toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Mariano, C.S.F.; Silva Santos, I.D.A.; Groc, S.; Leroy, C.; Malé, P.-J.; Ruiz-González, M.X.; Cerdan, P.; Dejean, A.; Delabie, J.H.C. url  openurl
  Title The karyotypes of Gigantiops destructor (Fabricius) and other ants from French Guiana (Formicidae) Type Journal Article
  Year 2011 Publication Annales de la Societe Entomologique de France Abbreviated Journal Ann. Soc. Entomol. Fr.  
  Volume 47 Issue 1-2 Pages 140-146  
  Keywords Chromosome number; Diversity; Minimum interaction theory  
  Abstract (up) The aim of this study, which was conducted in French Guiana, was to characterize the karyotypes of nine ant species belonging to the genera Anochetus, Apterostigma, Cyphomyrmex, Camponotus, Gigantiops, Myrmicocrypta, Odontomachus and Pseudomyrmex, and to compare them with published data. We present the first descriptions of the karyotypes of Gigantiops destructor (Fabricius), an endemic Formicinae of the Amazonian region, which is the only living species in the tribe Gigantiopini, and of a species from the poorly-known cryptic genus Myrmicocrypta, which belongs to the Myrmicinae tribe Attini.  
  Address HYDRECO, Laboratoire Environnement Aménagement de Petit Saut, BP 823, F- 97388 Kourou Cedex, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00379271 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 26 October 2011; Source: Scopus; Language of Original Document: English; Correspondence Address: Delabie, J.H.C.; Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, Km 16, 45650-000 Ilhéus, Bahia, Brazil Approved no  
  Call Number EcoFoG @ webmaster @ Serial 367  
Permanent link to this record
 

 
Author Malhi, Y.; Aragao, L.E.O.C.; Metcalfe, D.B.; Paiva, R.; Quesada, C.A.; Almeida, S.; Anderson, L.; Brando, P.; Chambers, J.Q.; da Costa, A.C.L.; Hutyra, L.R.; Oliveira, P.; Patino, S.; Pyle, E.H.; Robertson, A.L.; Teixeira, L.M. openurl 
  Title Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests Type Journal Article
  Year 2009 Publication Global Change Biology Abbreviated Journal Glob. Change Biol.  
  Volume 15 Issue 5 Pages 1255-1274  
  Keywords allocation; Amazonia; carbon; growth; litterfall; productivity; respiration; roots; soil; tropical forest  
  Abstract (up) The allocation and cycling of carbon (C) within forests is an important component of the biospheric C cycle, but is particularly understudied within tropical forests. We synthesise reported and unpublished results from three lowland rainforest sites in Amazonia (in the regions of Manaus, Tapajos and Caxiuana), all major sites of the Large-Scale Biosphere-Atmosphere Programme (LBA). We attempt a comprehensive synthesis of the C stocks, nutrient status and, particularly, the allocation and internal C dynamics of all three sites. The calculated net primary productivities (NPP) are 10.1 +/- 1.4 Mg C ha(-1) yr(-1) (Manaus), 14.4 +/- 1.3 Mg C ha(-1) yr(-1) (Tapajos) and 10.0 +/- 1.2 Mg C ha(-1) yr(-1) (Caxiuana). All errors bars report standard errors. Soil and leaf nutrient analyses indicate that Tapajos has significantly more plant-available phosphorus and calcium. Autotrophic respiration at all three sites (14.9-21.4 Mg C ha yr(-1)) is more challenging to measure, with the largest component and greatest source of uncertainty being leaf dark respiration. Comparison of measured soil respiration with that predicted from C cycling measurements provides an independent constraint. It shows general good agreement at all three sites, with perhaps some evidence for measured soil respiration being less than expected. Twenty to thirty percent of fixed C is allocated belowground. Comparison of gross primary productivity (GPP), derived from ecosystem flux measurements with that derived from component studies (NPP plus autotrophic respiration) provides an additional crosscheck. The two approaches are in good agreement, giving increased confidence in both approaches to estimating GPP. The ecosystem carbon-use efficiency (CUEs), the ratio of NPP to GPP, is similar at Manaus (0.34 +/- 0.10) and Caxiuana (0.32 +/- 0.07), but may be higher at Tapajos (0.49 +/- 0.16), although the difference is not significant. Old growth or infertile tropical forests may have low CUE compared with recently disturbed and/or fertile forests.  
  Address [Malhi, Yadvinder; Aragao, Luiz Eduardo O. C.; Metcalfe, Daniel B.; Anderson, Liana] Sch Geog & Environm, Environm Change Inst, Oxford OX1 3QY, England, Email: yadvinder.malhi@ouce.ox.ac.uk  
  Corporate Author Thesis  
  Publisher WILEY-BLACKWELL PUBLISHING, INC Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1354-1013 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000265033700015 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 117  
Permanent link to this record
 

 
Author Peay, K.G.; Baraloto, C.; Fine, P.V.A. url  openurl
  Title Strong coupling of plant and fungal community structure across western Amazonian rainforests Type Journal Article
  Year 2013 Publication ISME Journal Abbreviated Journal Isme J.  
  Volume 7 Issue 9 Pages 1852-1861  
  Keywords coexistence; diversity; Janzen-Connell; natural enemies; negative feedback  
  Abstract (up) The Amazon basin harbors a diverse ecological community that has a critical role in the maintenance of the biosphere. Although plant and animal communities have received much attention, basic information is lacking for fungal or prokaryotic communities. This is despite the fact that recent ecological studies have suggested a prominent role for interactions with soil fungi in structuring the diversity and abundance of tropical rainforest trees. In this study, we characterize soil fungal communities across three major tropical forest types in the western Amazon basin (terra firme, seasonally flooded and white sand) using 454 pyrosequencing. Using these data, we examine the relationship between fungal diversity and tree species richness, and between fungal community composition and tree species composition, soil environment and spatial proximity. We find that the fungal community in these ecosystems is diverse, with high degrees of spatial variability related to forest type. We also find strong correlations between α- and β-diversity of soil fungi and trees. Both fungal and plant community β-diversity were also correlated with differences in environmental conditions. The correlation between plant and fungal richness was stronger in fungal lineages known for biotrophic strategies (for example, pathogens, mycorrhizas) compared with a lineage known primarily for saprotrophy (yeasts), suggesting that this coupling is, at least in part, due to direct plant-fungal interactions. These data provide a much-needed look at an understudied dimension of the biota in an important ecosystem and supports the hypothesis that fungal communities are involved in the regulation of tropical tree diversity. © 2013 International Society for Microbial Ecology.  
  Address Department of Integrative Biology, University of California, Berkeley, CA, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 17517362 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 9 September 2013; Source: Scopus; doi: 10.1038/ismej.2013.66; Language of Original Document: English; Correspondence Address: Peay, K.G.; Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, United States; email: kpeay@stanford.edu; Funding Details: 1045658, NSF, National Science Foundation; Funding Details: DEB-0743800/0743103, NSF, National Science Foundation Approved no  
  Call Number EcoFoG @ webmaster @ Serial 502  
Permanent link to this record
 

 
Author Feldpausch, T.R.; Phillips, O.L.; Brienen, R.J.W.; Gloor, E.; Lloyd, J.; Lopez-Gonzalez, G.; Monteagudo-Mendoza, A.; Malhi, Y.; Alarcón, A.; Álvarez Dávila, E.; Alvarez-Loayza, P.; Andrade, A.; Aragao, L.E.O.C.; Arroyo, L.; Aymard C., G.A.; Baker, T.R.; Baraloto, C.; Barroso, J.; Bonal, D.; Castro, W.; Chama, V.; Chave, J.; Domingues, T.F.; Fauset, S.; Groot, N.; Honorio Coronado, E.; Laurance, S.; Laurance, W.F.; Lewis, S.L.; Licona, J.C.; Marimon, B.S.; Marimon-Junior, B.H.; Mendoza Bautista, C.; Neill, D.A.; Oliveira, E.A.; Oliveira dos Santos, C.; Pallqui Camacho, N.C.; Pardo-Molina, G.; Prieto, A.; Quesada, C.A.; Ramírez, F.; Ramírez-Angulo, H.; Réjou-Méchain, M.; Rudas, A.; Saiz, G.; Salomão, R.P.; Silva-Espejo, J.E.; Silveira, M.; ter Steege, H.; Stropp, J.; Terborgh, J.; Thomas-Caesar, R.; van der Heijden, G.M.F.; Vásquez Martinez, R.; Vilanova, E.; Vos, V.A. url  doi
openurl 
  Title Amazon forest response to repeated droughts Type Journal Article
  Year 2016 Publication Global Biogeochemical Cycles Abbreviated Journal Global Biogeochemical Cycles  
  Volume 30 Issue 7 Pages 964-982  
  Keywords carbon; forest productivity; precipitation; tree mortality; vegetation dynamics; water deficit  
  Abstract (up) The Amazon Basin has experienced more variable climate over the last decade, with a severe and widespread drought in 2005 causing large basin-wide losses of biomass. A drought of similar climatological magnitude occurred again in 2010; however, there has been no basin-wide ground-based evaluation of effects on vegetation. We examine to what extent the 2010 drought affected forest dynamics using ground-based observations of mortality and growth from an extensive forest plot network. We find that during the 2010 drought interval, forests did not gain biomass (net change: −0.43 Mg ha−1, confidence interval (CI): −1.11, 0.19, n = 97), regardless of whether forests experienced precipitation deficit anomalies. This contrasted with a long-term biomass sink during the baseline pre-2010 drought period (1998 to pre-2010) of 1.33 Mg ha−1 yr−1 (CI: 0.90, 1.74, p < 0.01). The resulting net impact of the 2010 drought (i.e., reversal of the baseline net sink) was −1.95 Mg ha−1 yr−1 (CI:−2.77, −1.18; p < 0.001). This net biomass impact was driven by an increase in biomass mortality (1.45 Mg ha−1 yr−1 CI: 0.66, 2.25, p < 0.001) and a decline in biomass productivity (−0.50 Mg ha−1 yr−1, CI:−0.78, −0.31; p < 0.001). Surprisingly, the magnitude of the losses through tree mortality was unrelated to estimated local precipitation anomalies and was independent of estimated local pre-2010 drought history. Thus, there was no evidence that pre-2010 droughts compounded the effects of the 2010 drought. We detected a systematic basin-wide impact of the 2010 drought on tree growth rates across Amazonia, which was related to the strength of the moisture deficit. This impact differed from the drought event in 2005 which did not affect productivity. Based on these ground data, live biomass in trees and corresponding estimates of live biomass in lianas and roots, we estimate that intact forests in Amazonia were carbon neutral in 2010 (−0.07 Pg C yr−1 CI:−0.42, 0.23), consistent with results from an independent analysis of airborne estimates of land-atmospheric fluxes during 2010. Relative to the long-term mean, the 2010 drought resulted in a reduction in biomass carbon uptake of 1.1 Pg C, compared to 1.6 Pg C for the 2005 event. ©2016. American Geophysical Union. All Rights Reserved.  
  Address Centro de Investigación y Promoción del Campesinado Norte Amazónico, Riberalta, Bolivia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 1 September 2016 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 690  
Permanent link to this record
 

 
Author Seibold, Sebastien ; Rammer, Werner ; Hothorn, Torsten ; Seidl, Rupert ; Ulyshen, Michael ; Lorz, Janina ; Cadotte, Marc ; Lindenmayer, David ; Adhikari, Yagya ; Aragón, Roxana ; Bae, Soyeon ; Baldrian, Petr ; Barimani Varandi, Hassan ; Barlow, Jos ; Bässler, Clauss ; Beauchêne, Jacques ; and all ................... doi  openurl
  Title The contribution of insects to global forest deadwood decomposition Type Journal Article
  Year 2021 Publication Nature Abbreviated Journal  
  Volume 597 Issue 7874 Pages 77-81  
  Keywords  
  Abstract (up) The amount of carbon stored in deadwood is equivalent to about 8 per cent of the global forest carbon stocks1. The decomposition of deadwood is largely governed by climate2-5 with decomposer groups-such as microorganisms and insects-contributing to variations in the decomposition rates2,6,7. At the global scale, the contribution of insects to the decomposition of deadwood and carbon release remains poorly understood7. Here we present a field experiment of wood decomposition across 55 forest sites and 6 continents. We find that the deadwood decomposition rates increase with temperature, and the strongest temperature effect is found at high precipitation levels. Precipitation affects the decomposition rates negatively at low temperatures and positively at high temperatures. As a net effect-including the direct consumption by insects and indirect effects through interactions with microorganisms-insects accelerate the decomposition in tropical forests (3.9% median mass loss per year). In temperate and boreal forests, we find weak positive and negative effects with a median mass loss of 0.9 per cent and -0.1 per cent per year, respectively. Furthermore, we apply the experimentally derived decomposition function to a global map of deadwood carbon synthesized from empirical and remote-sensing data, obtaining an estimate of 10.9 ± 3.2 petagram of carbon per year released from deadwood globally, with 93 per cent originating from tropical forests. Globally, the net effect of insects may account for 29 per cent of the carbon flux from deadwood, which suggests a functional importance of insects in the decomposition of deadwood and the carbon cycle.  
  Address  
  Corporate Author Thesis  
  Publisher NATURE PUBLISHING GROUP Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1046  
Permanent link to this record
 

 
Author Jona Lasinio, G.; Pollice, A.; Marcon, E.; Fano, E.A. doi  openurl
  Title Assessing the role of the spatial scale in the analysis of lagoon biodiversity. A case-study on the macrobenthic fauna of the Po River Delta Type Journal Article
  Year 2017 Publication Ecological Indicators Abbreviated Journal Ecological Indicators  
  Volume 80 Issue Pages 303-315  
  Keywords Biodiversity partitioning; Lagoon biodiversity; Macrobenthic fauna; Mixed effects models; Tsallis entropy  
  Abstract (up) The analysis of benthic assemblages is a valuable tool to describe the ecological status of transitional water ecosystems, but species are extremely sensitive and respond to both microhabitat and seasonal differences. The identification of changes in the composition of the macrobenthic community in specific microhabitats can then be used as an “early warning” for environmental changes which may affect the economic and ecological importance of lagoons, through their provision of Ecosystem Services. From a conservational point of view, the appropriate definition of the spatial aggregation level of microhabitats or local communities is of crucial importance. The main objective of this work is to assess the role of the spatial scale in the analysis of lagoon biodiversity. First, we analyze the variation in the sample coverage for alternative aggregations of the monitoring stations in three lagoons of the Po River Delta. Then, we analyze the variation of a class of entropy indices by mixed effects models, properly accounting for the fixed effects of biotic and abiotic factors and random effects ruled by nested sources of variability corresponding to alternative definitions of local communities. Finally, we address biodiversity partitioning by a generalized diversity measure, namely the Tsallis entropy, and for alternative definitions of the local communities. The main results obtained by the proposed statistical protocol are presented, discussed and framed in the ecological context. © 2017 Elsevier Ltd  
  Address Dipartimento di Scienze della Vita e Biotecnologie, Università degli Studi di Ferrara, Ferrara, Italy  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 12 June 2017 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 755  
Permanent link to this record
 

 
Author Torroba-Balmori, P.; Budde, K.B.; Heer, K.; González-Martínez, S.C.; Olsson, S.; Scotti-Saintagne, C.; Casalis, M.; Sonké, B.; Dick, C.W.; Heuertz, M. url  doi
openurl 
  Title Altitudinal gradients, biogeographic history and microhabitat adaptation affect fine-scale spatial genetic structure in African and Neotropical populations of an ancient tropical tree species Type Journal Article
  Year 2017 Publication PLoS ONE Abbreviated Journal PLoS ONE  
  Volume 12 Issue 8 Pages e0182515  
  Keywords  
  Abstract (up) The analysis of fine-scale spatial genetic structure (FSGS) within populations can provide insights into eco-evolutionary processes. Restricted dispersal and locally occurring genetic drift are the primary causes for FSGS at equilibrium, as described in the isolation by distance (IBD) model. Beyond IBD expectations, spatial, environmental or historical factors can affect FSGS. We examined FSGS in seven African and Neotropical populations of the late-successional rain forest tree Symphonia globulifera L. f. (Clusiaceae) to discriminate the influence of drift-dispersal vs. landscape/ecological features and historical processes on FSGS. We used spatial principal component analysis and Bayesian clustering to assess spatial genetic heterogeneity at SSRs and examined its association with plastid DNA and habitat features. African populations (from Cameroon and São Tomé) displayed a stronger FSGS than Neotropical populations at both marker types (mean Sp = 0.025 vs. Sp = 0.008 at SSRs) and had a stronger spatial genetic heterogeneity. All three African populations occurred in pronounced altitudinal gradients, possibly restricting animal-mediated seed dispersal. Cyto-nuclear disequilibria in Cameroonian populations also suggested a legacy of biogeographic history to explain these genetic patterns. Conversely, Neotropical populations exhibited a weaker FSGS, which may reflect more efficient wide-ranging seed dispersal by Neotropical bats and other dispersers. The population from French Guiana displayed an association of plastid haplotypes with two morphotypes characterized by differential habitat preferences. Our results highlight the importance of the microenvironment for eco-evolutionary processes within persistent tropical tree populations. © 2017 Torroba-Balmori et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.  
  Address Smithsonian Tropical Research Institute, Panama  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 2 September 2017 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 762  
Permanent link to this record
 

 
Author Ruelle, J.; Clair, B.; Beauchene, J.; Prevost, M.F.; Fournier, M. openurl 
  Title Tension wood and opposite wood in 21 tropical rain forest species 2. Comparison of some anatomical and ultrastructural criteria Type Journal Article
  Year 2006 Publication IAWA Journal Abbreviated Journal IAWA J.  
  Volume 27 Issue 4 Pages 341-376  
  Keywords tension wood; opposite wood; tropical rain forest; vessels; wood anatomy; wood fibre  
  Abstract (up) The anatomy of tension wood and opposite wood was compared in 21 tropical rain forest trees from 21 species belonging to 18 families from French Guyana. Wood specimens were taken from the upper and lower sides of naturally tilted trees. Measurement of the growth stress level ensured that the two samples were taken from wood tissues in a different mechanical state: highly tensile-stressed wood on the upper side, called tension wood and normally tensile-stressed wood on the lower side, called opposite wood. Quantitative parameters relating to fibres and vessels were measured on transverse sections of both tension and opposite wood to check if certain criteria can easily discriminate the two kinds of wood. We observed a decrease in the frequency of vessels in the tension wood in all the trees studied. Other criteria concerning shape and surface area of the vessels, fibre diameter or cell wall thickness did not reveal any general trend. At the ultrastructural level, we observed that the microfibril angle in the tension wood sample was lower than in opposite wood in all the trees except one (Licania membranacea).  
  Address UAG, ENGREF,UMR Ecol Forets Guyane, INRA,ECOFOG, CIRAD,CNRS, F-97379 Kourou, Guyana, Email: ruelle_j@kourou.cirad.fr  
  Corporate Author Thesis  
  Publisher INT ASSOC WOOD ANATOMISTS Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0928-1541 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000242437400001 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 171  
Permanent link to this record
 

 
Author Bremaud, I.; Gril, J.; Thibaut, B. openurl 
  Title Anisotropy of wood vibrational properties: dependence on grain angle and review of literature data Type Journal Article
  Year 2011 Publication Wood Science and Technology Abbreviated Journal Wood Sci. Technol.  
  Volume 45 Issue 4 Pages 735-754  
  Keywords  
  Abstract (up) The anisotropy of vibrational properties influences the acoustic behaviour of wooden pieces and their dependence on grain angle (GA). As most pieces of wood include some GA, either for technological reasons or due to grain deviations inside trunks, predicting its repercussions would be useful. This paper aims at evaluating the variability in the anisotropy of wood vibrational properties and analysing resulting trends as a function of orientation. GA dependence is described by a model based on transformation formulas applied to complex compliances, and literature data on anisotropic vibrational properties are reviewed. Ranges of variability, as well as representative sets of viscoelastic anisotropic parameters, are defined for mean hardwoods and softwoods and for contrasted wood types. GA-dependence calculations are in close agreement with published experimental results and allow comparing the sensitivity of different woods to GA. Calculated trends in damping coefficient (tan delta) and in specific modulus of elasticity (E'/rho) allow reconstructing the general tan delta-E'/rho statistical relationships previously reported. Trends for woods with different mechanical parameters merge into a single curve if anisotropic ratios (both elastic and of damping) are correlated between them, and with axial properties, as is indicated by the collected data. On the other hand, varying damping coefficient independently results in parallel curves, which coincide with observations on chemically modified woods, either “artificially”, or by natural extractives.  
  Address [Bremaud, I; Gril, J] Univ Montpellier 2, Lab Mecan & Genie Civil, CNRS, CC048, F-34095 Montpellier 5, France, Email: iris_bremaud@hotmail.com  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-7719 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000296006000009 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 369  
Permanent link to this record
 

 
Author Verheyen, K.; Vanhellemont, M.; Auge, H.; Baeten, L.; Baraloto, C.; Barsoum, N.; Bilodeau-Gauthier, S.; Bruelheide, H.; Castagneyrol, B.; Godbold, D.; Haase, J.; Hector, A.; Jactel, H.; Koricheva, J.; Loreau, M.; Mereu, S.; Messier, C.; Muys, B.; Nolet, P.; Paquette, A.; Parker, J.; Perring, M.; Ponette, Q.; Potvin, C.; Reich, P.; Smith, A.; Weih, M.; Scherer-Lorenzen, M. url  openurl
  Title Contributions of a global network of tree diversity experiments to sustainable forest plantations Type Journal Article
  Year 2016 Publication Ambio Abbreviated Journal Ambio  
  Volume 45 Issue 1 Pages 29-41  
  Keywords Biodiversity experiments; Ecological restoration; Functional biodiversity research; Plantation forest; Sustainable forest management  
  Abstract (up) The area of forest plantations is increasing worldwide helping to meet timber demand and protect natural forests. However, with global change, monospecific plantations are increasingly vulnerable to abiotic and biotic disturbances. As an adaption measure we need to move to plantations that are more diverse in genotypes, species, and structure, with a design underpinned by science. TreeDivNet, a global network of tree diversity experiments, responds to this need by assessing the advantages and disadvantages of mixed species plantations. The network currently consists of 18 experiments, distributed over 36 sites and five ecoregions. With plantations 1–15 years old, TreeDivNet can already provide relevant data for forest policy and management. In this paper, we highlight some early results on the carbon sequestration and pest resistance potential of more diverse plantations. Finally, suggestions are made for new, innovative experiments in understudied regions to complement the existing network. © 2015, Royal Swedish Academy of Sciences.  
  Address Department of Crop Production Ecology, Swedish University of Agricultural Sciences, PO Box 7043, Uppsala, Sweden  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 29 January 2016 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 652  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: