|   | 
Details
   web
Records
Author Tysklind, N.; Etienne, M.-P.; Scotti-Saintagne, C.; Tinaut, A.; Casalis, M.; Troispoux, V.; Cazal, S.-O.; Brousseau, L.; Ferry, B.; Scotti, I.
Title Microgeographic local adaptation and ecotype distributions: The role of selective processes on early life-history traits in sympatric, ecologically divergent Symphonia populations Type Journal Article
Year 2020 Publication Ecology and Evolution Abbreviated Journal (down) Ecology and Evolution
Volume 10 Issue 19 Pages 10735-10753
Keywords determinants of plant community diversity and structure; evolutionary ecology; landscape ecology; local adaptation; Neotropical forest; plant development and life-history traits; reciprocal transplantation experiments; Symphonia
Abstract Trees are characterized by the large number of seeds they produce. Although most of those seeds will never germinate, plenty will. Of those which germinate, many die young, and eventually, only a minute fraction will grow to adult stage and reproduce. Is this just a random process? Do variations in germination and survival at very young stages rely on variations in adaptations to microgeographic heterogeneity? and do these processes matter at all in determining tree species distribution and abundance?. We have studied these questions with the Neotropical Symphonia tree species. In the Guiana shield, Symphonia are represented by at least two sympatric taxa or ecotypes, Symphonia globulifera found almost exclusively in bottomlands, and a yet undescribed more generalist taxon/ecotype, Symphonia sp1. A reciprocal transplantation experiment (510 seeds, 16 conditions) was set up and followed over the course of 6 years to evaluate the survival and performance of individuals from different ecotypes and provenances. Germination, survival, growth, and herbivory showed signs of local adaptation, with some combinations of ecotypes and provenances growing faster and surviving better in their own habitat or provenance region. S. globulifera was strongly penalized when planted outside its home habitat but showed the fastest growth rates when planted in its home habitat, suggesting it is a specialist of a high-risk high-gain strategy. Conversely, S. sp1 behaved as a generalist, performing well in a variety of environments. The differential performance of seeds and seedlings in the different habitats matches the known distribution of both ecotypes, indicating that environmental filtering at the very early stages can be a key determinant of tree species distributions, even at the microgeographic level and among very closely related taxa. Furthermore, such differential performance also contributes to explain, in part, the maintenance of the different Symphonia ecotypes living in intimate sympatry despite occasional gene flow. © 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd
Address UMR AMAP, IRD, Cirad, CNRS, INRAE, Université Montpellier, Montpellier, France
Corporate Author Thesis
Publisher John Wiley and Sons Ltd Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 20457758 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 951
Permanent link to this record
 

 
Author Binelli, G.; Montaigne, W.; Sabatier, D.; Scotti-Saintagne, C.; Scotti, I.
Title Discrepancies between genetic and ecological divergence patterns suggest a complex biogeographic history in a Neotropical genus Type Journal Article
Year 2020 Publication Ecology and Evolution Abbreviated Journal (down) Ecology and Evolution
Volume 10 Issue 11 Pages 4726-4738
Keywords allopatric divergence; Amazon; Guiana Shield; interspecific gene flow; Myristicaceae; secondary contact; Virola
Abstract Phylogenetic patterns and the underlying speciation processes can be deduced from morphological, functional, and ecological patterns of species similarity and divergence. In some cases, though, species retain multiple similarities and remain almost indistinguishable; in other cases, evolutionary convergence can make such patterns misleading; very often in such cases, the “true” picture only emerges from carefully built molecular phylogenies, which may come with major surprises. In addition, closely related species may experience gene flow after divergence, thus potentially blurring species delimitation. By means of advanced inferential methods, we studied molecular divergence between species of the Virola genus (Myristicaceae): widespread Virola michelii and recently described, endemic V. kwatae, using widespread V. surinamensis as a more distantly related outgroup with different ecology and morphology—although with overlapping range. Contrary to expectations, we found that the latter, and not V. michelii, was sister to V. kwatae. Therefore, V. kwatae probably diverged from V. surinamensis through a recent morphological and ecological shift, which brought it close to distantly related V. michelii. Through the modeling of the divergence process, we inferred that gene flow between V. surinamensis and V. kwatae stopped soon after their divergence and resumed later, in a classical secondary contact event which did not erase their ecological and morphological differences. While we cannot exclude that initial divergence occurred in allopatry, current species distribution and the absence of geographical barriers make complete isolation during speciation unlikely. We tentatively conclude that (a) it is possible that divergence occurred in allopatry/parapatry and (b) secondary contact did not suppress divergence. © 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
Address INRAE, URFM, Avignon, France
Corporate Author Thesis
Publisher John Wiley and Sons Ltd Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 20457758 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 963
Permanent link to this record
 

 
Author Cereghino, R.; Leroy, C.; Dejean, A.; Corbara, B.
Title Ants mediate the structure of phytotelm communities in an ant-garden bromeliad Type Journal Article
Year 2010 Publication Ecology Abbreviated Journal (down) Ecology
Volume 91 Issue 5 Pages 1549-1556
Keywords Aechmea mertensii; ant-gardens; biodiversity; bromeliads; Camponotus femoratus; Crematogaster levior; macroinvertebrates; mutualism; Pachycondyla goeldii; phytotelmata; secondary forest; Sinnamary; French Guiana; species interactions
Abstract The main theories explaining the biological diversity of rain forests often confer a limited understanding of the contribution of interspecific interactions to the observed patterns. We show how two-species mutualisms can affect much larger segments of the invertebrate community in tropical rain forests. Aechmea mertensii (Bromeliaceae) is both a phytotelm (plant-held water) and an ant-garden epiphyte. We studied the influence of its. associated ant species (Pachycondyla goeldii and Camponotus femoratus) on the physical characteristics of the plants, and, subsequently, on the diversity of the invertebrate communities that inhabit their tanks. As dispersal agents for the bromeliads, P. goeldii and C. femoratus influence the shape and size of the bromeliad by determining the location of the seedling, from exposed to partially shaded areas. By coexisting on a local scale, the two ant species generate a gradient of habitat conditions in terms of available resources (space and food) for aquatic invertebrates, the diversity of the invertebrate communities increasing with greater volumes of water and fine detritus. Two-species mutualisms are widespread in nature, but their influence on the diversity of entire communities remains largely unexplored. Because macroinvertebrates constitute an important part of animal production in all ecosystem types, further investigations should address the functional implications of such indirect effects.
Address [Cereghino, Regis] Univ Toulouse, UPS, INPT, Lab Ecol Fonct,EcoLab, F-31062 Toulouse, France, Email: cereghin@cict.fr
Corporate Author Thesis
Publisher ECOLOGICAL SOC AMER Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0012-9658 ISBN Medium
Area Expedition Conference
Notes ISI:000277867600030 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 59
Permanent link to this record
 

 
Author Fortunel, C.; Garnier, E.; Joffre, R.; Kazakou, E.; Quested, H.; Grigulis, K.; Lavorel, S.; Ansquer, P.; Castro, H.; Cruz, P.; Dolezal, J.; Eriksson, O.; Freitas, H.; Golodets, C.; Jouany, C.; Kigel, J.; Kleyer, M.; Lehsten, V.; Leps, J.; Meier, T.; Pakeman, R.; Papadimitriou, M.; Papanastasis, V.P.; Quetier, F.; Robson, M.; Sternberg, M.; Theau, J.P.; Thebault, A.; Zarovali, M.
Title Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe Type Journal Article
Year 2009 Publication Ecology Abbreviated Journal (down) Ecology
Volume 90 Issue 3 Pages 598-611
Keywords climate; community functional parameters; disturbance; leaf traits; litter decomposability; litter quality
Abstract Land use and climate changes induce shifts in plant functional diversity and community structure, thereby modifying ecosystem processes. This is particularly true for litter decomposition, an essential process in the biogeochemical cycles of carbon and nutrients. In this study, we asked whether changes in functional traits of living leaves in response to changes in land use and climate were related to rates of litter potential decomposition, hereafter denoted litter decomposability, across a range of 10 contrasting sites. To disentangle the different control factors on litter decomposition, we conducted a microcosm experiment to determine the decomposability under standard conditions of litters collected in herbaceous communities from Europe and Israel. We tested how environmental factors ( disturbance and climate) affected functional traits of living leaves and how these traits then modified litter quality and subsequent litter decomposability. Litter decomposability appeared proximately linked to initial litter quality, with particularly clear negative correlations with lignin-dependent indices ( litter lignin concentration, lignin : nitrogen ratio, and fiber component). Litter quality was directly related to community-weighted mean traits. Lignin-dependent indices of litter quality were positively correlated with community-weighted mean leaf dry matter content (LDMC), and negatively correlated with community-weighted mean leaf nitrogen concentration (LNC). Consequently, litter decomposability was correlated negatively with community-weighted mean LDMC, and positively with community-weighted mean LNC. Environmental factors ( disturbance and climate) influenced community-weighted mean traits. Plant communities experiencing less frequent or less intense disturbance exhibited higher community-weighted mean LDMC, and therefore higher litter lignin content and slower litter decomposability. LDMC therefore appears as a powerful marker of both changes in land use and of the pace of nutrient cycling across 10 contrasting sites.
Address [Fortunel, Claire; Garnier, Eric; Joffre, Richard; Kazakou, Elena] CNRS, UMR 5175, Ctr Ecol Fonct & Evolut, F-34293 Montpellier 5, France, Email: claire.fortunel@ecofog.gf
Corporate Author Thesis
Publisher ECOLOGICAL SOC AMER Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0012-9658 ISBN Medium
Area Expedition Conference
Notes ISI:000263776800003 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 121
Permanent link to this record
 

 
Author Baraloto, C.; Morneau, F.; Bonal, D.; Blanc, L.; Ferry, B.
Title Seasonal water stress tolerance and habitat associations within four neotropical tree genera Type Journal Article
Year 2007 Publication Ecology Abbreviated Journal (down) Ecology
Volume 88 Issue 2 Pages 478-489
Keywords drought tolerance; French Guiana; photosynthetic capacity; phylogenetically independent contrast; relative growth rate; seasonally flooded forest; specific leaf area; torus translation method; tropical forest
Abstract We investigated the relationship between habitat association and physiological performance in four congeneric species pairs exhibiting contrasting distributions between seasonally flooded and terra firme habitats in lowland tropical rain forests of French Guiana, including Virola and Iryanthera ( Myristicaceae), Symphonia ( Clusiaceae), and Eperua (Caesalpiniaceae). We analyzed 10-year data sets of mapped and measured saplings ( stems >= 150 cm in height and < 10 cm diameter at breast height [dbh]) and trees ( stems >= 10 cm dbh) across 37.5 ha of permanent plots covering a 300-ha zone, within which seasonally flooded areas ( where the water table never descends below 1 m) have been mapped. Additionally, we tested the response of growth, survival, and leaf functional traits of these species to drought and flood stress in a controlled experiment. We tested for habitat preference using a modi. cation of the torus translation method. Strong contrasting associations of the species pairs of Iryanthera, Virola, and Symphonia were observed at the sapling stage, and these associations strengthened for the tree stage. Neither species of Eperua was significantly associated with flooded habitats at the sapling stage, but E. falcata was significantly and positively associated with flooded forests at the tree stage, and trees of E. grandiflora were found almost exclusively in nonflooded habitats. Differential performance provided limited explanatory support for the observed habitat associations, with only congeners of Iryanthera exhibiting divergent sapling survival and tree growth. Seedlings of species associated with flooded forest tended to have higher photosynthetic capacity than their congeners at field capacity. In addition, they tended to have the largest reductions in leaf gas exchange and growth rate in response to experimental drought stress and the least reductions in response to experimental inundation. The corroboration of habitat association with differences in functional traits and, to a lesser extent, measures of performance provides an explanation for the regional coexistence of these species pairs. We suggest that specialization to seasonally flooded habitats may explain patterns of adaptive radiation in many tropical tree genera and thereby provide a substantial contribution to regional tree diversity.
Address INRA, UMR Ecol Forets Guyane, Kourou, French Guiana, Email: baraloto@botany.ufl.edu
Corporate Author Thesis
Publisher ECOLOGICAL SOC AMER Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0012-9658 ISBN Medium
Area Expedition Conference
Notes ISI:000245668400021 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 165
Permanent link to this record
 

 
Author Baraloto, C.; Goldberg, D.E.; Bonal, D.
Title Performance trade-offs among tropical tree seedlings in contrasting microhabitats Type Journal Article
Year 2005 Publication Ecology Abbreviated Journal (down) Ecology
Volume 86 Issue 9 Pages 2461-2472
Keywords canopy gaps; French Guiana; regeneration niche; relative growth rate; seed size; shade tolerance; soil moisture; tropical forest
Abstract We investigated performance trade-offs among seedlings of nine tropical tree species during a -five-year field experiment. Seedlings were grown in eight microhabitat types composed of paired gap and shaded understory sites in each of four soil types. We defined performance trade-offs relevant to coexistence as significant pairwise rank reversals for species performance between contrasting situations, of which we characterize three types: microhabitat, fitness component, and ontogenetic. Only 2 of 36 species pairs exhibited microhabitat trade-offs or reversed rankings for survival or relative growth rate (RGR) among microhabitats, and only one species pair reversed performance ranks among soil types. We found stronger evidence for rank reversals between fitness components (survival and RGR), particularly in gap vs. understory environments, suggesting a general trade-off between shade tolerance (survival in shade) and gap establishment (RGR in gaps). Third, the most frequent rank reversals between species pairs occurred between early and later ontogenetic stages, especially between fitness components in contrasting microhabitats. Overall, 15 of 36 pairs of potentially competing species exhibited some type of seedling performance trade-off, two species pairs never outperformed one another, and for 19 species pairs one species was a consistent better performer. We suggest that ontogenetic trade-offs, in concert with microhabitat and fitness component trade-offs, may contribute to species coexistence of long-lived organisms such as tropical trees.
Address Univ Michigan, Dept Ecol & Evolutionary Biol, Ann Arbor, MI 48109 USA, Email: baraloto.c@kourou.cirad.fr
Corporate Author Thesis
Publisher ECOLOGICAL SOC AMER Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0012-9658 ISBN Medium
Area Expedition Conference
Notes ISI:000231373600021 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 252
Permanent link to this record
 

 
Author Shipley, B.; Timothy Paine, C.E.; Baraloto, C.
Title Quantifying the importance of local niche-based and stochastic processes to tropical tree community assembly Type Journal Article
Year 2012 Publication Ecology Abbreviated Journal (down) Ecology
Volume 93 Issue 4 Pages 760-769
Keywords Community Assembly by Trait Selection, CATS; Demographic stochasticity; Dispersal limitation; Environmental filtering; French Guiana; Functional traits; Maxent; Neutral assembly; Tropical forests
Abstract Although niche-based and stochastic processes, including dispersal limitation and demographic stochasticity, can each contribute to community assembly, it is difficult to quantify the relative importance of each process in natural vegetation. Here, we extend Shipley's maxent model (Community Assembly by Trait Selection, CATS) for the prediction of relative abundances to incorporate both trait-based filtering and dispersal limitation from the larger landscape and develop a statistical decomposition of the proportions of the total information content of relative abundances in local communities that are attributable to traitbased filtering, dispersal limitation, and demographic stochasticity. We apply the method to tree communities in a mature, species-rich, tropical forest in French Guiana at 1-, 0.25-and 0.04-ha scales. Trait data consisted of species' means of 17 functional traits measured over both the entire meta-community and separately in each of nine 1-ha plots. Trait means calculated separately for each site always gave better predictions. There was clear evidence of trait-based filtering at all spatial scales. Trait-based filtering was the most important process at the 1-ha scale (34%), whereas demographic stochasticity was the most important at smaller scales (37-53%). Dispersal limitation from the meta-community was less important and approximately constant across scales (∼9%), and there was also an unresolved association between site-specific traits and meta-community relative abundances. Our method allows one to quantify the relative importance of local niche-based and meta-community processes and demographic stochasticity during community assembly across spatial and temporal scales. © 2012 by the Ecological Society of America.
Address INRA, UMR, Écologie des Forêts de Guyane, 97387 Kourou cedex, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 00129658 (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 6 June 2012; Source: Scopus; Coden: Ecola; doi: 10.1890/11-0944.1; Language of Original Document: English; Correspondence Address: Shipley, B.; Département de Biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; email: Bill.Shipley@USherbrooke.ca Approved no
Call Number EcoFoG @ webmaster @ Serial 401
Permanent link to this record
 

 
Author Lamarre, G.P.A.; Baraloto, C.; Fortunel, C.; Dávila, N.; Mesones, I.; Rios, J.G.; Ríos, M.; Valderrama, E.; Pilco, M.V.; Fine, P.V.A.
Title Herbivory, growth rates, and habitat specialization in tropical tree lineages: implications for Amazonian beta-diversity Type Journal Article
Year 2012 Publication Ecology Abbreviated Journal (down) Ecology
Volume 93 Issue sp8 Pages S195-S210
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Ecological Society of America Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0012-9658 ISBN Medium
Area Expedition Conference
Notes doi: 10.1890/11-0397.1 Approved no
Call Number EcoFoG @ webmaster @ Serial 459
Permanent link to this record
 

 
Author Fine, P.V.A.; Metz, M.R.; Lokvam, J.; Mesones, I.; Zuniga, J.M.A.; Lamarre, G.P.A.; Pilco, M.V.; Baraloto, C.
Title Insect herbivores, chemical innovation, and the evolution of habitat specialization in Amazonian trees Type Journal Article
Year 2013 Publication Ecology Abbreviated Journal (down) Ecology
Volume 94 Issue 8 Pages 1764-1775
Keywords Amazonia; Ecological speciation; Ecotypes; Herbivory; Natural enemies; Plant defense; Protium subserratum; Terra firme forests; Tropical rain forests; White-sand forests
Abstract Herbivores are often implicated in the generation of the extraordinarily diverse tropical flora. One hypothesis linking enemies to plant diversification posits that the evolution of novel defenses allows plants to escape their enemies and expand their ranges. When range expansion involves entering a new habitat type, this could accelerate defense evolution if habitats contain different assemblages of herbivores and/or divergent resource availabilities that affect plant defense allocation. We evaluated this hypothesis by investigating two sister habitat specialist ecotypes of Protium subserratum (Burseraceae), a common Amazonian tree that occurs in white-sand and terra firme forests. We collected insect herbivores feeding on the plants, assessed whether growth differences between habitats were genetically based using a reciprocal transplant experiment, and sampled multiple populations of both lineages for defense chemistry. Protium subserratum plants were attacked mainly by chrysomelid beetles and cicadellid hemipterans. Assemblages of insect herbivores were dissimilar between populations of ecotypes from different habitats, as well as from the same habitat 100 km distant. Populations from terra firme habitats grew significantly faster than white-sand populations; they were taller, produced more leaf area, and had more chlorophyll. White-sand populations expressed more dry mass of secondary compounds and accumulated more flavone glycosides and oxidized terpenes, whereas terra firme populations produced a coumaroylquinic acid that was absent from white-sand populations. We interpret these results as strong evidence that herbivores and resource availability select for divergent types and amounts of defense investment in white-sand and terra firme lineages of Protium subserratum, which may contribute to habitat-mediated speciation in these trees. © 2013 by the Ecological Society of America.
Address Department of Biology, University of Florida, Gainesville, FL 32611, United States
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 00129658 (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 30 August 2013; Source: Scopus; Coden: Ecola; doi: 10.1890/12-1920.1; Language of Original Document: English; Correspondence Address: Department of Integrative Biology, 1005 Valley Life Sciences Building 3140, University of California, Berkeley, CA 94720-3140, United States Approved no
Call Number EcoFoG @ webmaster @ Serial 500
Permanent link to this record
 

 
Author Turcotte, M.M.; Thomsen, C.J.M.; Broadhead, G.T.; Fine, P.V.A.; Godfrey, R.M.; Lamarre, G.P.A.; Meyer, S.T.; Richards, L.A.; Johnson, M.T.J.
Title Percentage leaf herbivory across vascular plant species Type Journal Article
Year 2014 Publication Ecology Abbreviated Journal (down) Ecology
Volume 95 Issue 3 Pages 788-788
Keywords
Abstract Herbivory is viewed as a major driver of plant evolution and the most important energy pathway from plants to higher trophic levels. Therefore, understanding patterns of herbivory on plants remains a key focus in evolution and ecology. The evolutionary impacts of leaf herbivory include altering plant fitness, local adaptation, the evolution of defenses, and the diversification of plants as well as natural enemies. Leaf herbivory also impacts ecological processes such as plant productivity, community composition, and ecosystem nutrient cycling. Understanding the impact of herbivory on these ecological and evolutionary processes requires species-specific, as opposed to community-level, measures of herbivory. In addition, species-specific data enables the use of modern comparative methods to account for phylogenetic non-independence. Although hundreds of studies have measured natural rates of leaf consumption, we are unaware of any accessible compilation of these data. We created such a data set to provide the raw data needed to test general hypotheses relating to plant?herbivore interactions and to test the influence of biotic and abiotic factors on herbivory rates across large spatial scales. A large repository will make this endeavor more efficient and robust. In total, we compiled 2641 population-level measures for either annual or daily rates of leaf herbivory across 1145 species of vascular plants collected from 189 studies. All damage measures represent natural occurrences of herbivory that span numerous angiosperm, gymnosperm, and fern species. To enable researchers to explore the causes of variation in herbivory and how these might interact, we added information about the study sites including: geolocation, climate classification, habitat descriptions (e.g., seashore, grassland, forest, agricultural fields), and plant trait information concerning growth form and duration (e.g., annual vs. perennial). We also included extensive details of the methodology used to measure leaf damage, including seasons and months of sampling, age of leaves, and the method used to estimate percentage area missing. We anticipate that these data will make it possible to test important hypotheses in the plant?herbivore literature, including the plant apparency hypothesis, the latitudinal-herbivory defense hypothesis, the resource availability hypothesis, and the macroevolutionary escalation of defense hypothesis.
Address
Corporate Author Thesis
Publisher Ecological Society of America Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0012-9658 ISBN Medium
Area Expedition Conference
Notes doi: 10.1890/13-1741.1 Approved no
Call Number EcoFoG @ webmaster @ Serial 575
Permanent link to this record