toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Sommeria-Klein, G.; Zinger, L.; Coissac, E.; Iribar, A.; Schimann, H.; Taberlet, P.; Chave, J. doi  openurl
  Title Latent Dirichlet Allocation reveals spatial and taxonomic structure in a DNA-based census of soil biodiversity from a tropical forest Type Journal Article
  Year 2020 Publication Molecular Ecology Resources Abbreviated Journal Mol. Ecol. Resour.  
  Volume 20 Issue 2 Pages 371-386  
  Keywords community ecology; environmental DNA; metabarcoding; OTU presence–absence; soil microbiome; topic modelling; bacterium; biodiversity; biology; classification; eukaryote; fungus; genetics; high throughput sequencing; isolation and purification; microbiology; parasitology; procedures; soil; Bacteria; Biodiversity; Computational Biology; Eukaryota; Fungi; High-Throughput Nucleotide Sequencing; Soil; Soil Microbiology  
  Abstract (down) High-throughput sequencing of amplicons from environmental DNA samples permits rapid, standardized and comprehensive biodiversity assessments. However, retrieving and interpreting the structure of such data sets requires efficient methods for dimensionality reduction. Latent Dirichlet Allocation (LDA) can be used to decompose environmental DNA samples into overlapping assemblages of co-occurring taxa. It is a flexible model-based method adapted to uneven sample sizes and to large and sparse data sets. Here, we compare LDA performance on abundance and occurrence data, and we quantify the robustness of the LDA decomposition by measuring its stability with respect to the algorithm's initialization. We then apply LDA to a survey of 1,131 soil DNA samples that were collected in a 12-ha plot of primary tropical forest and amplified using standard primers for bacteria, protists, fungi and metazoans. The analysis reveals that bacteria, protists and fungi exhibit a strong spatial structure, which matches the topographical features of the plot, while metazoans do not, confirming that microbial diversity is primarily controlled by environmental variation at the studied scale. We conclude that LDA is a sensitive, robust and computationally efficient method to detect and interpret the structure of large DNA-based biodiversity data sets. We finally discuss the possible future applications of this approach for the study of biodiversity. © 2019 John Wiley & Sons Ltd  
  Address Laboratoire d’Ecologie des Forêts de Guyane (EcoFoG, UMR 745), INRA, AgroParisTech, CIRAD, CNRS, University of the French West Indies, University of French Guiana, Kourou, France  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1755098x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 981  
Permanent link to this record
 

 
Author Gibson, J.C.; Larabee, F.J.; Touchard, A.; Orivel, J.; Suarez, A.V. url  doi
openurl 
  Title Mandible strike kinematics of the trap-jaw ant genus Anochetus Mayr (Hymenoptera: Formicidae) Type Journal Article
  Year 2018 Publication Journal of Zoology Abbreviated Journal  
  Volume 306 Issue 2 Pages 119-128  
  Keywords catapult mechanism; comparative biomechanics; Formicidae; functional morphology; kinematics; mandible strike; power amplification  
  Abstract (down) High-speed power-amplification mechanisms are common throughout the animal kingdom. In ants, power-amplified trap-jaw mandibles have evolved independently at least four times, including once in the subfamily Ponerinae which contains the sister genera Odontomachus and Anochetus. In Odontomachus, mandible strikes have been relatively well described and can occur in <0.15 ms and reach speeds of over 60 m s−1. In contrast, the kinematics of mandible strikes have not been examined in Anochetus, whose species are smaller and morphologically distinct from Odontomachus. In this study, we describe the mandible strike kinematics of four species of Anochetus representative of the morphological, phylogenetic, and size diversity present within the genus. We also compare their strikes to two representative species of Odontomachus. We found that two species, Anochetus targionii and Anochetus paripungens, have mandible strikes that overall closely resemble those found in Odontomachus, reaching a mean maximum rotational velocity and acceleration of around 3.7 × 104 rad s−1 and 8.5 × 108 rad s−2, respectively. This performance is consistent with predictions based on body size scaling relationships described for Odontomachus. In contrast, Anochetus horridus and Anochetus emarginatus have slower strikes relative to the other species of Anochetus and Odontomachus, reaching mean maximum rotational velocity and acceleration of around 1.3 × 104 rad s−1 and 2 × 108 rad s−2, respectively. This variation in strike performance among species of Anochetus likely reflects differences in evolutionary history, physiology, and natural history among species. © 2018 The Zoological Society of London  
  Address Department of Animal Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 15 October 2018 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 826  
Permanent link to this record
 

 
Author Vincent, G.; Caron, F.; Sabatier, D.; Blanc, L. url  openurl
  Title LiDAR shows that higher forests have more slender trees Type Journal Article
  Year 2012 Publication Bois et Forets des Tropiques Abbreviated Journal Bois Forets Tropiques  
  Volume 66 Issue 314 Pages 51-56  
  Keywords Competition; Fertility; French Guiana; LiDAR; Tree allometry  
  Abstract (down) High-density Airborne Laser Scanning was used to derive the Canopy Height Model (CHM) of an experimental forest site in the neotropics (Paracou, French Guiana). Individual tree heights were computed by manually segmenting tree crowns on the CHM and then extracting the local maximum canopy height. Three hundred and ninety-six (396) height estimates were matched from dominant or emergent trees with the corresponding ground records of stem diameters sampled in two plots with different mean canopy heights (28.1 m vs. 31.3 m). Tree slenderness was found to be positively and very significantly correlated with mean canopy height at the plot level. The same correlation was observed at the species population level for the three species adequately sampled. It can therefore be concluded that stratification by canopy height is to be recommended when deriving allometric relationships in order to avoid bias in Above Ground Biomass estimations.  
  Address CIRAD, UMR Ecofog, 97300 Kourou, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006579x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 5 June 2013; Source: Scopus; Language of Original Document: English; Correspondence Address: IRD, UMR AMAP, 34000 Montpellier, France Approved no  
  Call Number EcoFoG @ webmaster @ Serial 490  
Permanent link to this record
 

 
Author Dejean, A.; Carpenter, J.M.; Corbara, B.; Wright, P.; Roux, O.; LaPierre, L.M. url  openurl
  Title The hunter becomes the hunted: When cleptobiotic insects are captured by their target ants Type Journal Article
  Year 2012 Publication Naturwissenschaften Abbreviated Journal  
  Volume 99 Issue 4 Pages 265-273  
  Keywords Ant predation; Cleptobiosis; Flies and Reduviidae; Myrmecophyte; Social wasps; Stingless bees  
  Abstract (down) Here we show that trying to rob prey (cleptobiosis) from a highly specialized predatory ant species is risky. To capture prey, Allomerus decemarticulatus workers build gallery-shaped traps on the stems of their associated myrmecophyte, Hirtella physophora. We wondered whether the frequent presence of immobilized prey on the trap attracted flying cleptoparasites. Nine social wasp species nest in the H. physophora foliage; of the six species studied, only Angiopolybia pallens rob prey from Allomerus colonies. For those H. physophora not sheltering wasps, we noted cleptobiosis by stingless bees (Trigona), social wasps (A. pallens and five Agelaia species), assassin bugs (Reduviidae), and flies. A relationship between the size of the robbers and their rate of capture by ambushing Allomerus workers was established for social wasps; small wasps were easily captured, while the largest never were. Reduviids, which are slow to extract their rostrum from prey, were always captured, while Trigona and flies often escaped. The balance sheet for the ants was positive vis-à-vis the reduviids and four out of the six social wasp species. For the latter, wasps began by cutting up parts of the prey's abdomen and were captured (or abandoned the prey) before the entire abdomen was retrieved so that the total weight of the captured wasps exceeded that of the prey abdomens. For A. pallens, we show that the number of individuals captured during attempts at cleptobiosis increases with the size of the Allomerus' prey. © Springer-Verlag 2012.  
  Address Department of Biology, Lower Columbia College, 1600 Maple St., Longview, WA 98632, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Cited By (since 1996): 1; Export Date: 16 January 2013; Source: Scopus Approved no  
  Call Number EcoFoG @ webmaster @ Serial 458  
Permanent link to this record
 

 
Author Dejean, A.; Delabie, J.H.; Corbara, B.; Azémar, F.; Groc, S.; Orivel, J.; Leponce, M. pdf  url
openurl 
  Title The ecology and feeding habits of the arboreal trap-jawed ant Daceton armigerum Type Journal Article
  Year 2012 Publication PloS one Abbreviated Journal PLoS ONE  
  Volume 7 Issue 5 Pages e37683  
  Keywords animal; ant; article; ecology; feeding behavior; Hemiptera; physiology; predation; Animals; Ants; Ecology; Feeding Behavior; Hemiptera; Predatory Behavior  
  Abstract (down) Here we show that Daceton armigerum, an arboreal myrmicine ant whose workers are equipped with hypertrophied trap-jaw mandibles, is characterized by a set of unexpected biological traits including colony size, aggressiveness, trophobiosis and hunting behavior. The size of one colony has been evaluated at ca. 952,000 individuals. Intra- and interspecific aggressiveness were tested and an equiprobable null model used to show how D. armigerum colonies react vis-à-vis other arboreal ant species with large colonies; it happens that D. armigerum can share trees with certain of these species. As they hunt by sight, workers occupy their hunting areas only during the daytime, but stay on chemical trails between nests at night so that the center of their home range is occupied 24 hours a day. Workers tend different Hemiptera taxa (i.e., Coccidae, Pseudococcidae, Membracidae and Aethalionidae). Through group-hunting, short-range recruitment and spread-eagling prey, workers can capture a wide range of prey (up to 94.12 times the mean weight of foraging workers).  
  Address Écologie des Forêts de Guyane, Campus Agronomique, Kourou, France.  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 19326203 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 2 November 2012; Source: Scopus; doi: 10.1371/journal.pone.0037683; PubMed ID: 22737205; Language of Original Document: English; Correspondence Address: Dejean, A.email: alain.dejean@wanadoo.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 443  
Permanent link to this record
 

 
Author Vedel, V.; Brena, C.; Arthur, W. openurl 
  Title Demonstration of a heritable component of the variation in segment number in the centipede Strigamia maritima Type Journal Article
  Year 2009 Publication Evolution & Development Abbreviated Journal Evol. Dev.  
  Volume 11 Issue 4 Pages 434-440  
  Keywords  
  Abstract (down) Here we address the question of how arthropod segment number may evolve by reporting the results of further work on the model system Strigamia maritima. Recently, we showed that there was a plastic component of the variation in segment number within this species; now we demonstrate that there is also a heritable component. This is important because it enables a connection to be made between the known latitudinal trend among species of geophilomorph centipedes ( more segments at lower latitudes) and the parallel trend within them. This latter trend is best documented in S. maritima but is also known in several other species. However, while a general connection between the inter- and intraspecific trends can now be made, deciding upon a specific hypothesis of the nature of the selection involved is still problematic. We provide two alternative hypotheses, one based on the temperature-related plasticity in segment number being adaptive, the other based on it being nonadaptive.  
  Address [Vedel, Vincent; Arthur, Wallace] Natl Univ Ireland, Dept Zool, Sch Nat Sci, Galway, Ireland, Email: wallace.arthur@nuigalway.ie  
  Corporate Author Thesis  
  Publisher WILEY-BLACKWELL PUBLISHING, INC Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-541X ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000267659600011 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 200  
Permanent link to this record
 

 
Author Turcotte, M.M.; Thomsen, C.J.M.; Broadhead, G.T.; Fine, P.V.A.; Godfrey, R.M.; Lamarre, G.P.A.; Meyer, S.T.; Richards, L.A.; Johnson, M.T.J. doi  openurl
  Title Percentage leaf herbivory across vascular plant species Type Journal Article
  Year 2014 Publication Ecology Abbreviated Journal Ecology  
  Volume 95 Issue 3 Pages 788-788  
  Keywords  
  Abstract (down) Herbivory is viewed as a major driver of plant evolution and the most important energy pathway from plants to higher trophic levels. Therefore, understanding patterns of herbivory on plants remains a key focus in evolution and ecology. The evolutionary impacts of leaf herbivory include altering plant fitness, local adaptation, the evolution of defenses, and the diversification of plants as well as natural enemies. Leaf herbivory also impacts ecological processes such as plant productivity, community composition, and ecosystem nutrient cycling. Understanding the impact of herbivory on these ecological and evolutionary processes requires species-specific, as opposed to community-level, measures of herbivory. In addition, species-specific data enables the use of modern comparative methods to account for phylogenetic non-independence. Although hundreds of studies have measured natural rates of leaf consumption, we are unaware of any accessible compilation of these data. We created such a data set to provide the raw data needed to test general hypotheses relating to plant?herbivore interactions and to test the influence of biotic and abiotic factors on herbivory rates across large spatial scales. A large repository will make this endeavor more efficient and robust. In total, we compiled 2641 population-level measures for either annual or daily rates of leaf herbivory across 1145 species of vascular plants collected from 189 studies. All damage measures represent natural occurrences of herbivory that span numerous angiosperm, gymnosperm, and fern species. To enable researchers to explore the causes of variation in herbivory and how these might interact, we added information about the study sites including: geolocation, climate classification, habitat descriptions (e.g., seashore, grassland, forest, agricultural fields), and plant trait information concerning growth form and duration (e.g., annual vs. perennial). We also included extensive details of the methodology used to measure leaf damage, including seasons and months of sampling, age of leaves, and the method used to estimate percentage area missing. We anticipate that these data will make it possible to test important hypotheses in the plant?herbivore literature, including the plant apparency hypothesis, the latitudinal-herbivory defense hypothesis, the resource availability hypothesis, and the macroevolutionary escalation of defense hypothesis.  
  Address  
  Corporate Author Thesis  
  Publisher Ecological Society of America Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0012-9658 ISBN Medium  
  Area Expedition Conference  
  Notes doi: 10.1890/13-1741.1 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 575  
Permanent link to this record
 

 
Author Fine, P.V.A.; Metz, M.R.; Lokvam, J.; Mesones, I.; Zuniga, J.M.A.; Lamarre, G.P.A.; Pilco, M.V.; Baraloto, C. url  openurl
  Title Insect herbivores, chemical innovation, and the evolution of habitat specialization in Amazonian trees Type Journal Article
  Year 2013 Publication Ecology Abbreviated Journal Ecology  
  Volume 94 Issue 8 Pages 1764-1775  
  Keywords Amazonia; Ecological speciation; Ecotypes; Herbivory; Natural enemies; Plant defense; Protium subserratum; Terra firme forests; Tropical rain forests; White-sand forests  
  Abstract (down) Herbivores are often implicated in the generation of the extraordinarily diverse tropical flora. One hypothesis linking enemies to plant diversification posits that the evolution of novel defenses allows plants to escape their enemies and expand their ranges. When range expansion involves entering a new habitat type, this could accelerate defense evolution if habitats contain different assemblages of herbivores and/or divergent resource availabilities that affect plant defense allocation. We evaluated this hypothesis by investigating two sister habitat specialist ecotypes of Protium subserratum (Burseraceae), a common Amazonian tree that occurs in white-sand and terra firme forests. We collected insect herbivores feeding on the plants, assessed whether growth differences between habitats were genetically based using a reciprocal transplant experiment, and sampled multiple populations of both lineages for defense chemistry. Protium subserratum plants were attacked mainly by chrysomelid beetles and cicadellid hemipterans. Assemblages of insect herbivores were dissimilar between populations of ecotypes from different habitats, as well as from the same habitat 100 km distant. Populations from terra firme habitats grew significantly faster than white-sand populations; they were taller, produced more leaf area, and had more chlorophyll. White-sand populations expressed more dry mass of secondary compounds and accumulated more flavone glycosides and oxidized terpenes, whereas terra firme populations produced a coumaroylquinic acid that was absent from white-sand populations. We interpret these results as strong evidence that herbivores and resource availability select for divergent types and amounts of defense investment in white-sand and terra firme lineages of Protium subserratum, which may contribute to habitat-mediated speciation in these trees. © 2013 by the Ecological Society of America.  
  Address Department of Biology, University of Florida, Gainesville, FL 32611, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00129658 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 30 August 2013; Source: Scopus; Coden: Ecola; doi: 10.1890/12-1920.1; Language of Original Document: English; Correspondence Address: Department of Integrative Biology, 1005 Valley Life Sciences Building 3140, University of California, Berkeley, CA 94720-3140, United States Approved no  
  Call Number EcoFoG @ webmaster @ Serial 500  
Permanent link to this record
 

 
Author Rockwell, C.A.; Kainer, K.A.; d'Oliveira, M.V.N.; Staudhammer, C.L.; Baraloto, C. url  openurl
  Title Logging in bamboo-dominated forests in southwestern Amazonia: Caveats and opportunities for smallholder forest management Type Journal Article
  Year 2014 Publication Forest Ecology and Management Abbreviated Journal For. Ecol. Manage.  
  Volume 315 Issue Pages 202-210  
  Keywords Bamboo; Community forest management; Guadua; Logging; Timber management; Tropical forest  
  Abstract (down) Guadua sarcocarpa and Guadua weberbaueri (Poaceae: Bambuseae) have a negative influence on tree regeneration and recruitment in bamboo-dominated forests of southwestern Amazonia. The lack of advanced regeneration and sparse canopy in this forest type present a considerable challenge for developing sustainable timber management plans. We conducted field studies in the Porto Dias Agroextractive Settlement Project in Acre, Brazil to assess influences of logging in bamboo-dominated forest sites. Taxonomic composition, stand structure, aboveground biomass, commercial timber volume, and commercial tree seedling and bamboo culm density were compared between five logged vs. unlogged sites in different landholdings, using modified 0.5. ha Gentry plots. No differences in taxonomic composition, aboveground biomass, adult and juvenile stem density, or woody seedling and bamboo culm density were detected between paired logged and unlogged sites. Commercial timber volume, however, was reduced by almost two-thirds in logged plots, suggesting that long-term timber management goals in this forest type are compromised since so few future crop trees remained onsite. Our findings indicate that in order to maximize local management objectives, community forest managers must approach logging in bamboo-dominated forests with caution. We suggest an integration of non-timber forest product extraction with low harvest intensity and low-impact logging, tending of natural regeneration, and diversification of commercial species. © 2014 Elsevier B.V.  
  Address INRA, UMR Ecologie des Forêts de Guyane, 97387 Kourou Cedex, French Guiana  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 03781127 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 15 February 2014; Source: Scopus; Coden: Fecmd; Language of Original Document: English; Correspondence Address: Rockwell, C.A.; School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611, United States; email: rockwell_cara@yahoo.com; Funding Details: DGE-0221599, NSF, National Science Foundation Approved no  
  Call Number EcoFoG @ webmaster @ Serial 528  
Permanent link to this record
 

 
Author Ruelle, J.; Beauchene, J.; Yamamoto, H.; Thibaut, B. openurl 
  Title Variations in physical and mechanical properties between tension and opposite wood from three tropical rainforest species Type Journal Article
  Year 2011 Publication Wood Science and Technology Abbreviated Journal Wood Sci. Technol.  
  Volume 45 Issue 2 Pages 339-357  
  Keywords  
  Abstract (down) Growth strains were measured in situ in nine trees of three species from a French Guiana tropical rainforest in a clearly active verticality restoration process. The aim was to detect tension wood within the samples. Wood specimens were cut in the vicinity of the growth strain measurements in order to determine the microfibril angle and some mechanical and physical properties. As suspected, tensile growth strain was much higher in tension wood zones, as shown by the slightly higher longitudinal modulus of elasticity. Conversely, tension wood showed reduced compression strength. Longitudinal shrinkage was much higher in tension wood than in opposite wood. Clear relationships between the microfibril angle and longitudinal properties were noted in comparison (i) with those observed in gymnosperm compression wood and (ii) with expected relationships from the organization of wood fibres cell wall structure.  
  Address [Ruelle, Julien; Yamamoto, Hiroyuki] Nagoya Univ, Grad Sch Bioagr Sci, Nagoya, Aichi 4648601, Japan, Email: julien.ruelle@ecofog.gf  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-7719 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000289477300013 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 305  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: