|   | 
Details
   web
Records
Author Basset, Y.; Cizek, L.; Cuénoud, P.; Didham, R.K.; Guilhaumon, F.; Missa, O.; Novotny, V.; Ødegaard, F.; Roslin, T.; Schmidl, J.; Tishechkin, A.K.; Winchester, N.N.; Roubik, D.W.; Aberlenc, H.-P.; Bail, J.; Barrios, H.; Bridle, J.R.; Castaño-Meneses, G.; Corbara, B.; Curletti, G.; Da Rocha, W.D.; De Bakker, D.; Delabie, J.H.C.; Dejean, A.; Fagan, L.L.; Floren, A.; Kitching, R.L.; Medianero, E.; Miller, S.E.; De Oliveira, E.G.; Orivel, J.; Pollet, M.; Rapp, M.; Ribeiro, S.P.; Roisin, Y.; Schmidt, J.B.; Sørensen, L.; Leponce, M.
Title Arthropod diversity in a tropical forest Type Journal Article
Year 2012 Publication Science Abbreviated Journal
Volume 338 Issue 6113 Pages 1481-1484
Keywords
Abstract (up) Most eukaryotic organisms are arthropods. Yet, their diversity in rich terrestrial ecosystems is still unknown. Here we produce tangible estimates of the total species richness of arthropods in a tropical rainforest. Using a comprehensive range of structured protocols, we sampled the phylogenetic breadth of arthropod taxa from the soil to the forest canopy in the San Lorenzo forest, Panama. We collected 6144 arthropod species from 0.48 hectare and extrapolated total species richness to larger areas on the basis of competing models. The whole 6000-hectare forest reserve most likely sustains 25,000 arthropod species. Notably, just 1 hectare of rainforest yields >60% of the arthropod biodiversity held in the wider landscape. Models based on plant diversity fitted the accumulated species richness of both herbivore and nonherbivore taxa exceptionally well. This lends credence to global estimates of arthropod biodiversity developed from plant models.
Address Natural History Museum of Denmark, 2100 Copenhagen, Denmark
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 27 December 2012; Source: Scopus Approved no
Call Number EcoFoG @ webmaster @ Serial 451
Permanent link to this record
 

 
Author Esquivel-Muelbert, A.; Baker, T.R.; Dexter, K.G.; Lewis, S.L.; Brienen, R.J.W.; Feldpausch, T.R.; Lloyd, J.; Monteagudo-Mendoza, A.; Arroyo, L.; Álvarez-Dávila, E.; Higuchi, N.; Marimon, B.S.; Marimon-Junior, B.H.; Silveira, M.; Vilanova, E.; Gloor, E.; Malhi, Y.; Chave, J.; Barlow, J.; Bonal, D.; Davila Cardozo, N.; Erwin, T.; Fauset, S.; Hérault, B.; Laurance, S.; Poorter, L.; Qie, L.; Stahl, C.; Sullivan, M.J.P.; ter Steege, H.; Vos, V.A.; Zuidema, P.A.; Almeida, E.; Almeida de Oliveira, E.; Andrade, A.; Vieira, S.A.; Aragão, L.; Araujo-Murakami, A.; Arets, E.; Aymard C, G.A.; Baraloto, C.; Camargo, P.B.; Barroso, J.G.; Bongers, F.; Boot, R.; Camargo, J.L.; Castro, W.; Chama Moscoso, V.; Comiskey, J.; Cornejo Valverde, F.; Lola da Costa, A.C.; del Aguila Pasquel, J.; Di Fiore, A.; Fernanda Duque, L.; Elias, F.; Engel, J.; Flores Llampazo, G.; Galbraith, D.; Herrera Fernández, R.; Honorio Coronado, E.; Hubau, W.; Jimenez-Rojas, E.; Lima, A.J.N.; Umetsu, R.K.; Laurance, W.; Lopez-Gonzalez, G.; Lovejoy, T.; Aurelio Melo Cruz, O.; Morandi, P.S.; Neill, D.; Núñez Vargas, P.; Pallqui Camacho, N.C.; Parada Gutierrez, A.; Pardo, G.; Peacock, J.; Peña-Claros, M.; Peñuela-Mora, M.C.; Petronelli, P.; Pickavance, G.C.; Pitman, N.; Prieto, A.; Quesada, C.; Ramírez-Angulo, H.; Réjou-Méchain, M.; Restrepo Correa, Z.; Roopsind, A.; Rudas, A.; Salomão, R.; Silva, N.; Silva Espejo, J.; Singh, J.; Stropp, J.; Terborgh, J.; Thomas, R.; Toledo, M.; Torres-Lezama, A.; Valenzuela Gamarra, L.; van de Meer, P.J.; van der Heijden, G.; van der Hout, P.; Vasquez Martinez, R.; Vela, C.; Vieira, I.C.G.; Phillips, O.L.
Title Compositional response of Amazon forests to climate change Type Journal Article
Year 2019 Publication Global Change Biology Abbreviated Journal Global Change Biol.
Volume 25 Issue 1 Pages 39-56
Keywords bioclimatic niches; climate change; compositional shifts; functional traits; temporal trends; tropical forests; bioclimatology; climate change; floristics; lowland environment; niche; temporal variation; tropical forest; Amazonia; carbon dioxide; water; biodiversity; Brazil; classification; climate change; ecosystem; forest; physiology; season; tree; tropic climate; Biodiversity; Brazil; Carbon Dioxide; Climate Change; Ecosystem; Forests; Seasons; Trees; Tropical Climate; Water
Abstract (up) Most of the planet's diversity is concentrated in the tropics, which includes many regions undergoing rapid climate change. Yet, while climate-induced biodiversity changes are widely documented elsewhere, few studies have addressed this issue for lowland tropical ecosystems. Here we investigate whether the floristic and functional composition of intact lowland Amazonian forests have been changing by evaluating records from 106 long-term inventory plots spanning 30 years. We analyse three traits that have been hypothesized to respond to different environmental drivers (increase in moisture stress and atmospheric CO 2 concentrations): maximum tree size, biogeographic water-deficit affiliation and wood density. Tree communities have become increasingly dominated by large-statured taxa, but to date there has been no detectable change in mean wood density or water deficit affiliation at the community level, despite most forest plots having experienced an intensification of the dry season. However, among newly recruited trees, dry-affiliated genera have become more abundant, while the mortality of wet-affiliated genera has increased in those plots where the dry season has intensified most. Thus, a slow shift to a more dry-affiliated Amazonia is underway, with changes in compositional dynamics (recruits and mortality) consistent with climate-change drivers, but yet to significantly impact whole-community composition. The Amazon observational record suggests that the increase in atmospheric CO 2 is driving a shift within tree communities to large-statured species and that climate changes to date will impact forest composition, but long generation times of tropical trees mean that biodiversity change is lagging behind climate change.
Address Museu Paraense Emílio Goeldi, Pará, Brazil
Corporate Author Thesis
Publisher Blackwell Publishing Ltd Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 13541013 (Issn) ISBN Medium
Area Expedition Conference
Notes Cited By :21; Export Date: 6 January 2020; Correspondence Address: Esquivel-Muelbert, A.; School of Geography, University of LeedsUnited Kingdom; email: adriane.esquivel@gmail.com Approved no
Call Number EcoFoG @ webmaster @ Serial 905
Permanent link to this record
 

 
Author Chartier, M.; Gibernau, M.; Renner, S.S.
Title The evolution of pollinator-plant interaction types in the araceae Type Journal Article
Year 2014 Publication Evolution Abbreviated Journal Evolution
Volume 68 Issue 5 Pages 1533-1543
Keywords Ancestral state reconstruction; Inflorescence traits; Phylogeny; Pollination syndromes; Trap flowers
Abstract (up) Most plant-pollinator interactions are mutualistic, involving rewards provided by flowers or inflorescences to pollinators. Antagonistic plant-pollinator interactions, in which flowers offer no rewards, are rare and concentrated in a few families including Araceae. In the latter, they involve trapping of pollinators, which are released loaded with pollen but unrewarded. To understand the evolution of such systems, we compiled data on the pollinators and types of interactions, and coded 21 characters, including interaction type, pollinator order, and 19 floral traits. A phylogenetic framework comes from a matrix of plastid and new nuclear DNA sequences for 135 species from 119 genera (5342 nucleotides). The ancestral pollination interaction in Araceae was reconstructed as probably rewarding albeit with low confidence because information is available for only 56 of the 120-130 genera. Bayesian stochastic trait mapping showed that spadix zonation, presence of an appendix, and flower sexuality were correlated with pollination interaction type. In the Araceae, having unisexual flowers appears to have provided the morphological precondition for the evolution of traps. Compared with the frequency of shifts between deceptive and rewarding pollination systems in orchids, our results indicate less lability in the Araceae, probably because of morphologically and sexually more specialized inflorescences. © 2013 The Society for the Study of Evolution.
Address Department of Biology, University of Munich, Munich, 80638, Germany
Corporate Author Thesis
Publisher Society for the Study of Evolution Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 15585646 (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 30 May 2014; Source: Scopus; Coden: Evola; Language of Original Document: English Approved no
Call Number EcoFoG @ webmaster @ Serial 544
Permanent link to this record
 

 
Author Woolfit, M.; Iturbe-Ormaetxe, I.; Brownlie, J.C.; Walker, T.; Riegler, M.; Seleznev, A.; Popovici, J.; Rancès, E.; Wee, B.A.; Pavlides, J.; Sullivan, M.J.; Beatson, S.A.; Lane, A.; Sidhu, M.; McMeniman, C.J.; McGraw, E.A.; O'Neill, S.L.
Title Genomic evolution of the pathogenic Wolbachia strain, wMelPop Type Journal Article
Year 2013 Publication Genome Biology and Evolution Abbreviated Journal Genome Biolog. Evol.
Volume 5 Issue 11 Pages 2189-2204
Keywords Endosymbiont; Evolution; Genomics; Wolbachia
Abstract (up) Most strains of the widespread endosymbiotic bacterium Wolbachia pipientis are benign or behave as reproductive parasites. The pathogenic strain wMelPop is a striking exception, however: it overreplicates in its insect hosts and causes severe life shortening. The mechanism of this pathogenesis is currently unknown. We have sequenced the genomes of three variants of wMelPop and of the closely related nonpathogenic strain wMelCS. We show that the genomes of wMelCS and wMelPop appear to be identical in the nonrepeat regions of the genome and differ detectably only by the triplication of a 19-kb region that is unlikely to be associated with life shortening, demonstrating that dramatic differences in the host phenotype caused by this endosymbiont may be the result of only minor genetic changes. We also compare the genomes of the original wMelPop strain from Drosophila melanogaster and two sequentialderivatives, wMelPop-CLA and wMelPop-PGYP. To develop wMelPop as a novel biocontrol agent, it was first transinfected into and passaged in mosquito cell lines for approximately 3.5 years, generating wMelPop-CLA. This cell line-passaged strain was then transinfected into Aedesaegypti mosquitoes, creating wMelPop-PGYP,which wassequenced after 4yearsin the insecthost. We observe a rapid burst of genomic changes during cell line passaging, but no further mutations were detected after transinfection into mosquitoes, indicating either that host preadaptation had occurred in cell lines, that cell lines are a more selectively permissive environment than animal hosts, or both. Our results provide valuable data on the rates of genomic and phenotypic change in Wolbachia associated with host shifts over short time scales. © The Author(s) 2013. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Address Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 17596653 (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 9 February 2014; Source: Scopus; Language of Original Document: English; Correspondence Address: O'Neill, S.L.; School of Biological Sciences, Monash University, Clayton, VIC, Australia; email: scott.oneill@monash.edu; Funding Details: NIH, National Institutes of Health Approved no
Call Number EcoFoG @ webmaster @ Serial 527
Permanent link to this record
 

 
Author Dejean, A.; Orivel, J.; Rossi, V.; Roux, O.; Lauth, J.; Malé, P.-J.G.; Céréghino, R.; Leroy, C.
Title Predation Success By A Plant-Ant Indirectly Favours The Growth And Fitness Of Its Host Myrmecophyte Type Journal Article
Year 2013 Publication PLoS ONE Abbreviated Journal
Volume 8 Issue 3 Pages e59405
Keywords
Abstract (up) Mutualisms, or interactions between species that lead to net fitness benefits for each species involved, are stable and ubiquitous in nature mostly due to “byproduct benefits” stemming from the intrinsic traits of one partner that generate an indirect and positive outcome for the other. Here we verify if myrmecotrophy (where plants obtain nutrients from the refuse of their associated ants) can explain the stability of the tripartite association between the myrmecophyte Hirtella physophora, the ant Allomerus decemarticulatus and an Ascomycota fungus. The plant shelters and provides the ants with extrafloral nectar. The ants protect the plant from herbivores and integrate the fungus into the construction of a trap that they use to capture prey; they also provide the fungus and their host plant with nutrients. During a 9-month field study, we over-provisioned experimental ant colonies with insects, enhancing colony fitness (i.e., more winged females were produced). The rate of partial castration of the host plant, previously demonstrated, was not influenced by the experiment. Experimental plants showed higher δ15N values (confirming myrmecotrophy), plus enhanced vegetative growth (e.g., more leaves produced increased the possibility of lodging ants in leaf pouches) and fitness (i.e., more fruits produced and more flowers that matured into fruit). This study highlights the importance of myrmecotrophy on host plant fitness and the stability of ant-myrmecophyte mutualisms. © 2013 Dejean et al.
Address IRD, AMAP (botAnique et bioinforMatique de l'Architecture des Plantes; UMR-IRD 123), Montpellier, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 26 March 2013; Source: Scopus; Art. No.: e59405 Approved no
Call Number EcoFoG @ webmaster @ Serial 478
Permanent link to this record
 

 
Author Orivel, J.; Leroy, C.
Title The diversity and ecology of ant gardens (Hymenoptera: Formicidae; Spermatophyta: Angiospermae) Type Journal Article
Year 2011 Publication Myrmecological News Abbreviated Journal Myrmecol. News
Volume 14 Issue Pages 73-85
Keywords Ant-plant interactions; epiphytes; mutualisms; Neotropics; Paleotropics; phytotelm; parabiosis; seed dispersal; review
Abstract (up) Mutualistic interactions between ants and plants are important features of many ecosystems, and they can be divided into three main categories: dispersal and protective mutualisms and myrmecotrophy. In both the Neotropics and the Southeastern Asian Paleotropics, ant gardens (AGs), a particular type of ant-plant interaction, are frequent. To initiate AGs, ants integrate the seeds of certain epiphyte species into the carton of their nest. The development of the plants leads to the formation of a cluster of epiphytes rooted in the carton. They have been defined as one of the most complex associations between ants and plants known because of the plurispecific, but also specialized nature of the association involving several phylogenetically-distant ant and plant species. The aim of this review is to provide a synthesis of the diversity and ecology of AGs, including the outcomes experienced by the partners in the interaction and the direct and indirect impacts ant-garden ants have on the plant and arthropod communities.
Address [Orivel, Jerome; Leroy, Celine] CNRS, UMR Ecol Forets Guyane, Kourou 97379, French Guiana, Email: jerome.orivel@ecofog.gf
Corporate Author Thesis
Publisher OESTERREICHISCHE GESELL ENTOMOFAUNISTIK, C/O NATURHISTOR MUSEUM WIEN Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1994-4136 ISBN Medium
Area Expedition Conference
Notes ISI:000286844100009 Approved no
Call Number EcoFoG @ webmaster @ Serial 292
Permanent link to this record
 

 
Author Menzel, F.; Orivel, J.; Kaltenpoth, M.; Schmitt, T.
Title What makes you a potential partner? Insights from convergently evolved ant-ant symbioses Type Journal Article
Year 2014 Publication Chemoecology Abbreviated Journal Chemoecology
Volume 24 Issue 3 Pages 105-119
Keywords Aggression; Coevolution; Cuticular hydrocarbons; Formicidae; Interspecific association; Parabiosis; Recognition cues
Abstract (up) Mutualistic, commensalistic or parasitic interactions are unevenly distributed across the animals and plants: in certain taxa, such interspecific associations evolved more often than in others. Within the ants, associations between species of the genera Camponotus and Crematogaster evolved repeatedly and include trail-sharing associations, where two species share foraging trails, and parabioses, where two species share a nest without aggression. Camponotus and Crematogaster may possess life-history traits that favour the evolution of associations. To identify which traits are affected by the association, we investigated a neotropical parabiosis of Ca. femoratus and Cr. levior and compared it to a paleotropical parabiosis and a trail-sharing association. The two neotropical species showed altered cuticular hydrocarbon profiles compared to non-parabiotic species accompanied by low levels of interspecific aggression. Both species occurred in two chemically distinct types. Camponotus followed artificial trails of Crematogaster pheromones, but not vice versa. The above traits were also found in the paleotropical parabiosis, and the trail-following results match those of the trail-sharing association. In contrast to paleotropical parabioses, however, Camponotus was dominant, had a high foraging activity and often fought against Crematogaster over food resources. We suggest three potential preadaptations for parabiosis. First, Crematogaster uses molecules as trail pheromones, which can be perceived by Camponotus, too. Second, nests of Camponotus are an important benefit to Crematogaster and may create a selection pressure for the latter to tolerate Camponotus. Third, there are parallel, but unusual, shifts in cuticular hydrocarbon profiles between neotropics and paleotropics, and between Camponotus and Crematogaster. © 2014 Springer Basel.
Address Department of Animal Ecology and Tropical Biology Biocentre, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
Corporate Author Thesis
Publisher Birkhauser Verlag AG Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 09377409 (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 10 June 2014; Coden: Chmoe; Correspondence Address: Menzel, F.; Department of Evolutionary Biology, Institute of Zoology, University of Mainz, Johannes-von-Müller-Weg 6, 55099 Mainz, Germany; email: menzelf@uni-mainz.de Approved no
Call Number EcoFoG @ webmaster @ Serial 547
Permanent link to this record
 

 
Author Martos, F.; Dulormne, M.; Pailler, T.; Bonfante, P.; Faccio, A.; Fournel, J.; Dubois, M.-P.; Selosse, M.-A.
Title Independent recruitment of saprotrophic fungi as mycorrhizal partners by tropical achlorophyllous orchids Type Journal Article
Year 2009 Publication New Phytologist Abbreviated Journal New Phytologist
Volume 184 Issue 3 Pages 668-681
Keywords Mycoheterotrophy; Mycorrhizas; Orchids; Rainforests; Saprotrophic fungi; Stable isotopes
Abstract (up) Mycoheterotrophic orchids have adapted to shaded forest understory by shifting to achlorophylly and receiving carbon from their mycorrhizal fungi. In temperate forests, they associate in a highly specific way with fungi forming ectomycorrhizas on nearby trees, and exploiting tree photosynthates. However, many rainforests lack ectomycorrhizal fungi, and there is evidence that some tropical Asiatic species associate with saprotrophic fungi. To investigate this in different geographic and phylogenetic contexts, we identified the mycorrhizal fungi supporting two tropical mycoheterotrophic orchids from Mascarene (Indian Ocean) and Caribbean islands. We tested their possible carbon sources by measuring natural nitrogen (15N) and carbon (13C) abundances. Saprotrophic basidiomycetes were found: Gastrodia similis associates with a wood-decaying Resinicium (Hymenochaetales); Wullschlaegelia aphylla associates with both litter-decaying Gymnopus and Mycena species, whose rhizomorphs link orchid roots to leaf litter. The 15N and 13C abundances make plausible food chains from dead wood to G. similis and from dead leaves to W. aphylla. We propose that temperature and moisture in rainforests, but not in most temperate forests, may favour sufficient saprotrophic activity to support development of mycoheterotrophs. By enlarging the spectrum of mycorrhizal fungi and the level of specificity in mycoheterotrophic orchids, this study provides new insights on orchid and mycorrhizal biology in the tropics. © 2009 New Phytologist.
Address Dipartimento di Biologia Vegetale dell'Università, Istituto per la Protezione Delle Piante – CNR, Viale Mattioli 25, I-10125 Torino, Italy
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Cited By :65; Export Date: 7 February 2017 Approved no
Call Number EcoFoG @ webmaster @ Serial 728
Permanent link to this record
 

 
Author Vantaux, A.; Roux, O.; Magro, A.; Orivel, J.
Title Evolutionary perspectives on myrmecophily in ladybirds Type Journal Article
Year 2012 Publication Psyche Abbreviated Journal Psyche
Volume 591570 Issue Pages 1-7
Keywords
Abstract (up) Myrmecophiles are species that usually have developed specialized traits to cope with the aggressiveness of ants enabling them to live in their vicinity. Many coccinellid species are predators of Hemiptera; the latter is also often protected by ants. Therefore these ladybirds frequently interact with ants, and some species have become myrmecophilous. In this paper, we aim to provide an overview of the evolution of myrmecophilous traits in ladybirds. We then discuss the costs and benefits of myrmecophily and the dietary shift to myrmecophagy observed in a few species. Copyright © 2012 Amélie Vantaux et al.
Address CNRS, UMR EcoFoG-Ecologie des Forêts de Guyane, Campus Agronomique, BP 316, 97379 Kourou Cedex, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 00332615 (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 28 March 2012; Source: Scopus; Art. No.: 591570; doi: 10.1155/2012/591570; Language of Original Document: English; Correspondence Address: Vantaux, A.; Entomology Laboratory, Zoological Institute, Catholic University of Leuven, Naamsestraat 59, 3000 Leuven, Belgium; email: amelie.vantaux@gmail.com Approved no
Call Number EcoFoG @ webmaster @ Serial 388
Permanent link to this record
 

 
Author Dejean, A.; Leroy, C.; Corbara, B.; Cereghino, R.; Roux, O.; Herault, B.; Rossi, V.; Guerrero, R.J.; Delabie, J.H.C.; Orivel, J.; Boulay, R.
Title A temporary social parasite of tropical plant-ants improves the fitness of a myrmecophyte Type Journal Article
Year 2010 Publication Naturwissenschaften Abbreviated Journal Naturwissenschaften
Volume 97 Issue 10 Pages 925-934
Keywords Ant-plant relationships; Biotic defense; Parasites of mutualisms; Temporary social parasites; Azteca; Cecropia
Abstract (up) Myrmecophytes offer plant-ants a nesting place in exchange for protection from their enemies, particularly defoliators. These obligate ant-plant mutualisms are common model systems for studying factors that allow horizontally transmitted mutualisms to persist since parasites of ant-myrmecophyte mutualisms exploit the rewards provided by host plants whilst providing no protection in return. In pioneer formations in French Guiana, Azteca alfari and Azteca ovaticeps are known to be mutualists of myrmecophytic Cecropia (Cecropia ants). Here, we show that Azteca andreae, whose colonies build carton nests on myrmecophytic Cecropia, is not a parasite of Azteca-Cecropia mutualisms nor is it a temporary social parasite of A. alfari; it is, however, a temporary social parasite of A. ovaticeps. Contrarily to the two mutualistic Azteca species that are only occasional predators feeding mostly on hemipteran honeydew and food bodies provided by the host trees, A. andreae workers, which also attend hemipterans, do not exploit the food bodies. Rather, they employ an effective hunting technique where the leaf margins are fringed with ambushing workers, waiting for insects to alight. As a result, the host trees' fitness is not affected as A. andreae colonies protect their foliage better than do mutualistic Azteca species resulting in greater fruit production. Yet, contrarily to mutualistic Azteca, when host tree development does not keep pace with colony growth, A. andreae workers forage on surrounding plants; the colonies can even move to a non-Cecropia tree.
Address [Dejean, Alain; Leroy, Celine; Roux, Olivier; Orivel, Jerome] CNRS, F-97379 Kourou, France, Email: alain.dejean@wanadoo.fr
Corporate Author Thesis
Publisher SPRINGER Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-1042 ISBN Medium
Area Expedition Conference
Notes ISI:000282094100006 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 77
Permanent link to this record