title Depth of soil water uptake by tropical rainforest trees during dry periods: Does tree dimension matter? Type Journal Article
  Year 2013 Publication Oecologia Abbreviated Journal Oecologia  
  Volume 173 Issue 4 Pages 1191-1201  
  Keywords Deuterium; Oxygen; Root; Soil water; Tropical rainforest  
  Abstract Though the root biomass of tropical rainforest trees is concentrated in the upper soil layers, soil water uptake by deep roots has been shown to contribute to tree transpiration. A precise evaluation of the relationship between tree dimensions and depth of water uptake would be useful in tree-based modelling approaches designed to anticipate the response of tropical rainforest ecosystems to future changes in environmental conditions. We used an innovative dual-isotope labelling approach (deuterium in surface soil and oxygen at 120-cm depth) coupled with a modelling approach to investigate the role of tree dimensions in soil water uptake in a tropical rainforest exposed to seasonal drought. We studied 65 trees of varying diameter and height and with a wide range of predawn leaf water potential (Ψpd) values. We confirmed that about half of the studied trees relied on soil water below 100-cm depth during dry periods. Ψpd was negatively correlated with depth of water extraction and can be taken as a rough proxy of this depth. Some trees showed considerable plasticity in their depth of water uptake, exhibiting an efficient adaptive strategy for water and nutrient resource acquisition. We did not find a strong relationship between tree dimensions and depth of water uptake. While tall trees preferentially extract water from layers below 100-cm depth, shorter trees show broad variations in mean depth of water uptake. This precludes the use of tree dimensions to parameterize functional models. © 2013 Springer-Verlag Berlin Heidelberg.  
  Address (down) INRA, UMR EEF 1137, 54280 Champenoux, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00298549 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 6 December 2013; Source: Scopus; Coden: Oecob; doi: 10.1007/s00442-013-2724-6; Language of Original Document: English; Correspondence Address: Bonal, D.; INRA, UMR EEF 1137, 54280 Champenoux, France; email: bonal@nancy.inra.fr; References: Améglio, T., Archer, P., Cohen, M., Valancogne, C., Daudet, F.A., Dayau, S., Cruiziat, P., Significance and limits in the use of predawn leaf water potential for tree irrigation (1999) Plant Soil, 207, pp. 155-167; Baraloto, C., Morneau, F., Bonal, D., Blanc, L., Ferry, B., Seasonal water stress tolerance and habitat associations within four Neotropical tree genera (2007) Ecology, 88, pp. 478-489; Bonal, D., Barigah, T.S., Granier, A., Guehl, J.-M., Late-stage canopy tree species with extremely low delta C-13 and high stomatal sensitivity to seasonal soil drought in the tropical rainforest of French Guiana (2000) Plant Cell Environ, 23, pp. 445-459; Bonal, D., Atger, C., Barigah, T.S., Ferhi, A., Guehl, J.-M., Ferry, B., Water acquisition patterns of two wet tropical canopy tree species of French Guiana as inferred from H218O extraction profiles (2000) Ann For Sci, 57, pp. 717-724; Bonal, D., Bosc, A., Ponton, S., Goret, J.-Y., Burban, B., Gross, P., Bonnefond, J.-M., Granier, A., Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana (2008) Glob Chang Biol, 14, pp. 1917-1933; Cao, K.F., Water relations and gas exchange of tropical saplings during a prolonged drought in a Bornean heath forest, with reference to root architecture (2000) J Trop Ecol, 16, pp. 101-116; Carvalheiro, K.O., Nepstad, D.C., Deep soil heterogeneity and fine root distribution in forests and pastures of eastern Amazonia (1996) Plant Soil, 182, pp. 279-285; Chmura, D.J., Anderson, P.D., Howe, G.T., Harrington, C.A., Halofsky, J.E., Peterson, D.L., Shaw, D.C., Brad St Claire, J., Forest responses to climate change in the northwestern United States: ecophysiological foundations for adaptive management (2011) For Ecol Manage, 261, pp. 1121-1142; da Rocha, H.R., Goulden, M.L., Miller, S.D., Menton, M.C., Pinto, L.D.V.O., de Freitas, H.C., e Silva Figueira, A.M., Seasonality of water and heat fluxes over a tropical forest in eastern Amazonia (2004) Ecol Appl, 14, pp. 22-32; Davidson, E., Lefebvre, P.A., Brando, P.M., Ray, D.M., Trumbore, S.E., Solorzano, L.A., Ferreira, J.N., Nepstad, D.C., Carbon inputs and water uptake in deep soils of an eastern Amazon forest (2011) For Sci, 57, pp. 51-58; Engelbrecht, B.M.J., Kursar, T.A., Comparative drought-resistance of seedlings of 28 species of co-occurring tropical woody plants (2003) Oecologia, 136, pp. 383-393; Engelbrecht, B.M.J., Wright, S.J., De Steven, D., Survival and ecophysiology of tree seedlings during El Nino drought in a tropical moist forest in Panama (2002) J Trop Ecol, 18, pp. 569-579; Fisher, R.A., Williams, M., Do Vale, R.L., Da Costa, A.L., Meir, P., Evidence from Amazonian forests is consistent with isohydric control of leaf water potential (2006) Plant Cell Environ, 29, pp. 151-165; Goulden, M.L., Miller, S.D., da Rocha, H.R., Menton, M.C., De Freitas, H.C., Silva Figueira, A.M.E., De Sousa, C.A.D., Diel and seasonal patterns of tropical forest CO2 exchange (2004) Ecol Appl, 14, pp. 42-54; Gourlet-Fleury, S., Ferry, B., Molino, J.F., Petronelli, P., Schmitt, L., Experimental plots: key features (2004) Ecology and management of a Neotropical Rainforest, pp. 3-60. , In: Gourlet-Fleury S, Guehl JM, Laroussinie O (eds) Lessons drawn from Paracou, a long-term experimental research site in French Guiana. Elsevier, Paris; Huc, R., Ferhi, A., Guehl, J.M., Pioneer and late stage tropical rainforest tree species (French Guyana) growing under common conditions differ in leaf gas exchange regulation, carbon isotope discrimination and leaf water potential (1994) Oecologia, 99, pp. 297-305; Hutyra, L.R., Munger, J.W., Saleska, S., Gottlieb, E., Daube, B.C., Dunn, A.L., Amaral, D.F., Wofsy, S.C., Seasonal controls on the exchange of carbon and water in an Amazonian rain forest (2007) J Geophys Res, 112, pp. G03008. , doi:10.1029/2006JG000365; Jackson, R.B., Canadell, J., Ehleringer, J.R., Mooney, H.A., Sala, O.E., Schulze, E.D., A global analysis of root distributions for terrestrial biomes (1996) Oecologia, 108, pp. 389-411; Jobbagy, E.G., Jackson, R.B., The distribution of soil nutrients with depth: global patterns and the imprint of plants (2001) Biogeochemistry, 53, pp. 51-77; Kozlowski, T.T., Pallardy, S.G., Acclimation and adaptive responses of woody plants to environmental stresses (2002) Bot Rev, 68, pp. 270-334; Malhi, Y., Wright, J., Spatial patterns and recent trends in the climate of tropical rainforest regions (2004) Phil Trans R Soc Lond B, 359, pp. 311-329; Markewitz, D., Devine, S., Davidson, E.A., Brando, P., Nepstad, D.C., Soil moisture depletion under simulated drought in the Amazon: impacts on deep root uptake (2010) New Phytol, 187, pp. 592-607; Meinzer, F.C., Andrade, J.L., Goldstein, G., Holbrook, N.M., Cavelier, J., Wright, S.J., Partitioning of soil water among trees in a seasonally dry tropical forest (1999) Oecologia, 121, pp. 293-301; Merbold, L., Ardo, J., Arneth, A., Scholes, R.J., Nouvellon, Y., de Grandcourt, A., Archibald, S., Kutsch, W.L., Precipitation as driver of carbon fluxes in 11 African ecosystems (2009) Biogeosciences, 6, pp. 1027-1041; Moreira, M., Sternberg, L., Nepstad, D., Vertical patterns of soil water uptake by plants in a primary forest and an abandoned pasture in the eastern Amazon: an isotopic approach (2000) Plant Soil, 222, pp. 95-107; Nepstad, D.C., De Carvalho, C.R., Davidson, E.A., Jipp, P.H., Lefebvre, P.A., Negreiros, G.H., Da Silva, E.D., Vieira, S., The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures (1994) Nature, 372, pp. 666-669; Oliveira, R., Dawson, T., Burgess, S., Nepstad, D., Hydraulic redistribution in three Amazonian trees (2005) Oecologia, 145, pp. 354-363; Poorter, L., Markesteijn, L., Seedling traits determine drought tolerance of tropical tree species (2008) Biotropica, 40, pp. 321-331; (2010) R: A Language and Environment for Statistical Computing, , R Development Core Team, Vienna: R Foundation for Statistical Computing; Romero-Saltos, H., LdSL, S., Moreira, M.Z., Nepstad, D.C., Rainfall exclusion in an eastern Amazonian forest alters soil water movement and depth of water uptake (2005) Am J Bot, 92, pp. 443-455; Sobrado, M.A., Embolism vulnerability in drought-deciduous and evergreen species of a tropical dry forest (1997) Acta Oecol, 18, pp. 383-391; Stahl, C., Burban, B., Bompy, F., Jolin, Z.B., Sermage, J., Bonal, D., Seasonal variation in atmospheric relative humidity contributes to explaining seasonal variation in trunk circumference of tropical rain-forest trees in French Guiana (2010) J Trop Ecol, 26, pp. 393-405; Stahl, C., Burban, B., Goret, J.-Y., Bonal, D., Seasonal variations in stem CO2 efflux in the Neotropical rainforest of French Guiana (2011) Ann For Sci, 68, pp. 771-782; Stahl, C., Burban, B., Wagner, F., Goret, J.-Y., Bompy, F., Bonal, D., Influence of seasonal variations in soil water availability on gas exchange of tropical canopy trees (2013) Biotropia, 45, pp. 155-164; Sternberg, L., Green, L., Moreira, M.Z., Nepstad, D.C., Martinelli, L.A., Victoria, R., Root distribution in an Amazonian seasonal forest (1998) Plant Soil, 205, pp. 45-50; Sternberg, L., Moreira, M., Nepstad, D.C., Uptake of water by lateral roots of small trees in an Amazonian tropical forest (2002) Plant Soil, 238, pp. 151-158; Wagner, F., Hérault, B., Stahl, C., Bonal, D., Rossi, V., Modeling water availability for trees in tropical forests (2011) Agric For Meteorol, 151, pp. 1202-1213; Wagner, F., Rossi, V., Stahl, C., Bonal, D., Hérault, B., Water availability is the main climate driver of Neotropical tree growth (2012) PLoS ONE, 7, pp. e34074; Wang, G., Alo, C., Mei, R., Sun, S., Droughts, hydraulic redistribution, and their impact on vegetation composition in the Amazon forest (2011) Plant Ecol, 212, pp. 663-673; Williams, M., Malhi, Y., Nobre, A.D., Rastetter, E.B., Grace, J., Pereira, M.G.P., Seasonal variation in net carbon exchange and evapotranspiration in a Brazilian rainforest: a modelling analysis (1998) Plant Cell Environ, 21, pp. 953-968; Yavitt, J.B., Wright, S.J., Drought and irrigation effects on fine root dynamics in a tropical moist forest, Panama (2001) Biotropica, 33, pp. 421-434; Zapater, M., Hossann, C., Bréda, N., Bréchet, C., Bonal, D., Granier, A., Evidence of hydraulic lift in a young beech and oak mixed forest using 18O soil water labelling (2011) Trees Struct Funct, 25, pp. 885-894; Zhang, Y., Tan, Z., Song, Q., Yu, G., Sun, X., Respiration controls the unexpected seasonal pattern of carbon flux in an Asian tropical rain forest (2010) Atmos Environ, 44, pp. 3886-3893 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 514  
Permanent link to this record
 

 
Author Soong, J.L.; Marañon-Jimenez, S.; Cotrufo, M.F.; Boeckx, P.; Bodé, S.; Guenet, B.; Peñuelas, J.; Richter, A.; Stahl, C.; Verbruggen, E.; Janssens, I.A. doi  openurl
  Title Soil microbial CNP and respiration responses to organic matter and nutrient additions: Evidence from a tropical soil incubation Type Journal Article
  Year 2018 Publication Soil Biology and Biochemistry Abbreviated Journal  
  Volume 122 Issue Pages 141-149  
  Keywords 13c; Cnp; Microbial stoichiometry; Priming; Soil respiration; Tropics  
  Abstract Soil nutrient availability has a strong influence on the fate of soil carbon (C) during microbial decomposition, contributing to Earth's C balance. While nutrient availability itself can impact microbial physiology and C partitioning between biomass and respiration during soil organic matter decomposition, the availability of labile C inputs may mediate the response of microorganisms to nutrient additions. As soil organic matter is decomposed, microorganisms retain or release C, nitrogen (N) or phosphorus (P) to maintain a stoichiometric balance. Although the concept of a microbial stoichiometric homeostasis has previously been proposed, microbial biomass CNP ratios are not static, and this may have very relevant implications for microbial physiological activities. Here, we tested the hypothesis that N, P and potassium (K) nutrient additions impact C cycling in a tropical soil due to microbial stoichiometric constraints to growth and respiration, and that the availability of energy-rich labile organic matter in the soil (i.e. leaf litter) mediates the response to nutrient addition. We incubated tropical soil from French Guiana with a 13C labeled leaf litter addition and with mineral nutrient additions of +K, +N, +NK, +PK and +NPK for 30 days. We found that litter additions led to a ten-fold increase in microbial respiration and a doubling of microbial biomass C, along with greater microbial N and P content. We found some evidence that P additions increased soil CO2 fluxes. Additionally, we found microbial biomass CP and NP ratios varied more widely than CN in response to nutrient and organic matter additions, with important implications for the role of microorganisms in C cycling. The addition of litter did not prime soil organic matter decomposition, except in combination with +NK fertilization, indicating possible P-mining of soil organic matter in this P-poor tropical soil. Together, these results point toward an ultimate labile organic substrate limitation of soil microorganisms in this tropical soil, but also indicate a complex interaction between C, N, P and K availability. This highlights the difference between microbial C cycling responses to N, P, or K additions in the tropics and explains why coupled C, N and P cycle modeling efforts cannot rely on strict microbial stoichiometric homeostasis as an underlying assumption.  
  Address (down) INRA, UMR Ecology of Guiana Forests (Ecofog), AgroParisTech, Cirad, CNRS, Université de Guyane, Université des Antilles, Kourou, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 16 May 2018 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 804  
Permanent link to this record
 

 
Author Rockwell, C.A.; Kainer, K.A.; d'Oliveira, M.V.N.; Staudhammer, C.L.; Baraloto, C. url  openurl
  Title Logging in bamboo-dominated forests in southwestern Amazonia: Caveats and opportunities for smallholder forest management Type Journal Article
  Year 2014 Publication Forest Ecology and Management Abbreviated Journal For. Ecol. Manage.  
  Volume 315 Issue Pages 202-210  
  Keywords Bamboo; Community forest management; Guadua; Logging; Timber management; Tropical forest  
  Abstract Guadua sarcocarpa and Guadua weberbaueri (Poaceae: Bambuseae) have a negative influence on tree regeneration and recruitment in bamboo-dominated forests of southwestern Amazonia. The lack of advanced regeneration and sparse canopy in this forest type present a considerable challenge for developing sustainable timber management plans. We conducted field studies in the Porto Dias Agroextractive Settlement Project in Acre, Brazil to assess influences of logging in bamboo-dominated forest sites. Taxonomic composition, stand structure, aboveground biomass, commercial timber volume, and commercial tree seedling and bamboo culm density were compared between five logged vs. unlogged sites in different landholdings, using modified 0.5. ha Gentry plots. No differences in taxonomic composition, aboveground biomass, adult and juvenile stem density, or woody seedling and bamboo culm density were detected between paired logged and unlogged sites. Commercial timber volume, however, was reduced by almost two-thirds in logged plots, suggesting that long-term timber management goals in this forest type are compromised since so few future crop trees remained onsite. Our findings indicate that in order to maximize local management objectives, community forest managers must approach logging in bamboo-dominated forests with caution. We suggest an integration of non-timber forest product extraction with low harvest intensity and low-impact logging, tending of natural regeneration, and diversification of commercial species. © 2014 Elsevier B.V.  
  Address (down) INRA, UMR Ecologie des Forêts de Guyane, 97387 Kourou Cedex, French Guiana  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 03781127 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 15 February 2014; Source: Scopus; Coden: Fecmd; Language of Original Document: English; Correspondence Address: Rockwell, C.A.; School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611, United States; email: rockwell_cara@yahoo.com; Funding Details: DGE-0221599, NSF, National Science Foundation Approved no  
  Call Number EcoFoG @ webmaster @ Serial 528  
Permanent link to this record
 

 
Author Ferry, B.; Bontemps, J.-D.; Blanc, L.; Baraloto, C. url  openurl
  Title Is climate a stronger driver of tree growth than disturbance? A comment on Toledo et al. (2011) Type Journal Article
  Year 2012 Publication Journal of Ecology Abbreviated Journal J. Ecol.  
  Volume 100 Issue 5 Pages 1065-1068  
  Keywords Basal area change; Bolivia; Climate; Disturbance; Logging; Plant-climate interactions; Tree growth; Tropical forest  
  Abstract 1.A recent article published by Toledo (2011b) investigates the effects of spatial variations in climate and soil, and of logging disturbance, on tree and forest growth in Bolivia. It concludes that climate is the strongest driver of tree and forest growth and that climate change may therefore have large consequences for forest productivity and carbon sequestration. However, serious methodological and conceptual discrepancies have been found that challenge these conclusions. 2.Because of an errant coding of 'time after logging' in the regression analysis, and because floristic changes induced by logging could not be incorporated into the analysis, the effect of logging on the average diameter growth is likely to have been strongly underestimated. 3.Basal area growth was improperly calculated as basal area change, and it displayed surprisingly high values, even among unlogged plots. We hypothesize that either these plots may be actually located in secondary forests recovering from past logging, or measurement biases may have hampered the data set. 4.Regardless of climate-growth relationships established across these plots, any inference concerning the potential effects of climate change on forest growth would require a specific quantitative assessment. 5.Synthesis. It is critical to re-assess the relative weight of climate and logging disturbance as driving factors of tree and forest growth, and to find an explanation for the very high basal area increment reported among the unlogged plots. We provide specific recommendations for further analyses of this and similar data sets. © 2012 British Ecological Society.  
  Address (down) INRA, UMR Ecologie des Forêts de Guyane, 97379 Kourou, French Guiana  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00220477 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Cited By (since 1996): 1; Export Date: 4 September 2012; Source: Scopus; Coden: Jecoa; doi: 10.1111/j.1365-2745.2011.01895.x; Language of Original Document: English; Correspondence Address: Ferry, B.; AgroParisTech, ENGREF-Nancy, UMR 1092, F-54000 Nancy, France; email: bruno.ferry@engref.agroparistech.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 426  
Permanent link to this record
 

 
Author Leroy, C.; Maes, A.Q.; Louisanna, E.; Séjalon-Delmas, N. url  doi
openurl 
  Title How significant are endophytic fungi in bromeliad seeds and seedlings? Effects on germination, survival and performance of two epiphytic plant species Type Journal Article
  Year 2019 Publication Fungal Ecology Abbreviated Journal Fungal Ecol.  
  Volume 39 Issue Pages 296-306  
  Keywords Aechmea; Bromeliads; Endophytic fungi; Fusarium spp.; Germination; Survival; Trichoderma spp.; Vertical transmission  
  Abstract In bromeliads, nothing is known about the associations fungi form with seeds and seedling roots. We investigated whether fungal associations occur in the seeds and seedling roots of two epiphytic Aechmea species, and we explored whether substrate and fungal associations contribute to seed germination, and seedling survival and performance after the first month of growth. We found a total of 21 genera and 77 species of endophytic fungi in the seeds and seedlings for both Aechmea species by Illumina MiSeq sequencing. The fungal associations in seeds were found in the majority of corresponding seedlings, suggesting that fungi are transmitted vertically. Substrate quality modulated the germination and growth of seedlings, and beneficial endophytic fungi were not particularly crucial for germination but contributed positively to survival and growth. Overall, this study provides the first evidence of an endophytic fungal community in both the seeds and seedlings of two epiphytic bromeliads species that subsequently benefit plant growth. © 2019 Elsevier Ltd and British Mycological Society  
  Address (down) INRA, UMR Ecologie des Forêts de Guyane (AgroParisTech, CIRAD, CNRS, INRA, Université de Guyane, Université des Antilles), Campus Agronomique, BP 316, Kourou cedex, F-97379, France  
  Corporate Author Thesis  
  Publisher Elsevier Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 17545048 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 867  
Permanent link to this record
 

 
Author Baraloto, C.; Morneau, F.; Bonal, D.; Blanc, L.; Ferry, B. openurl 
  Title Seasonal water stress tolerance and habitat associations within four neotropical tree genera Type Journal Article
  Year 2007 Publication Ecology Abbreviated Journal Ecology  
  Volume 88 Issue 2 Pages 478-489  
  Keywords drought tolerance; French Guiana; photosynthetic capacity; phylogenetically independent contrast; relative growth rate; seasonally flooded forest; specific leaf area; torus translation method; tropical forest  
  Abstract We investigated the relationship between habitat association and physiological performance in four congeneric species pairs exhibiting contrasting distributions between seasonally flooded and terra firme habitats in lowland tropical rain forests of French Guiana, including Virola and Iryanthera ( Myristicaceae), Symphonia ( Clusiaceae), and Eperua (Caesalpiniaceae). We analyzed 10-year data sets of mapped and measured saplings ( stems >= 150 cm in height and < 10 cm diameter at breast height [dbh]) and trees ( stems >= 10 cm dbh) across 37.5 ha of permanent plots covering a 300-ha zone, within which seasonally flooded areas ( where the water table never descends below 1 m) have been mapped. Additionally, we tested the response of growth, survival, and leaf functional traits of these species to drought and flood stress in a controlled experiment. We tested for habitat preference using a modi. cation of the torus translation method. Strong contrasting associations of the species pairs of Iryanthera, Virola, and Symphonia were observed at the sapling stage, and these associations strengthened for the tree stage. Neither species of Eperua was significantly associated with flooded habitats at the sapling stage, but E. falcata was significantly and positively associated with flooded forests at the tree stage, and trees of E. grandiflora were found almost exclusively in nonflooded habitats. Differential performance provided limited explanatory support for the observed habitat associations, with only congeners of Iryanthera exhibiting divergent sapling survival and tree growth. Seedlings of species associated with flooded forest tended to have higher photosynthetic capacity than their congeners at field capacity. In addition, they tended to have the largest reductions in leaf gas exchange and growth rate in response to experimental drought stress and the least reductions in response to experimental inundation. The corroboration of habitat association with differences in functional traits and, to a lesser extent, measures of performance provides an explanation for the regional coexistence of these species pairs. We suggest that specialization to seasonally flooded habitats may explain patterns of adaptive radiation in many tropical tree genera and thereby provide a substantial contribution to regional tree diversity.  
  Address (down) INRA, UMR Ecol Forets Guyane, Kourou, French Guiana, Email: baraloto@botany.ufl.edu  
  Corporate Author Thesis  
  Publisher ECOLOGICAL SOC AMER Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0012-9658 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000245668400021 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 165  
Permanent link to this record
 

 
Author Jaouen, G.; Almeras, T.; Coutand, C.; Fournier, M. openurl 
  Title How to determine sapling buckling risk with only a few measurements Type Journal Article
  Year 2007 Publication American Journal of Botany Abbreviated Journal Am. J. Bot.  
  Volume 94 Issue 10 Pages 1583-1593  
  Keywords biomechanics; critical buckling height; French Guiana; risk factor; sapling; stem form; tropical rain forest; trunk volume  
  Abstract Tree buckling risk (actual height/critical buckling height) is an important biomechanical trait of plant growth strategies, and one that contributes to species coexistence. To estimate the diversity of this trait among wide samples, a method that minimizes damage to the plants is necessary. On the basis of the rarely used, complete version of Greenhill's model (1881, Proceedings of the Cambridge Philosophical Society 4(2): 65-73), we precisely measured all the necessary parameters on a sample of 236 saplings of 16 species. Then, using sensitivity (variance) analysis, regressions between successive models for risk factors and species ranks and the use of these models on samples of self- and nonself-supporting saplings, we tested different degrees of simplification up to the most simple and widely used formula that assumes that the tree is a cylindrical homogeneous pole. The size factor had the greatest effect on buckling risk, followed by the form factor and the modulus of elasticity of the wood. Therefore, estimates of buckling risk must consider not only the wood properties but especially the form factor. Finally, we proposed a simple but accurate method of assessing tree buckling risk that is applicable to a wide range of samples and that requires mostly nondestructive measurements.  
  Address (down) INRA, UMR Ecol Forets Guyane, Kourou 97379, French Guiana, Email: jaouen-g@kourou.cirad.fr  
  Corporate Author Thesis  
  Publisher BOTANICAL SOC AMER INC Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-9122 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000251466600001 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 148  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: