|   | 
Details
   web
Records
Author Pickett, K.M.; Carpenter, J.M.; Dejean, A.
Title “Basal” but not primitive: the nest of Apoica arborea de Saussure, 1854 (Insecta, Hymenoptera, Vespidae, Polistinae) Type Journal Article
Year 2009 Publication Zoosystema Abbreviated Journal Zoosystema
Volume 31 Issue 4 Pages 945-948
Keywords Insecta; Hymenoptera; Vespidae; Polistinae; Apoica; social wasps; nest architecture; mosaic evolution
Abstract (up) The first nest of Apoica arborea ever collected is reported. Characteristics of the unusual nest design are discussed relative to other members of the genus Apoica and other epiponine genera. The characteristics of its nest architecture are a mosaic of primitive and derived features for the Polistinae, and thus the nest design is not properly interpreted as the primitive condition from which other swarm-founding wasp nest designs are derived. The frequent conflation of “basal” and primitive is discussed.
Address [Pickett, Kurt M.] Univ Vermont, Dept Biol, Burlington, VT 05401 USA, Email: kurt.pickett@uvm.edu
Corporate Author Thesis
Publisher PUBLICATIONS SCIENTIFIQUES DU MUSEUM, PARIS Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1280-9551 ISBN Medium
Area Expedition Conference
Notes ISI:000273733000008 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 188
Permanent link to this record
 

 
Author Wagner, F.; Rossi, V.; Stahl, C.; Bonal, D.; Herault, B.
Title Asynchronism in leaf and wood production in tropical forests: A study combining satellite and ground-based measurements Type Journal Article
Year 2013 Publication Biogeosciences Abbreviated Journal Biogeosciences
Volume 10 Issue 11 Pages 7307-7321
Keywords
Abstract (up) The fixation of carbon in tropical forests mainly occurs through the production of wood and leaves, both being the principal components of net primary production. Currently field and satellite observations are independently used to describe the forest carbon cycle, but the link between satellite-derived forest phenology and field-derived forest productivity remains opaque. We used a unique combination of a MODIS enhanced vegetation index (EVI) dataset, a wood production model based on climate data and direct litterfall observations at an intra-annual timescale in order to question the synchronism of leaf and wood production in tropical forests. Even though leaf and wood biomass fluxes had the same range (respectively 2.4 ± 1.4 and 2.2 ± 0.4 Mg C ha-1 yr-1), they occurred separately in time. EVI increased with leaf renewal at the beginning of the dry season, when solar irradiance was at its maximum. At this time, wood production stopped. At the onset of the rainy season, when new leaves were fully mature and water available again, wood production quickly increased to reach its maximum in less than a month, reflecting a change in carbon allocation from short-lived pools (leaves) to long-lived pools (wood). The time lag between peaks of EVI and wood production (109 days) revealed a substantial decoupling between the leaf renewal assumed to be driven by irradiance and the water-driven wood production. Our work is a first attempt to link EVI data, wood production and leaf phenology at a seasonal timescale in a tropical evergreen rainforest and pave the way to develop more sophisticated global carbon cycle models in tropical forests. © 2013 Author(s).
Address INRA, UMR EEF 1137, 54280 Champenoux, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 17264170 (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 2 December 2013; Source: Scopus; doi: 10.5194/bg-10-7307-2013; Language of Original Document: English; Correspondence Address: Wagner, F.; CIRAD, UMR Ecologie des Forêts de Guyane, Kourou, French Guiana, French Guiana; email: wagner.h.fabien@gmail.com; References: Allen, R., Smith, M., Pereira, L., Perrier, A., An update for the calculation of reference evapotranspiration (1994) Journal of the ICID, 43, pp. 35-92; Anderson, L.O., Biome-scale forest properties in Amazonia based on field and satellite observations (2012) Remote Sens., 4, pp. 1245-1271. , doi:10.3390/rs4051245; Arias, P.A., Fu, R., Hoyos, C.D., Li, W., Zhou, L., Changes in cloudiness over the Amazon rainforests during the last two decades: Diagnostic and potential causes (2011) Clim. Dynam., 37, pp. 1151-1164. , doi:10.1007/s00382-010-0903-2; Asner, G., Townsend, A., Braswell, B., Satellite observation of El Nino effects on Amazon forest phenology and productivity (2000) Geophys. Res. Lett., 27, pp. 981-984. , doi:10.1029/1999GL011113; Asner, G.P., Nepstad, D., Cardinot, G., Ray, D., Drought stress and carbon uptake in an Amazon forest measured with spaceborne imaging spectroscopy (2004) Proceedings of the National Academy of Sciences of the United States of America, 101 (16), pp. 6039-6044. , DOI 10.1073/pnas.0400168101; Baccini, A., Goetz, S.J., Walker, W.S., Laporte, N.T., Sun, M., Sulla-Menashe, D., Hackler, J., Houghton, R.A., Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps (2012) Nat. Clim. Change, 2, pp. 182-185. , doi:10.1038/NCLIMATE1354; Baker, T.R., Burslem, D.F.R.P., Swaine, M.D., Associations between tree growth, soil fertility and water availability at local and regional scales in Ghanaian tropical rain forest (2003) Journal of Tropical Ecology, 19 (2), pp. 109-125. , DOI 10.1017/S0266467403003146; Baraloto, C., Paine, C.E.T., Poorter, L., Beauchene, J., Bonal, D., Domenach, A.-M., Herault, B., Chave, J., Decoupled leaf and stem economics in rain forest trees (2010) Ecol. Lett., 13, pp. 1338-1347. , doi:10.1111/j.1461- 0248.2010.01517.x; Barnett, A., Dobson, A., (2010) Analysing Seasonal Health Data, , Springer; Bonal, D., Bosc, A., Ponton, S., Goret, J.-Y., Burban, B.T., Gross, P., Bonnefond, J.-M., Granier, A., Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana (2008) Global Change Biology, 14 (8), pp. 1917-1933. , DOI 10.1111/j.1365-2486.2008.01610.x; Bradley, A.V., Gerard, F.F., Barbier, N., Weedon, G.P., Anderson, L.O., Huntingford, C., Aragao, L.E.O.C., Arai, E., Relationships between phenology, radiation and precipitation in the Amazon region (2011) Glob. Change Biol., 17, pp. 2245-2260. , doi:10.1111/j.1365-2486.2011.02405.x; Brando, P.M., Goetz, S.J., Baccini, A., Nepstad, D.C., Beck, P.S.A., Christman, M.C., Seasonal and interannual variability of climate and vegetation indices across the Amazon (2010) P. Natl. Acad. Sci. USA, 107, pp. 14685-14690. , doi:10.1073/pnas.0908741107; Caldararu, S., Palmer, P.I., Purves, D.W., Inferring Amazon leaf demography from satellite observations of leaf area index (2012) Biogeosciences, 9, pp. 1389-1404. , doi:10.5194/bg-9-1389-2012; Chambers, J.Q., Silver, W.L., Some aspects of ecophysiological and biogeochemical responses of tropical forests to atmospheric change (2004) Philosophical Transactions of the Royal Society B: Biological Sciences, 359 (1443), pp. 463-476. , DOI 10.1098/rstb.2003.1424; Chave, J., Navarrete, D., Almeida, S., Álvarez, E., Aragão, L.E.O.C., Bonal, D., Châtelet, P., Malhi, Y., Regional and seasonal patterns of litterfall in tropical South America (2010) Biogeosciences, 7, pp. 43-55. , doi:10.5194/bg-7-43-2010; Clark, D.B., Clark, D.A., Oberbauer, S.F., Annual wood production in a tropical rain forest in NE Costa Rica linked to climatic variation but not to increasing CO2 (2010) Glob. Change Biol., 16, pp. 747-759. , doi:10.1111/j.1365-2486.2009.02004.x; Delegido, J., Vergara, C., Verrelst, J., Gandia, S., Moreno, J., Remote estimation of crop chlorophyll content by means of highspectral- resolution reflectance techniques (2011) Agron. J., 103, pp. 1834-1842. , doi:10.2134/agronj2011.0101; De Weirdt, M., Verbeeck, H., Maignan, F., Peylin, P., Poulter, B., Bonal, D., Ciais, P., Steppe, K., Seasonal leaf dynamics for tropical evergreen forests in a process-based global ecosystem model (2012) Geosci. Model Dev., 5, pp. 1091-1108. , doi:10.5194/gmd-5-1091-2012; Doughty, C.E., An in situ leaf and branch warming experiment in the amazon (2011) Biotropica, 43, pp. 658-665. , doi:10.1111/j.1744- 7429.2010.00746.x; Doughty, C.E., Goulden, M.L., Are tropical forests near a high temperature threshold? (2008) J. Geophys. Res.-Biogeo., 113, pp. G00B07. , doi:10.1029/2007JG000632; Ekstrom, M., Jones, P.D., Fowler, H.J., Lenderink, G., Buishand, T.A., Conway, D., Regional climate model data used within the SWURVE project projected changes in seasonal patterns and estimation of PET (2007) Hydrology and Earth System Sciences, 11 (3), pp. 1069-1083; Enquist, B.J., Leffler, A.J., Long-term tree ring chronologies from sympatric tropical dry-forest trees: Individualistic responses to climatic variation (2001) Journal of Tropical Ecology, 17 (1), pp. 41-60. , DOI 10.1017/S0266467401001031; (2008) ESA SP-1313/4 Candidate Earth Explorer Core Missions – Reports for Assessment: FLEX – FLuorescence Explorer, , http://esamultimedia.esa.int/docs/SP1313-4_FLEX.pdf, European Space Agency, Tech. rep., published by ESA Communication Production Office, Noordwijk, The Netherlands; Fichtler, E., Clark, D.A., Worbes, M., Age and Long-term Growth of Trees in an Old-growth Tropical Rain Forest, Based on Analyses of Tree Rings and 14C (2003) Biotropica, 35 (3), pp. 306-317; Figueira, A., Miller, S., De Sousa, C., Menton, M., Maia, A., Da Rocha, H., Goulden, M., (2011) LBA-ECO CD-04 Dendrometry, Km 83 Tower Site, , http://daac.ornl.gov, Tapajos National Forest, Brazil, Data set, Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA, doi:10.3334/ORNLDAAC/989; Galvao, L.S., Breunig, F.M., Dos Santos, J.R., De Moura, Y.M., View-illumination effects on hyperspectral vegetation indices in the Amazonian tropical forest (2013) Int. J. Appl. Earth Obs., 21, pp. 291-300. , doi:10.1016/j.jag.2012.07.005; Gao, X., Huete, A.R., Ni, W., Miura, T., Optical-biophysical relationships of vegetation spectra without background contamination (2000) Remote Sensing of Environment, 74 (3), pp. 609-620. , DOI 10.1016/S0034-4257(00)00150-4, PII S0034425700001504; Gond, V., Freycon, V., Molino, J.-F., Brunaux, O., Ingrassia, F., Joubert, P., Pekel, J.-F., Sabatier, D., Broad-scale spatial pattern of forest landscape types in the Guiana Shield (2011) Int. J. Appl. Earth Obs., 13, pp. 357-367. , doi:10.1016/j.jag.2011.01.004; Gourlet-Fleury, S., Guehl, J.M., Laroussinie, O., (2004) Ecology and Management of A Neotropical Rainforest – Lessons Drawn from Paracou, A Long-term Experimental Research Site in French Guiana, , Elsevier; Graham, E.A., Mulkey, S.S., Kitajima, K., Phillips, N.G., Wright, S.J., Cloud cover limits net CO2 uptake and growth of a rainforest tree during tropical rainy seasons (2003) Proceedings of the National Academy of Sciences of the United States of America, 100 (2), pp. 572-576. , DOI 10.1073/pnas.0133045100; Grogan, J., Schulze, M., The impact of annual and seasonal rainfall patterns on growth and phenology of emergent tree species in Southeastern Amazonia, Brazil (2012) Biotropica, 44, pp. 331-340. , doi:10.1111/j.1744-7429.2011.00825.x; Harris, P.P., Huntingford, C., Cox, P.M., Amazon Basin climate under global warming: The role of the sea surface temperature (2008) Philosophical Transactions of the Royal Society B: Biological Sciences, 363 (1498), pp. 1753-1759. , DOI 10.1098/rstb.2007.0037, PII M322R63897015H77; Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., Ferreira, L.G., Overview of the radiometric and biophysical performance of the MODIS vegetation indices (2002) Remote Sensing of Environment, 83 (1-2), pp. 195-213. , DOI 10.1016/S0034-4257(02)00096-2, PII S0034425702000962; Huete, A.R., Didan, K., Shimabukuro, Y.E., Ratana, P., Saleska, S.R., Hutyra, L.R., Yang, W.Z., Myneni, R., Amazon rainforests green-up with sunlight in dry season (2006) Geophys. Res. Lett., 33, pp. L06405. , doi:10.1029/2005GL025583; Hutyra, L.R., Munger, J.W., Saleska, S.R., Gottlieb, E., Daube, B.C., Dunn, A.L., Amaral, D.F., Wofsy, S.C., Seasonal controls on the exchange of carbon and water in an Amazonian rain forest (2007) Journal of Geophysical Research G: Biogeosciences, 112 (3), pp. G03008. , DOI 10.1029/2006JG000365; Janzen, D., Wilson, D., The cost of being dormant in the tropics (1974) Biotropica, 6, pp. 260-262; Justice, C.O., Vermote, E., Townshend, J.R.G., Defries, R., Roy, D.P., Hall, D.K., Salomonson, V.V., Barnsley, M.J., The moderate resolution imaging spectroradiometer (MODIS): Land remote sensing for global change research (1998) IEEE Transactions on Geoscience and Remote Sensing, 36 (4), pp. 1228-1249. , PII S0196289298047512; Kozlowski, T., Carbohydrate sources and sinks in woody-plants (1992) Bot. Rev., 58, pp. 107-222. , doi:10.1007/BF02858600; Krepkowski, J., Bräuning, A., Gebrekirstos, A., Strobl, S., Cambial growth dynamics and climatic control of different tree life forms in tropical mountain forest in Ethiopia (2011) Trees, 25, pp. 59-70. , doi:10.1007/s00468-010-0460-7; Lewis, S.L., Malhi, Y., Phillips, O.L., Fingerprinting the impacts of global change on tropical forests (2004) Philosophical Transactions of the Royal Society B: Biological Sciences, 359 (1443), pp. 437-462. , DOI 10.1098/rstb.2003.1432; Lisi, C.S., Tomazello Fo., M., Botosso, P.C., Roig, F.A., Maria, V.R.B., Ferreira-Fedele, L., Voigt, A.R.A., Tree-ring formation, radial increment periodicity, and phenology of tree species from a seasonal semi-deciduous forest in southeast Brazil (2008) IAWA Journal, 29 (2), pp. 189-207; Lloyd, J., Farquhar, G.D., Effects of rising temperatures and [CO2] on the physiology of tropical forest trees (2008) Philosophical Transactions of the Royal Society B: Biological Sciences, 363 (1498), pp. 1811-1817. , DOI 10.1098/rstb.2007.0032, PII C14L2U757H282731; Da Costa Lola, A.C., Galbraith, D., Almeida, S., Tanaka Portela, B.T., Da Costa, M., De Athaydes Silva Jr., J., Braga, A.P., Meir, P., Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest (2010) New Phytol., 187, pp. 579-591. , doi:10.1111/j.1469-8137.2010.03309.x; Loubry, D., Phenology of deciduous trees in a French-Guianan forest (5 degrees latitude North) – Case of a determinism with endogenous and exogenous components (1994) Can. J. Bot., 72, pp. 1843-1857; Malhi, Y., Grace, J., Tropical forests and atmospheric carbon dioxide (2000) Trends in Ecology and Evolution, 15 (8), pp. 332-337. , DOI 10.1016/S0169-5347(00)01906-6, PII S0169534700019066; Malhi, Y., Aragao, L.E.O.C., Galbraith, D., Huntingford, C., Fisher, R., Zelazowski, P., Sitch, S., Meir, P., Exploring the likelihood and mechanism of a climatechange- induced dieback of the Amazon rainforest (2009) P. Natl. Acad. Sci. USA, 106, pp. 20610-20615. , doi:10.1073/pnas.0804619106; Malhi, Y., Doughty, C., Galbraith, D., The allocation of ecosystem net primary productivity in tropical forests (2011) Philos. T. R. Soc. B, 366, pp. 3225-3245. , doi:10.1098/rstb.2011.0062; Meroni, M., Busetto, L., Colombo, R., Guanter, L., Moreno, J., Verhoef, W., Performance of spectral fitting methods for vegetation fluorescence quantification (2010) Remote Sens. Environ., 114, pp. 363-374. , doi:10.1016/j.rse.2009.09.010; Michelot, A., Simard, S., Rathgeber, C., Dufrene, E., Damesin, C., Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and nonstructural carbohydrate dynamics (2012) Tree Physiol., 32, pp. 1033-1045. , doi:10.1093/treephys/tps052; Mitchell, T.D., Jones, P.D., An improved method of constructing a database of monthly climate observations and associated high-resolution grids (2005) International Journal of Climatology, 25 (6), pp. 693-712. , DOI 10.1002/joc.1181; Molto, Q., Rossi, V., Blanc, L., Error propagation in biomass estimation in tropical forests (2013) Meth. Ecol. Evolut., 4, pp. 175-183. , doi:10.1111/j.2041-210x.2012.00266.x; Moura, Y.M., Galvao, L.S., Dos Santos, J.R., Roberts, D.A., Breunig, F.M., Use of MISR/Terra data to study intra- and interannual EVI variations in the dry season of tropical forest (2012) Remote Sens. Environ., 127, pp. 260-270. , doi:10.1016/j.rse.2012.09.013; Myneni, R.B., Hall, F.G., Sellers, P.J., Marshak, A.L., The meaning of spectral vegetation indices (1995) IEEE T. Geosci. Remote, 33, pp. 481-486; Myneni, R.B., Yang, W., Nemani, R.R., Huete, A.R., Dickinson, R.E., Knyazikhin, Y., Didan, K., Salomonson, V.V., Large seasonal swings in leaf area of Amazon rainforests (2007) Proceedings of the National Academy of Sciences of the United States of America, 104 (12), pp. 4820-4823. , DOI 10.1073/pnas.0611338104; Nath, C.D., Dattaraja, H.S., Suresh, H.S., Joshi, N.V., Sukumar, R., Patterns of tree growth in relation to environmental variability in the tropical dry deciduous forest at Mudumalai, southern India (2006) Journal of Biosciences, 31 (5), pp. 651-669. , http://www.ias.ac.in/jbiosci/dec2006/651-669.pdf, DOI 10.1007/BF02708418; Nemani, R.R., Keeling, C.D., Hashimoto, H., Jolly, W.M., Piper, S.C., Tucker, C.J., Myneni, R.B., Running, S.W., Climate-driven increases in global terrestrial net primary production from 1982 to 1999 (2003) Science, 300 (5625), pp. 1560-1563. , DOI 10.1126/science.1082750; Nepstad, D., Moutinho, P., Dias, M., Davidson, E., Cardinot, G., Markewitz, D., Figueiredo, R., Schwalbe, K., The effects of partial throughfall exclusion on canopy processes, aboveground production, and biogeochemistry of an Amazon forest (2002) J. Geophys. Res.-Atmos., 107, p. 8085. , doi:10.1029/2001JD000360; O'Brien, J.J., Oberbauer, S.F., Clark, D.B., Clark, D.A., Phenology and stem diameter increment seasonality in a Costa Rican wet tropical forest (2008) Biotropica, 40 (2), pp. 151-159. , DOI 10.1111/j.1744-7429.2007.00354.x; Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., Hayes, D., A large and persistent carbon sink in the world's forests (2011) Science, 333, pp. 988-993. , doi:10.1126/science.1201609; Pennec, A., Gond, V., Sabatier, D., Tropical forest phenology in French Guiana from MODIS time series (2011) Remote Sens. Lett., 2, pp. 337-345; Phillips, O.L., Aragao, L.E.O.C., Lewis, S.L., Fisher, J.B., Lloyd, J., Lopez-Gonzalez, G., Malhi, Y., Torres-Lezama, A., Drought sensitivity of the Amazon rainforest (2009) Science, 323, pp. 1344-1347. , doi:10.1126/science.1164033; Poorter, L., Kitajima, K., Carbohydrate storage and light requirements of tropical moist and dry forest tree species (2007) Ecology, 88 (4), pp. 1000-1011. , http://www.esajournals.org/pdfserv/i0012-9658-088-04-1000.pdf, DOI 10.1890/06-0984; Rice, A.H., Pyle, E.H., Saleska, S.R., Hutyra, L., Palace, M., Keller, M., De Camargo, P.B., Wofsy, S.C., Carbon balance and vegetation dynamics in an old-growth Amazonian forest (2004) Ecological Applications, 14 (4 SUPPL.), pp. S55-S71; Richardson, A.D., Carbone, M.S., Keenan, T.F., Czimczik, C.I., Hollinger, D.Y., Murakami, P., Schaberg, P.G., Xu, X., Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees (2013) New Phytol., 197, pp. 850-861. , doi:10.1111/nph.12042; Rocha, A.V., Tracking carbon within the trees (2013) New Phytol., 197, pp. 685-686. , doi:10.1111/nph.12095; Rutishauser, E., Wagner, F., Herault, B., Nicolini, E.-A., Blanc, L., Contrasting above-ground biomass balance in a neotropical rain forest (2010) J. Veg. Sci., 21, pp. 672-682. , doi:10.1111/j.1654-1103.2010.01175.x; Rowland, L., Hill, T.C., Stahl, C., Siebicke, L., Burban, B., Zaragoza-Castells, J., Ponton, S., Williams, M., Evidence for strong seasonality in the carbon storage and carbon use efficiency of an Amazonian forest (2013) Glob. Change Biol., , doi:10.1111/gcb.12375; Sabatier, D., Puig, H., Phénologie et saisonnalité de la floraison et de la fructification en forêt dense guyanaise (1986) Memoir. Mus. Natl. Hist. A-Zool., 132, pp. 173-184; Sabatier, D., Grimaldi, M., Prevost, M., Guillaume, J., Godron, M., Dosso, M., Curmi, P., The influence of soil cover organization on the floristic and structural heterogeneity of a Guianan rain forest (1997) Plant Ecol., 131, pp. 81-108; Saleska, S.R., Miller, S.D., Matross, D.M., Goulden, M.L., Wofsy, S.C., Da Rocha, H.R., De Camargo, P.B., Silva, H., Carbon in Amazon Forests: Unexpected Seasonal Fluxes and Disturbance-Induced Losses (2003) Science, 302 (5650), pp. 1554-1557. , DOI 10.1126/science.1091165; Saleska, S.R., Didan, K., Huete, A.R., Da Rocha, H.R., Amazon forests green-up during 2005 drought (2007) Science, 318 (5850), p. 612. , DOI 10.1126/science.1146663; Samanta, A., Ganguly, S., Hashimoto, H., Devadiga, S., Vermote, E., Knyazikhin, Y., Nemani, R.R., Myneni, R.B., Amazon forests did not green-up during the 2005 drought (2010) Geophys. Res. Lett., 37, pp. L05401. , doi:10.1029/2009GL042154; Schongart, J., Piedade, M.T.F., Ludwigshausen, S., Horna, V., Worbes, M., Phenology and stem-growth periodicity of tree species in Amazonian floodplain forests (2002) Journal of Tropical Ecology, 18 (4), pp. 581-597. , DOI 10.1017/S0266467402002389; Solano, R., Didan, K., Jacobson, A., Huete, A., (2010) Terrestrial Biophysics and Remote Sensing Lab – The University of Arizona, MODIS Vegetation Indices (MOD13) C5 User's Guide, Version 1.00; Solomon, S., Qin, D., Manning, M., Marquis, M., Averyt, K., Tignor, M.M.H., Leroy Miller, J., Chen, Z., (2007) Climate Change 2007, the Fourth Assessment Report (AR4), Intergovernmental Panel on Climate Change; Solomon, S., Plattner, G.-K., Knutti, R., Friedlingstein, P., Irreversible climate change due to carbon dioxide emissions (2009) P. Natl. Acad. Sci. USA, 106, pp. 1704-1709. , doi:10.1073/pnas.0812721106; Stahl, C., Burban, B., Bompy, F., Jolin, Z.B., Sermage, J., Bonal, D., Seasonal variation in atmospheric relative humidity contributes to explaining seasonal variation in trunk circumference of tropical rain-forest trees in French Guiana (2010) J. Trop. Ecol., 26, pp. 393-405. , doi:10.1017/S0266467410000155; Stahl, C., Burban, B., Wagner, F., Goret, J.-Y., Bompy, F., Bonal, D., Influence of seasonal variations in soil water availability on gas exchange of tropical canopy trees (2013) Biotropica, 45, pp. 155-164; Tian, H., Melillo, J.M., Kicklighter, D.W., David McGuire, A., Helfrich III, J.V.K., Moore III, B., Vorosmarty, C.J., Effect of interannual climate variability on carbon storage in Amazonian ecosystems (1998) Nature, 396 (6712), pp. 664-667. , DOI 10.1038/25328; Verbeeck, H., Peylin, P., Bacour, C., Bonal, D., Steppe, K., Ciais, P., Seasonal patterns of CO2 fluxes in Amazon forests: Fusion of eddy covariance data and the ORCHIDEE model (2011) J. Geophys. Res.-Biogeo., 116, pp. G02018. , doi:10.1029/2010JG001544; Wagner, F., Hérault, B., Stahl, C., Bonal, D., Rossi, V., Modeling water availability for trees in tropical forests (2010) Agr. Forest Meteorol., pp. 1202-1213. , doi:10.1016/j.agrformet.2011.04.012; Wagner, F., Rutishauser, E., Blanc, L., Herault, B., Effects of plot size and census interval on descriptors of forest structure and dynamics (2010) Biotropica, 42, pp. 664-671; Wagner, F., Rossi, V., Stahl, C., Bonal, D., Herault, B., Water availability is the main climate driver of neotropical tree growth (2012) Plos One, 7, pp. e34074. , doi:10.1371/journal.pone.0034074; Worbes, M., Annual growth rings, rainfall-dependent growth and long-term growth patterns of tropical trees from the Caparo Forest Reserve in Venezuela (1999) Journal of Ecology, 87 (3), pp. 391-403. , DOI 10.1046/j.1365-2745.1999.00361.x; Wright, S., Vanschaik, C., Light and the phenology of tropical trees (1994) Am. Nat., 143, pp. 192-199. , doi:10.1086/285600; Wurth, M.K.R., Pelaez-Riedl, S., Wright, S.J., Korner, C., Non-structural carbohydrate pools in a tropical forest (2005) Oecologia, 143 (1), pp. 11-24. , DOI 10.1007/s00442-004-1773-2; Zalamea, M., Gonzalez, G., Leaffall phenology in a subtropical wet forest in Puerto Rico: From species to community patterns (2008) Biotropica, 40 (3), pp. 295-304. , DOI 10.1111/j.1744-7429.2007.00389.x; Zhang, X., Friedl, M.A., Schaaf, C.B., Strahler, A.H., Hodges, J.C.F., Gao, F., Reed, B.C., Huete, A., Monitoring vegetation phenology using MODIS (2003) Remote Sensing of Environment, 84 (3), pp. 471-475. , DOI 10.1016/S0034-4257(02)00135-9, PII S0034425702001359 Approved no
Call Number EcoFoG @ webmaster @ Serial 512
Permanent link to this record
 

 
Author Barabe, D.; Lacroix, C.; Gibernau, M.
Title Developmental floral morphology of Syngonium in the context of the tribe Caladieae (Araceae) Type Journal Article
Year 2012 Publication Willdenowia – Annals of the Botanic Garden and Botanical Museum Berlin-Dahlem Abbreviated Journal
Volume 42 Issue 2 Pages 297-305
Keywords Aroids; Inflorescence; Phylogeny; Oxalate Crystals; Flower
Abstract (up) The floral development of Syngonium angustatum is analysed in the context of a recently published molecular phylogeny of the Araceae. The initiation of discoid floral primordia occurs acropetally on the surface of the inflorescence. Female flowers, atypical bisexual flowers, sterile male flowers and male flowers are inserted on the same phyllotactic spirals on the spadix. Stamen primordia are initiated simultaneously on the periphery of more or less circular floral primordia. There are four stamens per flower (rarely three). In a synandrium, the fusion of stamens occurs very early during their developmental cycle. In some flowers one or two stamens remain free. The staminodes are also initiated on the periphery of the discoid floral primordium and their number varies from four to six. The growth of the fused staminodes will eventually form a longitudinal cavity in the centre of the mature synandrode. On the synandrodes located near the female zone, one or two staminodes remain free during development. No atypical bisexual flowers were observed on the inflorescence of Syngonium. The presence of a few calcium oxalate crystals was observed on the surface of all types of flowers. All the atypical flowers located at the base of the sterile zone corresponded to sterile male flowers and resulted from a more or less random disorganisation of the typical structure of a synandrode. In the Aroideae, free stamens or staminodes represent a plesiomorphic condition. The association of synandria and synandrodes is present in all early diverging genera of the tribe Caladieae and could represent the ancestral state. It is not clear if free stamens have evolved once or twice in the tribe Caladieae, both scenarios are possible.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 460
Permanent link to this record
 

 
Author Pastorello, G.; Trotta, C.; Canfora, E.; Chu, H.; Christianson, D.; Cheah, Y.-W.; Poindexter, C.; Chen, J.; Elbashandy, A.; Humphrey, M.; Isaac, P.; Polidori, D.; Ribeca, A.; van Ingen, C.; Zhang, L.; Amiro, B.; Ammann, C.; Arain, M.A.; Ardö, J.; Arkebauer, T.; Arndt, S.K.; Arriga, N.; Aubinet, M.; Aurela, M.; Baldocchi, D.; Barr, A.; Beamesderfer, E.; Marchesini, L.B.; Bergeron, O.; Beringer, J.; Bernhofer, C.; Berveiller, D.; Billesbach, D.; Black, T.A.; Blanken, P.D.; Bohrer, G.; Boike, J.; Bolstad, P.V.; Bonal, D.; Bonnefond, J.-M.; Bowling, D.R.; Bracho, R.; Brodeur, J.; Brümmer, C.; Buchmann, N.; Burban, B.; Burns, S.P.; Buysse, P.; Cale, P.; Cavagna, M.; Cellier, P.; Chen, S.; Chini, I.; Christensen, T.R.; Cleverly, J.; Collalti, A.; Consalvo, C.; Cook, B.D.; Cook, D.; Coursolle, C.; Cremonese, E.; Curtis, P.S.; D'Andrea, E.; da Rocha, H.; Dai, X.; Davis, K.J.; De Cinti, B.; de Grandcourt, A.; De Ligne, A.; De Oliveira, R.C.; Delpierre, N.; Desai, A.R.; Di Bella, C.M.; di Tommasi, P.; Dolman, H.; Domingo, F.; Dong, G.; Dore, S.; Duce, P.; Dufrêne, E.; Dunn, A.; Dušek, J.; Eamus, D.; Eichelmann, U.; ElKhidir, H.A.M.; Eugster, W.; Ewenz, C.M.; Ewers, B.; Famulari, D.; Fares, S.; Feigenwinter, I.; Feitz, A.; Fensholt, R.; Filippa, G.; Fischer, M.; Frank, J.; Galvagno, M.; Gharun, M.; Gianelle, D.; Gielen, B.; Gioli, B.; Gitelson, A.; Goded, I.; Goeckede, M.; Goldstein, A.H.; Gough, C.M.; Goulden, M.L.; Graf, A.; Griebel, A.; Gruening, C.; Grünwald, T.; Hammerle, A.; Han, S.; Han, X.; Hansen, B.U.; Hanson, C.; Hatakka, J.; He, Y.; Hehn, M.; Heinesch, B.; Hinko-Najera, N.; Hörtnagl, L.; Hutley, L.; Ibrom, A.; Ikawa, H.; Jackowicz-Korczynski, M.; Janouš, D.; Jans, W.; Jassal, R.; Jiang, S.; Kato, T.; Khomik, M.; Klatt, J.; Knohl, A.; Knox, S.; Kobayashi, H.; Koerber, G.; Kolle, O.; Kosugi, Y.; Kotani, A.; Kowalski, A.; Kruijt, B.; Kurbatova, J.; Kutsch, W.L.; Kwon, H.; Launiainen, S.; Laurila, T.; Law, B.; Leuning, R.; Li, Y.; Liddell, M.; Limousin, J.-M.; Lion, M.; Liska, A.J.; Lohila, A.; López-Ballesteros, A.; López-Blanco, E.; Loubet, B.; Loustau, D.; Lucas-Moffat, A.; Lüers, J.; Ma, S.; Macfarlane, C.; Magliulo, V.; Maier, R.; Mammarella, I.; Manca, G.; Marcolla, B.; Margolis, H.A.; Marras, S.; Massman, W.; Mastepanov, M.; Matamala, R.; Matthes, J.H.; Mazzenga, F.; McCaughey, H.; McHugh, I.; McMillan, A.M.S.; Merbold, L.; Meyer, W.; Meyers, T.; Miller, S.D.; Minerbi, S.; Moderow, U.; Monson, R.K.; Montagnani, L.; Moore, C.E.; Moors, E.; Moreaux, V.; Moureaux, C.; Munger, J.W.; Nakai, T.; Neirynck, J.; Nesic, Z.; Nicolini, G.; Noormets, A.; Northwood, M.; Nosetto, M.; Nouvellon, Y.; Novick, K.; Oechel, W.; Olesen, J.E.; Ourcival, J.-M.; Papuga, S.A.; Parmentier, F.-J.; Paul-Limoges, E.; Pavelka, M.; Peichl, M.; Pendall, E.; Phillips, R.P.; Pilegaard, K.; Pirk, N.; Posse, G.; Powell, T.; Prasse, H.; Prober, S.M.; Rambal, S.; Rannik, Ü.; Raz-Yaseef, N.; Reed, D.; de Dios, V.R.; Restrepo-Coupe, N.; Reverter, B.R.; Roland, M.; Sabbatini, S.; Sachs, T.; Saleska, S.R.; Sánchez-Cañete, E.P.; Sanchez-Mejia, Z.M.; Schmid, H.P.; Schmidt, M.; Schneider, K.; Schrader, F.; Schroder, I.; Scott, R.L.; Sedlák, P.; Serrano-Ortíz, P.; Shao, C.; Shi, P.; Shironya, I.; Siebicke, L.; Šigut, L.; Silberstein, R.; Sirca, C.; Spano, D.; Steinbrecher, R.; Stevens, R.M.; Sturtevant, C.; Suyker, A.; Tagesson, T.; Takanashi, S.; Tang, Y.; Tapper, N.; Thom, J.; Tiedemann, F.; Tomassucci, M.; Tuovinen, J.-P.; Urbanski, S.; Valentini, R.; van der Molen, M.; van Gorsel, E.; van Huissteden, K.; Varlagin, A.; Verfaillie, J.; Vesala, T.; Vincke, C.; Vitale, D.; Vygodskaya, N.; Walker, J.P.; Walter-Shea, E.; Wang, H.; Weber, R.; Westermann, S.; Wille, C.; Wofsy, S.; Wohlfahrt, G.; Wolf, S.; Woodgate, W.; Li, Y.; Zampedri, R.; Zhang, J.; Zhou, G.; Zona, D.; Agarwal, D.; Biraud, S.; Torn, M.; Papale, D.
Title The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data Type Journal Article
Year 2020 Publication Scientific data Abbreviated Journal Sci Data
Volume 7 Issue 1 Pages 225
Keywords article; breathing; ecophysiology; ecosystem; Eddy covariance; licence; metadata; photosynthesis; pipeline; remote sensing; time series analysis; uncertainty
Abstract (up) The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.
Address Euro-Mediterranean Centre on Climate Change Foundation (CMCC), Lecce, 73100, Italy
Corporate Author Thesis
Publisher NLM (Medline) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 20524463 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 958
Permanent link to this record
 

 
Author Fargeon, H.; Aubry-Kientz, M.; Brunaux, O.; Descroix, L.; Gaspard, R.; Guitet, S.; Rossi, V.; Herault, B.
Title Vulnerability of commercial tree species to water stress in logged forests of the Guiana shield Type Journal Article
Year 2016 Publication Forests Abbreviated Journal Forests
Volume 7 Issue 5 Pages
Keywords Climate change; Growth rates; Mortality rates; Paracou; Selective logging
Abstract (up) The future of tropical managed forests is threatened by climate change. In anticipation of the increase in the frequency of drought episodes predicted by climatic models for intertropical regions, it is essential to study commercial trees' resilience and vulnerability to water stress by identifying potential interaction effects between selective logging and stress due to a lack of water. Focusing on 14 species representing a potential or acknowledged commercial interest for wood production in the Guiana Shield, a joint model coupling growth and mortality for each species was parametrized, including a climatic variable related to water stress and the quantity of aboveground biomass lost after logging. For the vast majority of the species, water stress had a negative impact on growth rate, while the impact of logging was positive. The opposite results were observed for the mortality. Combining results from growth and mortality models, we generate vulnerability profiles and ranking from species apparently quite resistant to water stress (Chrysophyllum spp., Goupia glabra Aubl., Qualea rosea Aubl.), even under logging pressure, to highly vulnerable species (Sterculia spp.). In light of our results, forest managers in the Guiana Shield may want to conduct (i) a conservation strategy of the most vulnerable species and (ii) a diversification of the logged species. Conservation of the already-adapted species may also be considered as the most certain way to protect the tropical forests under future climates. © 2016 by the authors.
Address Université de Yaoundé I, UMMISCO (UMI 209), Yaoundé, Cameroon
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 11 June 2016 Approved no
Call Number EcoFoG @ webmaster @ Serial 682
Permanent link to this record
 

 
Author Clair, B.; Gril, J.; Baba, K.; Thibaut, B.; Sugiyama, J.
Title Precautions for the structural analysis of the gelatinous layer in tension wood Type Journal Article
Year 2005 Publication IAWA Journal Abbreviated Journal IAWA J.
Volume 26 Issue 2 Pages 189-195
Keywords artefact; fibre wall; gelatinous layer (G-layer); tension wood
Abstract (up) The gelatinous layer (G-layer) of tension wood fibres in hardwood contributes to the mechanical function of the living tree and has significant consequences on properties of solid wood. Its size, shape and structure observed by optical or electron microscopy exhibits characteristic anatomical features. However, we found that sectioning of non-embedded wood samples results in an uncontrolled swelling of the G-layer. In order to assess this artefact, the shape and thickness of the G-layer was monitored by serial sections from an embedded wood sample, from its trimmed transverse face to that located several hundreds of micrometres deep. The results revealed that the initial cutting before embedding produced a border effect responsible for the swollen nature, which is similar to sections from non-embedded material. After a conventional embedding technique was applied, a section of at least 30 micrometres below the trimming surface is required to observe an un-swollen G-layer.
Address Kyoto Univ, Res Inst Sustainable Humanosphere, Lab Biomass Morphogenesis & Informat, Kyoto 6110011, Japan, Email: clair@blmgc.univ.montp2.fr
Corporate Author Thesis
Publisher INT ASSOC WOOD ANATOMISTS Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0928-1541 ISBN Medium
Area Expedition Conference
Notes ISI:000229698100003 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 254
Permanent link to this record
 

 
Author Boulogne, I.; Constantino, R.; Amusant, N.; Falkowski, M.; Rodrigues, A.M.S.; Houel, E.
Title Ecology of termites from the genus Nasutitermes (Termitidae: Nasutitermitinae) and potential for science-based development of sustainable pest management programs Type Journal Article
Year 2017 Publication Journal of Pest Science Abbreviated Journal Journal of Pest Science
Volume 90 Issue 1 Pages 19-37
Keywords Antimicrobial and insecticidal botanical extracts; Ipm; Nasutitermes corniger; Sustainable management; Taxonomic history; Termitidae
Abstract (up) The genus Nasutitermes is among the most abundant wood-feeding Termitidae and an extremely diverse and heterogeneous group in terms of its biogeography and morphology. Despite the major role of several Nasutitermes species as structural pests, the phylogenetic status of this genus is still unclear, along with a confused taxonomy and species identification remaining difficult. The first aim of this review was thus to gather and discuss studies concerning the taxonomic status of the genus Nasutitermes in order to clarify this crucial point. Then, our goal was to gain new insights into the management of N. corniger, considered to be the most economically detrimental pest of this genus in South America and a Nasutitermes model species, while filtering available information concerning its biology through the prism of termite control, as well as critically examine the existing methods. We indeed strongly believe that increasing our knowledge of this species’ biological strategies is the key to progress in the challenging question of their sustainable management. © 2016, Springer-Verlag Berlin Heidelberg.
Address Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, Sorbonne Universités, Université Pierre et Marie Curie, CNRS, Banyuls/Mer, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 17 February 2017 Approved no
Call Number EcoFoG @ webmaster @ Serial 732
Permanent link to this record
 

 
Author Legeay, J.; Husson, C.; Boudier, B.; Louisanna, E.; Baraloto, C.; Schimann, H.; Marcais, B.; Buée, M.
Title Surprising low diversity of the plant pathogen Phytophthora in Amazonian forests Type Journal Article
Year 2020 Publication Environmental Microbiology Abbreviated Journal Environ. Microbiol.
Volume 22 Issue 12 Pages 5019-5032
Keywords
Abstract (up) The genus Phytophthora represents a group of plant pathogens with broad global distribution. The majority of them cause the collar and root-rot of diverse plant species. Little is known about Phytophthora communities in forest ecosystems, especially in the Neotropical forests where natural enemies could maintain the huge plant diversity via negative density dependence. We characterized the diversity of soil-borne Phytophthora communities in the North French Guiana rainforest and investigated how they are structured by host identity and environmental factors. In this little-explored habitat, 250 soil cores were sampled from 10 plots hosting 10 different plant families across three forest environments (Terra Firme, Seasonally Flooded and White Sand). Phytophthora diversity was studied using a baiting approach and metabarcoding (High-Throughput Sequencing) on environmental DNA extracted from both soil samples and baiting-leaves. These three approaches revealed very similar communities, characterized by an unexpected low diversity of Phytophthora species, with the dominance of two cryptic species close to Phytophthora heveae. As expected, the Phytophthora community composition of the French Guiana rainforest was significantly impacted by the host plant family and environment. However, these plant pathogen communities are very small and are dominated by generalist species, questioning their potential roles as drivers of plant diversity in these Amazonian forests. © 2020 Society for Applied Microbiology and John Wiley & Sons Ltd.
Address International Center for Tropical Botany, Department of Biological Sciences, Florida International University, Miami, FL 33199, United States
Corporate Author Thesis
Publisher Blackwell Publishing Ltd Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 14622912 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 940
Permanent link to this record
 

 
Author Brechet, L.; Ponton, S.; Roy, J.; Freycon, V.; Couteaux, M.M.; Bonal, D.; Epron, D.
Title Do tree species characteristics influence soil respiration in tropical forests? A test based on 16 tree species planted in monospecific plots Type Journal Article
Year 2009 Publication Plant and Soil Abbreviated Journal Plant Soil
Volume 319 Issue 1-2 Pages 235-246
Keywords Fine root; Litter quality; Nutrient cycling; Plant soil interactions; Soil respiration; Tropical plantations
Abstract (up) The high spatial variability of soil respiration in tropical rainforests is well evaluated, but influences of biotic factors are not clearly understood. This study underlines the influence of tree species characteristics on soil respiration across a 16-monospecific plot design in a tropical plantation of French Guiana. A large variability of soil CO2 fluxes was observed among plots (i.e. 2.8 to 6.8 μmol m(-2) s(-1)) with the ranking being constant across seasons. There were no significant relationships between soil respiration and soil moisture or soil temperature, neither spatially, nor seasonally. The variability of soil respiration was mainly explained by quantitative factors such as leaf litterfall and basal area. Surprisingly, no significant relationship was observed between soil respiration and root biomass. However, the influence of substrate quality was revealed by a strong relationship between soil respiration and litterfall P (and litterfall N, to a lesser extent).
Address [Ponton, Stephane] Natl Inst Agr Res INRA Ctr Rech Nancy, Forest Ecol & Ecophysiol Unit, UMR EEF, F-54280 Seichamps, France, Email: ponton@nancy.inra.fr
Corporate Author Thesis
Publisher SPRINGER Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0032-079X ISBN Medium
Area Expedition Conference
Notes ISI:000266143400020 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 110
Permanent link to this record
 

 
Author Gourlet-Fleury, S.; Blanc, L.; Picard, N.; Sist, P.; Dick, J.; Nasi, R.; Swaine, M.D.; Forni, E.
Title Grouping species for predicting mixed tropical forest dynamics: looking for a strategy Type Journal Article
Year 2005 Publication Annals of Forest Science Abbreviated Journal Ann. For. Sci.
Volume 62 Issue 8 Pages 785-796
Keywords cross-comparisons; functional groups; modelling strategy; species classifications
Abstract (up) The high species diversity of mixed tropical forests hinders the development of forest dynamic models. A solution commonly adopted is to cluster species in groups. There are various methods for grouping species that can be linked to three strategies (i) the ecological subjective strategy, (ii) the ecological data-driven strategy, and (iii) the dynamic process strategy. In the first two strategies a species will be assigned to a single group while in the latter strategy, a specific grouping is defined for each process of population dynamics ( typically based on recruitment, growth, mortality). Little congruency or convergence is observed in the literature between any two classifications of species. This may be explained by the independence between the sets of tree characters used to build species groups, or by the intra-specific variability of these characters. We therefore recommend the dynamic process strategy as the most convenient strategy for building groups of species.
Address Cirad Foret, F-34398 Montpellier, France, Email: sylvie.gourlet-fleury@cirad.fr
Corporate Author Thesis
Publisher EDP SCIENCES S A Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1286-4560 ISBN Medium
Area Expedition Conference
Notes ISI:000233972500001 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 228
Permanent link to this record