toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Aubry-Kientz, M.; Rossi, V.; Cornu, G.; Wagner, F.; Herault, B. pdf  url
doi  openurl
  Title Temperature rising would slow down tropical forest dynamic in the Guiana Shield Type Journal Article
  Year 2019 Publication Scientific Reports Abbreviated Journal Sci. Rep.  
  Volume 9 Issue Pages 10235  
  Keywords article; biomass; climate change; controlled study; diagnostic test accuracy study; driver; human; joint; mortality rate; precipitation; prediction; sensitivity analysis; simulation; statistics; tree growth; tropical rain forest; water stress  
  Abstract Increasing evidence shows that the functioning of the tropical forest biome is intimately related to the climate variability with some variables such as annual precipitation, temperature or seasonal water stress identified as key drivers of ecosystem dynamics. How tropical tree communities will respond to the future climate change is hard to predict primarily because several demographic processes act together to shape the forest ecosystem general behavior. To overcome this limitation, we used a joint individual-based model to simulate, over the next century, a tropical forest community experiencing the climate change expected in the Guiana Shield. The model is climate dependent: temperature, precipitation and water stress are used as predictors of the joint growth and mortality rates. We ran simulations for the next century using predictions of the IPCC 5AR, building three different climate scenarios (optimistic RCP2.6, intermediate, pessimistic RCP8.5) and a control (current climate). The basal area, above-ground fresh biomass, quadratic diameter, tree growth and mortality rates were then computed as summary statistics to characterize the resulting forest ecosystem. Whatever the scenario, all ecosystem process and structure variables exhibited decreasing values as compared to the control. A sensitivity analysis identified the temperature as the strongest climate driver of this behavior, highlighting a possible temperature-driven drop of 40% in average forest growth. This conclusion is alarming, as temperature rises have been consensually predicted by all climate scenarios of the IPCC 5AR. Our study highlights the potential slow-down danger that tropical forests will face in the Guiana Shield during the next century. © 2019, The Author(s).  
  Address (down) Institut National Polytechnique Félix Houphouët-Boigny (INP-HB), Yamoussoukro, Cote d'Ivoire  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20452322 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 878  
Permanent link to this record
 

 
Author Caron, H.; Molino, J.-F.; Sabatier, D.; Léger, P.; Chaumeil, P.; Scotti-Saintagne, C.; Frigério, J.-M.; Scotti, I.; Franc, A.; Petit, R.J. pdf  url
doi  openurl
  Title Chloroplast DNA variation in a hyperdiverse tropical tree community Type Journal Article
  Year 2019 Publication Ecology and Evolution Abbreviated Journal Ecology and Evolution  
  Volume 9 Issue 8 Pages 4897-4905  
  Keywords chloroplast DNA; DNA barcoding; genetic diversity; hybridization; incomplete lineage sorting; introgression; species diversity; tropical trees  
  Abstract We investigate chloroplast DNA variation in a hyperdiverse community of tropical rainforest trees in French Guiana, focusing on patterns of intraspecific and interspecific variation. We test whether a species genetic diversity is higher when it has congeners in the community with which it can exchange genes and if shared haplotypes are more frequent in genetically diverse species, as expected in the presence of introgression. We sampled a total of 1,681 individual trees from 472 species corresponding to 198 genera and sequenced them at a noncoding chloroplast DNA fragment. Polymorphism was more frequent in species that have congeneric species in the study site than in those without congeners (30% vs. 12%). Moreover, more chloroplast haplotypes were shared with congeners in polymorphic species than in monomorphic ones (44% vs. 28%). Despite large heterogeneities caused by genus-specific behaviors in patterns of hybridization, these results suggest that the higher polymorphism in the presence of congeners is caused by local introgression rather than by incomplete lineage sorting. Our findings suggest that introgression has the potential to drive intraspecific genetic diversity in species-rich tropical forests.  
  Address (down) INRA, UR629 Ecologie des Forêts Méditerranéennes, URFM, Avignon, France  
  Corporate Author Thesis  
  Publisher John Wiley and Sons Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20457758 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 870  
Permanent link to this record
 

 
Author Ciminera, M.; Auger-Rozenberg, M.-A.; Caron, H.; Herrera, M.; Scotti-Saintagne, C.; Scotti, I.; Tysklind, N.; Roques, A. url  doi
openurl 
  Title Genetic Variation and Differentiation of Hylesia metabus (Lepidoptera: Saturniidae): Moths of Public Health Importance in French Guiana and in Venezuela Type Journal Article
  Year 2019 Publication Journal of medical entomology Abbreviated Journal J. Med. Entomol.  
  Volume 56 Issue 1 Pages 137-148  
  Keywords  
  Abstract Hylesia moths impact human health in South America, inducing epidemic outbreaks of lepidopterism, a puriginous dermatitis caused by the urticating properties of females' abdominal setae. The classification of the Hylesia genus is complex, owing to its high diversity in Amazonia, high intraspecific morphological variance, and lack of interspecific diagnostic traits which may hide cryptic species. Outbreaks of Hylesia metabus have been considered responsible for the intense outbreaks of lepidopterism in Venezuela and French Guiana since the C20, however, little is known about genetic variability throughout the species range, which is instrumental for establishing control strategies on H. metabus. Seven microsatellites and mitochondrial gene markers were analyzed from Hylesia moths collected from two major lepidopterism outbreak South American regions. The mitochondrial gene sequences contained significant genetic variation, revealing a single, widespread, polymorphic species with distinct clusters, possibly corresponding to populations evolving in isolation. The microsatellite markers validated the mitochondrial results, and suggest the presence of three populations: one in Venezuela, and two in French Guiana. All moths sampled during outbreak events in French Guiana were assigned to a single coastal population. The causes and implications of this finding require further research.  
  Address (down) INRA, Unité de Recherche Ecologie des forêts méditerranéennes, Avignon, UR629, France  
  Corporate Author Thesis  
  Publisher NLM (Medline) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 19382928 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 1 February 2019 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 857  
Permanent link to this record
 

 
Author Leroy, C.; Maes, A.Q.; Louisanna, E.; Séjalon-Delmas, N. url  doi
openurl 
  Title How significant are endophytic fungi in bromeliad seeds and seedlings? Effects on germination, survival and performance of two epiphytic plant species Type Journal Article
  Year 2019 Publication Fungal Ecology Abbreviated Journal Fungal Ecol.  
  Volume 39 Issue Pages 296-306  
  Keywords Aechmea; Bromeliads; Endophytic fungi; Fusarium spp.; Germination; Survival; Trichoderma spp.; Vertical transmission  
  Abstract In bromeliads, nothing is known about the associations fungi form with seeds and seedling roots. We investigated whether fungal associations occur in the seeds and seedling roots of two epiphytic Aechmea species, and we explored whether substrate and fungal associations contribute to seed germination, and seedling survival and performance after the first month of growth. We found a total of 21 genera and 77 species of endophytic fungi in the seeds and seedlings for both Aechmea species by Illumina MiSeq sequencing. The fungal associations in seeds were found in the majority of corresponding seedlings, suggesting that fungi are transmitted vertically. Substrate quality modulated the germination and growth of seedlings, and beneficial endophytic fungi were not particularly crucial for germination but contributed positively to survival and growth. Overall, this study provides the first evidence of an endophytic fungal community in both the seeds and seedlings of two epiphytic bromeliads species that subsequently benefit plant growth. © 2019 Elsevier Ltd and British Mycological Society  
  Address (down) INRA, UMR Ecologie des Forêts de Guyane (AgroParisTech, CIRAD, CNRS, INRA, Université de Guyane, Université des Antilles), Campus Agronomique, BP 316, Kourou cedex, F-97379, France  
  Corporate Author Thesis  
  Publisher Elsevier Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 17545048 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 867  
Permanent link to this record
 

 
Author Leroy, C.; Gril, E.; Si Ouali, L.; Coste, S.; Gérard, B.; Maillard, P.; Mercier, H.; Stahl, C. url  doi
openurl 
  Title Water and nutrient uptake capacity of leaf-absorbing trichomes vs. roots in epiphytic tank bromeliads Type Journal Article
  Year 2019 Publication Environmental and Experimental Botany Abbreviated Journal Environ. Exp. Bot.  
  Volume 163 Issue Pages 112-123  
  Keywords 15 N labelling; Carbon metabolism; Nutrient uptake; Plant performance; Tank bromeliad; Water status; Aechmea  
  Abstract The water and nutrient uptake mechanisms used by vascular epiphytes have been the subject of a few studies. While leaf absorbing trichomes (LATs) are the main organ involved in resource uptake by bromeliads, little attention has been paid to the absorbing role of epiphytic bromeliad roots. This study investigates the water and nutrient uptake capacity of LATs vs. roots in two epiphytic tank bromeliads Aechmea aquilega and Lutheria splendens. The tank and/or the roots of bromeliads were watered, or not watered at all, in different treatments. We show that LATs and roots have different functions in resource uptake in the two species, which we mainly attributed to dissimilarities in carbon acquisition and growth traits (e.g., photosynthesis, relative growth rate, non-structural carbohydrates, malate), to water relation traits (e.g., water and osmotic potentials, relative water content, hydrenchyma thickness) and nutrient uptake (e.g., 15 N-labelling). While the roots of A. aquilega did contribute to water and nutrient uptake, the roots of L. splendens were less important than the role played by the LATs in resource uptake. We also provide evidenced for a synergistic effect of combined watering of tank and root in the Bromelioideae species. These results call for a more complex interpretation of LATs vs. roots in resource uptake in bromeliads. © 2019 Elsevier B.V.  
  Address (down) INRA, UMR EcoFoG, CNRS, CIRAD, AgroParisTech, Université des Antilles, Université de Guyane, Kourou, 97310, France  
  Corporate Author Thesis  
  Publisher Elsevier B.V. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00988472 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 871  
Permanent link to this record
 

 
Author Denis, T.; Richard-Hansen, C.; Brunaux, O.; Guitet, S.; Hérault, B. pdf  url
doi  openurl
  Title Birds of a feather flock together: Functionally similar vertebrates positively co-occur in Guianan forests Type Journal Article
  Year 2019 Publication Ecosphere Abbreviated Journal Ecosphere  
  Volume 10 Issue 3 Pages e02566  
  Keywords activity matching; birds; Guiana Shield; information exchange; mammals; mixed-species associations; mutualism; terra firme rainforests  
  Abstract Medium- and large-sized vertebrates play a key role in shaping overall forest functioning. Despite this, vertebrate interactions, from competition to mutualism, remain poorly studied, even though these interactions should be taken into account in our conservation and management strategies. Thus, we tackled the question of vertebrate co-occurrence in tropical rainforests: Are (negative or positive) co-occurrences dependent on forest structure and composition? and Are these co-occurrences linked to functional species similarity? We recorded the occurrence of 21 medium- and large-sized vertebrates in 19 French Guianan locations in which a large set of forest structure and composition descriptors were collected. We used a probabilistic model to look for co-occurrences at different spatial scales, and species pairwise co-occurrences were then compared to those generated solely on the basis of forest structure and composition. We then quantified the co-occurrence strength between pairwise species dyads and determined whether they relied on species functional similarity, controlling for the environmental effects. We found that positive co-occurrences vastly outnumbered negative co-occurrences, were only partly shaped by the local environment, and were closely linked to species functional similarity. Thus, groups of species sharing similar functional traits are more prone to co-occur, highlighting the key role of functional redundancy in structuring species assemblages. We discuss how positive interactions could generate the predominance of positive co-occurrences in oligotrophic terra firme (unflooded) forests when resources are scarce and dispersed in dry season. Finally, we identified functional groups based on co-occurrence strength and suggested that frugivory/granivory and body size are of primary importance in species interactions in Neotropical vertebrate communities. © 2019 The Authors.  
  Address (down) INPHB, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro, Cote d'Ivoire  
  Corporate Author Thesis  
  Publisher Wiley-Blackwell Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 21508925 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 16 March 2020; Correspondence Address: Denis, T.; Office National de la Chasse et de la Faune Sauvage, UMR EcoFoG (AgroParisTech, Cirad, CNRS, INRA, Université des Antilles, Université de Guyane)France; email: thomas.denis@ecofog.gf Approved no  
  Call Number EcoFoG @ webmaster @ Serial 924  
Permanent link to this record
 

 
Author Cantera, I.; Cilleros, K.; Valentini, A.; Cerdan, A.; Dejean, T.; Iribar, A.; Taberlet, P.; Vigouroux, R.; Brosse, S. pdf  url
doi  openurl
  Title Optimizing environmental DNA sampling effort for fish inventories in tropical streams and rivers Type Journal Article
  Year 2019 Publication Scientific Reports Abbreviated Journal Sci. Rep.  
  Volume 9 Issue Pages 3085  
  Keywords  
  Abstract Environmental DNA (eDNA) metabarcoding is a promising tool to estimate aquatic biodiversity. It is based on the capture of DNA from a water sample. The sampled water volume, a crucial aspect for efficient species detection, has been empirically variable (ranging from few centiliters to tens of liters). This results in a high variability of sampling effort across studies, making comparisons difficult and raising uncertainties about the completeness of eDNA inventories. Our aim was to determine the sampling effort (filtered water volume) needed to get optimal inventories of fish assemblages in species-rich tropical streams and rivers using eDNA. Ten DNA replicates were collected in six Guianese sites (3 streams and 3 rivers), resulting in sampling efforts ranging from 17 to 340 liters of water. We show that sampling 34 liters of water detected more than 64% of the expected fish fauna and permitted to distinguish the fauna between sites and between ecosystem types (stream versus rivers). Above 68 liters, the number of detected species per site increased slightly, with a detection rate higher than 71%. Increasing sampling effort up to 340 liters provided little additional information, testifying that filtering 34 to 68 liters is sufficient to inventory most of the fauna in highly diverse tropical aquatic ecosystems. © 2019, The Author(s).  
  Address (down) HYDRECO, Laboratoire Environnement de Petit Saut, B.P 823, Kourou Cedex, F-97388, French Guiana  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20452322 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 865  
Permanent link to this record
 

 
Author Longo, M.; Knox, R.G.; Levine, N.M.; Swann, A.L.S.; Medvigy, D.M.; Dietze, M.C.; Kim, Y.; Zhang, K.; Bonal, D.; Burban, B.; Camargo, P.B.; Hayek, M.N.; Saleska, S.R.; Da Silva, R.; Bras, R.L.; Wofsy, S.C.; Moorcroft, P.R. pdf  url
doi  openurl
  Title The biophysics, ecology, and biogeochemistry of functionally diverse, vertically and horizontally heterogeneous ecosystems: The Ecosystem Demography model, version 2.2-Part 2: Model evaluation for tropical South America Type Journal Article
  Year 2019 Publication Geoscientific Model Development Abbreviated Journal Geoscientific Model Dev.  
  Volume 12 Issue 10 Pages 4347-4374  
  Keywords  
  Abstract The Ecosystem Demography model version 2.2 (ED-2.2) is a terrestrial biosphere model that simulates the biophysical, ecological, and biogeochemical dynamics of vertically and horizontally heterogeneous terrestrial ecosystems. In a companion paper (Longo et al., 2019a), we described how the model solves the energy, water, and carbon cycles, and verified the high degree of conservation of these properties in long-term simulations that include long-term (multi-decadal) vegetation dynamics. Here, we present a detailed assessment of the model's ability to represent multiple processes associated with the biophysical and biogeochemical cycles in Amazon forests. We use multiple measurements from eddy covariance towers, forest inventory plots, and regional remote-sensing products to assess the model's ability to represent biophysical, physiological, and ecological processes at multiple timescales, ranging from subdaily to century long. The ED-2.2 model accurately describes the vertical distribution of light, water fluxes, and the storage of water, energy, and carbon in the canopy air space, the regional distribution of biomass in tropical South America, and the variability of biomass as a function of environmental drivers. In addition, ED-2.2 qualitatively captures several emergent properties of the ecosystem found in observations, specifically observed relationships between aboveground biomass, mortality rates, and wood density; however, the slopes of these relationships were not accurately captured. We also identified several limitations, including the model's tendency to overestimate the magnitude and seasonality of heterotrophic respiration and to overestimate growth rates in a nutrient-poor tropical site. The evaluation presented here highlights the potential of incorporating structural and functional heterogeneity within biomes in Earth system models (ESMs) and to realistically represent their impacts on energy, water, and carbon cycles. We also identify several priorities for further model development.  
  Address (down) Georgia Institute of Technology, Atlanta, GA, United States  
  Corporate Author Thesis  
  Publisher Copernicus GmbH Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1991959x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Cited By :1; Export Date: 27 October 2019; Correspondence Address: Longo, M.; Harvard UniversityUnited States; email: mdplongo@gmail.com Approved no  
  Call Number EcoFoG @ webmaster @ Serial 890  
Permanent link to this record
 

 
Author Schepaschenko, D.; Chave, J.; Phillips, O.L.; Lewis, S.L.; Davies, S.J.; Réjou-Méchain, M.; Sist, P.; Scipal, K.; Perger, C.; Herault, B.; Labrière, N.; Hofhansl, F.; Affum-Baffoe, K.; Aleinikov, A.; Alonso, A.; Amani, C.; Araujo-Murakami, A.; Armston, J.; Arroyo, L.; Ascarrunz, N.; Azevedo, C.; Baker, T.; Bałazy, R.; Bedeau, C.; Berry, N.; Bilous, A.M.; Bilous, S.Y.; Bissiengou, P.; Blanc, L.; Bobkova, K.S.; Braslavskaya, T.; Brienen, R.; Burslem, D.F.R.P.; Condit, R.; Cuni-Sanchez, A.; Danilina, D.; Del Castillo Torres, D.; Derroire, G.; Descroix, L.; Sotta, E.D.; d'Oliveira, M.V.N.; Dresel, C.; Erwin, T.; Evdokimenko, M.D.; Falck, J.; Feldpausch, T.R.; Foli, E.G.; Foster, R.; Fritz, S.; Garcia-Abril, A.D.; Gornov, A.; Gornova, M.; Gothard-Bassébé, E.; Gourlet-Fleury, S.; Guedes, M.; Hamer, K.C.; Susanty, F.H.; Higuchi, N.; Coronado, E.N.H.; Hubau, W.; Hubbell, S.; Ilstedt, U.; Ivanov, V.V.; Kanashiro, M.; Karlsson, A.; Karminov, V.N.; Killeen, T.; Koffi, J.-C.K.; Konovalova, M.; Kraxner, F.; Krejza, J.; Krisnawati, H.; Krivobokov, L.V.; Kuznetsov, M.A.; Lakyda, I.; Lakyda, P.I.; Licona, J.C.; Lucas, R.M.; Lukina, N.; Lussetti, D.; Malhi, Y.; Manzanera, J.A.; Marimon, B.; Junior, B.H.M.; Martinez, R.V.; Martynenko, O.V.; Matsala, M.; Matyashuk, R.K.; Mazzei, L.; Memiaghe, H.; Mendoza, C.; Mendoza, A.M.; Moroziuk, O.V.; Mukhortova, L.; Musa, S.; Nazimova, D.I.; Okuda, T.; Oliveira, L.C.; Ontikov, P.V.; Osipov, A.F.; Pietsch, S.; Playfair, M.; Poulsen, J.; Radchenko, V.G.; Rodney, K.; Rozak, A.H.; Ruschel, A.; Rutishauser, E.; See, L.; Shchepashchenko, M.; Shevchenko, N.; Shvidenko, A.; Silveira, M.; Singh, J.; Sonké, B.; Souza, C.; Stereńczak, K.; Stonozhenko, L.; Sullivan, M.J.P.; Szatniewska, J.; Taedoumg, H.; Ter Steege, H.; Tikhonova, E.; Toledo, M.; Trefilova, O.V.; Valbuena, R.; Gamarra, L.V.; Vasiliev, S.; Vedrova, E.F.; Verhovets, S.V.; Vidal, E.; Vladimirova, N.A.; Vleminckx, J.; Vos, V.A.; Vozmitel, F.K.; Wanek, W.; West, T.A.P.; Woell, H.; Woods, J.T.; Wortel, V.; Yamada, T.; Nur Hajar, Z.S.; Zo-Bi, I.C. pdf  url
doi  openurl
  Title The Forest Observation System, building a global reference dataset for remote sensing of forest biomass Type Journal Article
  Year 2019 Publication Scientific data Abbreviated Journal  
  Volume 6 Issue 198 Pages  
  Keywords  
  Abstract Forest biomass is an essential indicator for monitoring the Earth's ecosystems and climate. It is a critical input to greenhouse gas accounting, estimation of carbon losses and forest degradation, assessment of renewable energy potential, and for developing climate change mitigation policies such as REDD+, among others. Wall-to-wall mapping of aboveground biomass (AGB) is now possible with satellite remote sensing (RS). However, RS methods require extant, up-to-date, reliable, representative and comparable in situ data for calibration and validation. Here, we present the Forest Observation System (FOS) initiative, an international cooperation to establish and maintain a global in situ forest biomass database. AGB and canopy height estimates with their associated uncertainties are derived at a 0.25 ha scale from field measurements made in permanent research plots across the world's forests. All plot estimates are geolocated and have a size that allows for direct comparison with many RS measurements. The FOS offers the potential to improve the accuracy of RS-based biomass products while developing new synergies between the RS and ground-based ecosystem research communities.  
  Address (down) FRIM Forest Research Institute of Malaysia, 52109 Kepong, Selangor, Kuala Lumpur, Malaysia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 21 October 2019 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 889  
Permanent link to this record
 

 
Author Steidinger, B.S.; Crowther, T.W.; Liang, J.; Van Nuland, M.E.; Werner, G.D.A.; Reich, P.B.; Nabuurs, G.; de-Miguel, S.; Zhou, M.; Picard, N.; Herault, B.; Zhao, X.; Zhang, C.; Routh, D.; Peay, K.G.; Abegg, M.; Adou Yao, C.Y.; Alberti, G.; Almeyda Zambrano, A.; Alvarez-Davila, E.; Alvarez-Loayza, P.; Alves, L.F.; Ammer, C.; Antón-Fernández, C.; Araujo-Murakami, A.; Arroyo, L.; Avitabile, V.; Aymard, G.; Baker, T.; Bałazy, R.; Banki, O.; Barroso, J.; Bastian, M.; Bastin, J.-F.; Birigazzi, L.; Birnbaum, P.; Bitariho, R.; Boeckx, P.; Bongers, F.; Bouriaud, O.; Brancalion, P.H.S.; Brandl, S.; Brearley, F.Q.; Brienen, R.; Broadbent, E.; Bruelheide, H.; Bussotti, F.; Cazzolla Gatti, R.; Cesar, R.; Cesljar, G.; Chazdon, R.; Chen, H.Y.H.; Chisholm, C.; Cienciala, E.; Clark, C.J.; Clark, D.; Colletta, G.; Condit, R.; Coomes, D.; Cornejo Valverde, F.; Corral-Rivas, J.J.; Crim, P.; Cumming, J.; Dayanandan, S.; de Gasper, A.L.; Decuyper, M.; Derroire, G.; DeVries, B.; Djordjevic, I.; Iêda, A.; Dourdain, A.; Obiang, N.L.E.; Enquist, B.; Eyre, T.; Fandohan, A.B.; Fayle, T.M.; Feldpausch, T.R.; Finér, L.; Fischer, M.; Fletcher, C.; Fridman, J.; Frizzera, L.; Gamarra, J.G.P.; Gianelle, D.; Glick, H.B.; Harris, D.; Hector, A.; Hemp, A.; Hengeveld, G.; Herbohn, J.; Herold, M.; Hillers, A.; Honorio Coronado, E.N.; Huber, M.; Hui, C.; Cho, H.; Ibanez, T.; Jung, I.; Imai, N.; Jagodzinski, A.M.; Jaroszewicz, B.; Johannsen, V.; Joly, C.A.; Jucker, T.; Karminov, V.; Kartawinata, K.; Kearsley, E.; Kenfack, D.; Kennard, D.; Kepfer-Rojas, S.; Keppel, G.; Khan, M.L.; Killeen, T.; Kim, H.S.; Kitayama, K.; Köhl, M.; Korjus, H.; Kraxner, F.; Laarmann, D.; Lang, M.; Lewis, S.; Lu, H.; Lukina, N.; Maitner, B.; Malhi, Y.; Marcon, E.; Marimon, B.S.; Marimon-Junior, B.H.; Marshall, A.R.; Martin, E.; Martynenko, O.; Meave, J.A.; Melo-Cruz, O.; Mendoza, C.; Merow, C.; Monteagudo Mendoza, A.; Moreno, V.; Mukul, S.A.; Mundhenk, P.; Nava-Miranda, M.G.; Neill, D.; Neldner, V.; Nevenic, R.; Ngugi, M.; Niklaus, P.; Oleksyn, J.; Ontikov, P.; Ortiz-Malavasi, E.; Pan, Y.; Paquette, A.; Parada-Gutierrez, A.; Parfenova, E.; Park, M.; Parren, M.; Parthasarathy, N.; Peri, P.L.; Pfautsch, S.; Phillips, O.; Piedade, M.T.; Piotto, D.; Pitman, N.C.A.; Polo, I.; Poorter, L.; Poulsen, A.D.; Poulsen, J.R.; Pretzsch, H.; Ramirez Arevalo, F.; Restrepo-Correa, Z.; Rodeghiero, M.; Rolim, S.; Roopsind, A.; Rovero, F.; Rutishauser, E.; Saikia, P.; Saner, P.; Schall, P.; Schelhaas, M.-J.; Schepaschenko, D.; Scherer-Lorenzen, M.; Schmid, B.; Schöngart, J.; Searle, E.; Seben, V.; Serra-Diaz, J.M.; Salas-Eljatib, C.; Sheil, D.; Shvidenko, A.; Silva-Espejo, J.; Silveira, M.; Singh, J.; Sist, P.; Slik, F.; Sonké, B.; Souza, A.F.; Stereńczak, K.; Svenning, J.-C.; Svoboda, M.; Targhetta, N.; Tchebakova, N.; Steege, H.; Thomas, R.; Tikhonova, E.; Umunay, P.; Usoltsev, V.; Valladares, F.; van der Plas, F.; Van Do, T.; Vasquez Martinez, R.; Verbeeck, H.; Viana, H.; Vieira, S.; von Gadow, K.; Wang, H.-F.; Watson, J.; Westerlund, B.; Wiser, S.; Wittmann, F.; Wortel, V.; Zagt, R.; Zawila-Niedzwiecki, T.; Zhu, Z.-X.; Zo-Bi, I.C.; GFBI consortium url  doi
openurl 
  Title Climatic controls of decomposition drive the global biogeography of forest-tree symbioses Type Journal Article
  Year 2019 Publication Nature Abbreviated Journal Nature  
  Volume 569 Issue 7756 Pages 404-408  
  Keywords Fungi  
  Abstract The identity of the dominant root-associated microbial symbionts in a forest determines the ability of trees to access limiting nutrients from atmospheric or soil pools 1,2 , sequester carbon 3,4 and withstand the effects of climate change 5,6 . Characterizing the global distribution of these symbioses and identifying the factors that control this distribution are thus integral to understanding the present and future functioning of forest ecosystems. Here we generate a spatially explicit global map of the symbiotic status of forests, using a database of over 1.1 million forest inventory plots that collectively contain over 28,000 tree species. Our analyses indicate that climate variables—in particular, climatically controlled variation in the rate of decomposition—are the primary drivers of the global distribution of major symbioses. We estimate that ectomycorrhizal trees, which represent only 2% of all plant species 7 , constitute approximately 60% of tree stems on Earth. Ectomycorrhizal symbiosis dominates forests in which seasonally cold and dry climates inhibit decomposition, and is the predominant form of symbiosis at high latitudes and elevation. By contrast, arbuscular mycorrhizal trees dominate in aseasonal, warm tropical forests, and occur with ectomycorrhizal trees in temperate biomes in which seasonally warm-and-wet climates enhance decomposition. Continental transitions between forests dominated by ectomycorrhizal or arbuscular mycorrhizal trees occur relatively abruptly along climate-driven decomposition gradients; these transitions are probably caused by positive feedback effects between plants and microorganisms. Symbiotic nitrogen fixers—which are insensitive to climatic controls on decomposition (compared with mycorrhizal fungi)—are most abundant in arid biomes with alkaline soils and high maximum temperatures. The climatically driven global symbiosis gradient that we document provides a spatially explicit quantitative understanding of microbial symbioses at the global scale, and demonstrates the critical role of microbial mutualisms in shaping the distribution of plant species. © 2019, The Author(s), under exclusive licence to Springer Nature Limited.  
  Address (down) Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00280836 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 872  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: