|   | 
Details
   web
Records
Author Abedini, R.; Clair, B.; Pourtahmasi, K.; Laurans, F.; Arnould, O.
Title Cell wall thickening in developing tension wood of artificially bent poplar trees Type Journal Article
Year 2015 Publication IAWA Journal Abbreviated Journal (down) IAWA Journal
Volume 36 Issue 1 Pages 44-57
Keywords developing xylem; Gelatinous layer; maturation stress; secondary wall layer; tree biomechanics
Abstract Trees can control their shape and resist gravity thanks to their ability to produce wood under tensile stress. This stress is known to be produced during the maturation of wood fibres but the mechanism of its generation remains unclear. This study focuses on the formation of the secondary wall in tension wood produced in artificially tilted poplar saplings. Thickness of secondary wall layer (SL) and gelatinous layer (GL) were measured from cambium to mature wood in several trees sampled at different times after tilting. Measurements on wood fibres produced before tilting show the progressive increase of secondary wall thickness during the growing season. After the tilting date, SL thickness decreased markedly from normal wood to tension wood while the total thickness increased compared to normal wood, with the development of a thick GL. However, even after GL formation, SL thickness continues to increase during the growing season. GL thickening was observed to be faster than SL thickening. The development of the unlignified GL is proposed to be a low cost, efficient strategy for a fast generation of tensile stress in broadleaved trees. © 2015 International Association of Wood Anatomists.
Address INRA, UR588 Amélioration, Génétique et Physiologie ForestièresOrléans, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 17 April 2015 Approved no
Call Number EcoFoG @ webmaster @ Serial 596
Permanent link to this record
 

 
Author Ruelle, J.; Clair, B.; Beauchene, J.; Prevost, M.F.; Fournier, M.
Title Tension wood and opposite wood in 21 tropical rain forest species 2. Comparison of some anatomical and ultrastructural criteria Type Journal Article
Year 2006 Publication IAWA Journal Abbreviated Journal (down) IAWA J.
Volume 27 Issue 4 Pages 341-376
Keywords tension wood; opposite wood; tropical rain forest; vessels; wood anatomy; wood fibre
Abstract The anatomy of tension wood and opposite wood was compared in 21 tropical rain forest trees from 21 species belonging to 18 families from French Guyana. Wood specimens were taken from the upper and lower sides of naturally tilted trees. Measurement of the growth stress level ensured that the two samples were taken from wood tissues in a different mechanical state: highly tensile-stressed wood on the upper side, called tension wood and normally tensile-stressed wood on the lower side, called opposite wood. Quantitative parameters relating to fibres and vessels were measured on transverse sections of both tension and opposite wood to check if certain criteria can easily discriminate the two kinds of wood. We observed a decrease in the frequency of vessels in the tension wood in all the trees studied. Other criteria concerning shape and surface area of the vessels, fibre diameter or cell wall thickness did not reveal any general trend. At the ultrastructural level, we observed that the microfibril angle in the tension wood sample was lower than in opposite wood in all the trees except one (Licania membranacea).
Address UAG, ENGREF,UMR Ecol Forets Guyane, INRA,ECOFOG, CIRAD,CNRS, F-97379 Kourou, Guyana, Email: ruelle_j@kourou.cirad.fr
Corporate Author Thesis
Publisher INT ASSOC WOOD ANATOMISTS Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0928-1541 ISBN Medium
Area Expedition Conference
Notes ISI:000242437400001 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 171
Permanent link to this record
 

 
Author Clair, B.; Ruelle, J.; Beauchene, J.; Prevost, M.F.; Fournier, M.
Title Tension wood and opposite wood in 21 tropical rain forest species 1. Occurrence and efficiency of the G-layer Type Journal Article
Year 2006 Publication IAWA Journal Abbreviated Journal (down) IAWA J.
Volume 27 Issue 3 Pages 329-338
Keywords gelatinous layer; G-layer; French Guyana; tropical rain forest; tension wood; wood anatomy
Abstract Wood samples were taken from the upper and lower sides of 21 naturally tilted trees from 18 families of angiosperms in the tropical rain forest in French Guyana. The measurement of growth stresses ensured that the two samples were taken from wood tissues in a different mechanical state: highly tensile stressed wood on the upper side, called tension wood, and lower tensile stressed wood on the lower side, called opposite wood. Eight species had tension wood fibres with a distinct gelatinous layer (G-layer). The distribution of gelatinous fibres varied from species to species. One of the species, Casearia javitensis (Flacourtiaceae), showed a peculiar multilayered secondary wall in its reaction wood. Comparison between the stress level and the occurrence of the G-layer indicates that the G-layer is not a key factor in the production of high tensile stressed wood.
Address UAG, INRA, ENGREF, CIRAD CNRS,ECOFOG,UMR Ecol Forets Guyane, F-97379 Kourou, Guyana, Email: clair@lmgc.univ-montp2.fr
Corporate Author Thesis
Publisher INT ASSOC WOOD ANATOMISTS Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0928-1541 ISBN Medium
Area Expedition Conference
Notes ISI:000240542400008 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 176
Permanent link to this record
 

 
Author Clair, B.; Gril, J.; Baba, K.; Thibaut, B.; Sugiyama, J.
Title Precautions for the structural analysis of the gelatinous layer in tension wood Type Journal Article
Year 2005 Publication IAWA Journal Abbreviated Journal (down) IAWA J.
Volume 26 Issue 2 Pages 189-195
Keywords artefact; fibre wall; gelatinous layer (G-layer); tension wood
Abstract The gelatinous layer (G-layer) of tension wood fibres in hardwood contributes to the mechanical function of the living tree and has significant consequences on properties of solid wood. Its size, shape and structure observed by optical or electron microscopy exhibits characteristic anatomical features. However, we found that sectioning of non-embedded wood samples results in an uncontrolled swelling of the G-layer. In order to assess this artefact, the shape and thickness of the G-layer was monitored by serial sections from an embedded wood sample, from its trimmed transverse face to that located several hundreds of micrometres deep. The results revealed that the initial cutting before embedding produced a border effect responsible for the swollen nature, which is similar to sections from non-embedded material. After a conventional embedding technique was applied, a section of at least 30 micrometres below the trimming surface is required to observe an un-swollen G-layer.
Address Kyoto Univ, Res Inst Sustainable Humanosphere, Lab Biomass Morphogenesis & Informat, Kyoto 6110011, Japan, Email: clair@blmgc.univ.montp2.fr
Corporate Author Thesis
Publisher INT ASSOC WOOD ANATOMISTS Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0928-1541 ISBN Medium
Area Expedition Conference
Notes ISI:000229698100003 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 254
Permanent link to this record
 

 
Author Clair, B.; Arinero, R.; Leveque, G.; Ramonda, M.; Thibaut, B.
Title Imaging the mechanical properties of wood cell wall layers by atomic force modulation microscopy Type Journal Article
Year 2003 Publication IAWA Journal Abbreviated Journal (down) IAWA J.
Volume 24 Issue 3 Pages 223-230
Keywords wood; cell wall; mechanical properties; elastic modulus; tension wood
Abstract Atomic Force Microscopy in force modulation mode was used to study the elastic properties of the different fibre wall layers of the tension wood of holm oak and normal wood of boco. The method is based on the measurement of the resonance frequency of the microscope lever in contact with the sample. This frequency is related to the reduced Young modulus E* = E/(1-nu(2)) of the material, supposed to be isotropic. 'Elastic' images of the cell are obtained simultaneously with the topographic images, which allows the observation of the mechanical properties of the cells at a nanometric scale. Layers G, S-1, S-2 and ML can clearly be distinguished. By comparison with known materials an estimation of the absolute modulus is given in the range 5-20 GPa, but should be considered with caution, because the inherent anisotropy of the materials has not been taken into account.
Address Univ Montpellier 2, CNRS, UMR 5508, Lab Mecan & Genie Civil, F-34095 Montpellier, France
Corporate Author Thesis
Publisher INT ASSOC WOOD ANATOMISTS Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0928-1541 ISBN Medium
Area Expedition Conference
Notes ISI:000185049700003 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 270
Permanent link to this record
 

 
Author Bodin, S.C.; Scheel-Ybert, R.; Beauchene, J.; Molino, J.-F.; Bremond, L.
Title CharKey: An electronic identification key for wood charcoals of French Guiana Type Journal Article
Year 2019 Publication IAWA Journal Abbreviated Journal (down) Iawa J.
Volume 40 Issue 1 Pages 75-91
Keywords anthracology; Charcoal anatomy; computeraided identification; Note: Supplementary material can be accessed in the online edition of this journal via brill.com/iawa.; tropical flora; Xper 2
Abstract Tropical tree floras are highly diverse and many genera and species share similar anatomical patterns, making the identification of tropical wood charcoal very difficult. Appropriate tools to characterize charcoal anatomy are thus needed to facilitate and improve identification in such species-rich areas. This paper presents the first computer-aided identification key designed for charcoals from French Guiana, based on the wood anatomy of 507 species belonging to 274 genera and 71 families, which covers respectively 28%, 67% and 86% of the tree species, genera and families currently listed in this part of Amazonia. Species of the same genus are recorded together except those described under a synonym genus in Détienne et al. (1982) that were kept separately. As a result, the key contains 289 'items' and mostly aims to identify charcoals at the genus level. It records 26 anatomical features leading to 112 feature states, almost all of which are illustrated by SEM photographs of charcoal. The descriptions were mostly taken from Détienne et al.'s guidebook on tropical woods of French Guiana (1982) and follow the IAWA list of microscopic features for hardwood identification (Wheeler et al. 1989). Some adjustments were made to a few features and those that are unrelated to charcoal identification were excluded. The whole tool, named CharKey, contains the key itself and the associated database including photographs. It can be downloaded on Figshare at https://figshare.com/s/d7d40060b53d2ad60389 (doi: 10.6084/m9.figshare.6396005). CharKey is accessible using the free software Xper 2 , specifically conceived for taxonomic description and computer aided-identification.
Address Ecole Pratique des Hautes Etudes, PSL Research University, Paris, France
Corporate Author Thesis
Publisher Brill Academic Publishers Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 09281541 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 864
Permanent link to this record
 

 
Author Solander, K.C.; Newman, B.D.; Carioca De Araujo, A.; Barnard, H.R.; Berry, Z.C.; Bonal, D.; Bretfeld, M.; Burban, B.; Candido, L.A.; Célleri, R.; Chambers, J.Q.; Christoffersen, B.O.; Detto, M.; Dorigo, W.A.; Ewers, B.E.; Ferreira, S.J.F.; Knohl, A.; Leung, L.R.; McDowell, N.G.; Miller, G.R.; Monteiro, M.T.F.; Moore, G.W.; Negron-Juarez, R.; Saleska, S.R.; Stiegler, C.; Tomasella, J.; Xu, C.
Title The pantropical response of soil moisture to El Niño Type Journal Article
Year 2020 Publication Hydrology and Earth System Sciences Abbreviated Journal (down) Hydrol. Earth Syst. Sci.
Volume 24 Issue 5 Pages 2303-2322
Keywords Cluster analysis; Oceanography; Soil moisture; Surface waters; Tropics; Climate anomalies; Clustered datum; Hydrologic changes; Land data assimilation systems; Sea surface temperature anomalies; Situ soil moistures; Tropical hydrologies; Tropical Pacific ocean; Soil surveys
Abstract The 2015–2016 El Niño event ranks as one of the most severe on record in terms of the magnitude and extent of sea surface temperature (SST) anomalies generated in the tropical Pacific Ocean. Corresponding global impacts on the climate were expected to rival, or even surpass, those of the 1997–1998 severe El Niño event, which had SST anomalies that were similar in size. However, the 2015–2016 event failed to meet expectations for hydrologic change in many areas, including those expected to receive well above normal precipitation. To better understand how climate anomalies during an El Niño event impact soil moisture, we investigate changes in soil moisture in the humid tropics (between ±25∘) during the three most recent super El Niño events of 1982–1983, 1997–1998 and 2015–2016, using data from the Global Land Data Assimilation System (GLDAS). First, we use in situ soil moisture observations obtained from 16 sites across five continents to validate and bias-correct estimates from GLDAS (r2=0.54). Next, we apply a k-means cluster analysis to the soil moisture estimates during the El Niño mature phase, resulting in four groups of clustered data. The strongest and most consistent decreases in soil moisture occur in the Amazon basin and maritime southeastern Asia, while the most consistent increases occur over eastern Africa. In addition, we compare changes in soil moisture to both precipitation and evapotranspiration, which showed a lack of agreement in the direction of change between these variables and soil moisture most prominently in the southern Amazon basin, the Sahel and mainland southeastern Asia. Our results can be used to improve estimates of spatiotemporal differences in El Niño impacts on soil moisture in tropical hydrology and ecosystem models at multiple scales.
Address Coordination of Research and Development, National Centre for Monitoring and Early Warning of Natural Disasters, Cachoeira Paulista, Brazil
Corporate Author Thesis
Publisher Copernicus GmbH Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 10275606 (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 29 May 2020; Correspondence Address: Solander, K.C.; Earth and Environmental Sciences, Los Alamos National LaboratoryUnited States; email: ksolander@lanl.gov Approved no
Call Number EcoFoG @ webmaster @ Serial 934
Permanent link to this record
 

 
Author Dezerald, O.; Talaga, S.; Leroy, C.; Carrias, J.-F.; Corbara, B.; Dejean, A.; Céréghino, R.
Title Environmental determinants of macroinvertebrate diversity in small water bodies: Insights from tank-bromeliads Type Journal Article
Year 2014 Publication Hydrobiologia Abbreviated Journal (down) Hydrobiologia
Volume 723 Issue 1 Pages 77-86
Keywords Freshwater biodiversity; Linear mixed effect modelling; Microcosms; Phytotelmata; Ponds
Abstract The interlocking leaves of tank-forming bromeliads (Bromeliaceae) collect rainwater and detritus, thus creating a freshwater habitat for specialized organisms. Their abundance and the possibility of quantifying communities with accuracy give us unparalleled insight into how changes in local to regional environments influence community diversity in small water bodies. We sampled 365 bromeliads (365 invertebrate communities) along a southeastern to northwestern range in French Guiana. Geographic locality determined the species pool for bromeliad invertebrates, and local environments determined the abundance patterns through the selection of traits that are best adapted to the bromeliad habitats. Patterns in community structure mostly emerged from patterns of predator species occurrence and abundance across local-regional environments, while the set of detritivores remained constant. Water volume had a strong positive correlation with invertebrate diversity, making it a biologically relevant measure of the pools' carrying capacity. The significant effects of incoming detritus and incident light show that changes in local environments (e.g., the conversion of forest to cropping systems) strongly influence freshwater communities. Because changes in local environments do not affect detritivores and predators equally, one may expect functional shifts as sets of invertebrates with particular traits are replaced or complemented by other sets with different traits. © 2013 Springer Science+Business Media Dordrecht.
Address CNRS, EcoLab (UMR-CNRS 5245), 118 Route de Narbonne, 31062 Toulouse, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 00188158 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 517
Permanent link to this record
 

 
Author Rodríguez-Pérez, H.; Hilaire, S.; Mesléard, F.
Title Temporary pond ecosystem functioning shifts mediated by the exotic red swamp crayfish (Procambarus clarkii): a mesocosm study Type Journal Article
Year 2016 Publication Hydrobiologia Abbreviated Journal (down) Hydrobiologia
Volume 767 Issue 1 Pages 333-345
Keywords Ecosystem functioning; Exotic crayfish; Procambarus clarkii; Temporary pond
Abstract Temporary ponds, acknowledged for their conservation value, are colonized by the invasive crayfish Procambarus clarkii. We have tested the consequences of this colonization for the ecosystem under two contrasted scenarios: one single individual arrival or three individuals arrival. We recreated the temporary pond ecosystem in 1 m2 tanks to investigate the impact of the two crayfish densities. We studied the macrophyte community composition and abundance, chlorophyll a and total suspended solids concentrations, and the diversity and functional composition of micro-crustacean and macro-invertebrate communities. We observed a reduction of macrophyte biomass in experimental crayfish mesocosms in comparison with control tanks, nearly 80 and 40% less in 3 and 1 crayfish/m2 tanks, respectively. The macrophyte community shifted, followed by a filamentous algae development, an increase of bare sediment and turbidity in crayfish tanks. The macro-invertebrate community suffered a richness loss of 28 and 22%, in 3 and 1 crayfish/m2 tanks, respectively. Functionally, macro-invertebrate diversity reduction most strongly affected the grazer, detritivore and predator trophic groups. Microcrustaceans seemed not to be affected by the introduction of the crayfish. The introduction of the crayfish greatly altered the ecosystem structure and subsequently the ecosystem functioning. © 2015, Springer International Publishing Switzerland.
Address EcoFoG, Ecologie des Forêts de Guyane, CNRS UMR 8172, Campus Agronomique, BP 316, Kourou Cedex, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 8 February 2016 Approved no
Call Number EcoFoG @ webmaster @ Serial 655
Permanent link to this record
 

 
Author Leroy, C.; Corbara, B.; Dezerald, O.; Trzcinski, M.K.; Carrias, J.-F.; Dejean, A.; Céréghino, R.
Title What drives detrital decomposition in neotropical tank bromeliads? Type Journal Article
Year 2017 Publication Hydrobiologia Abbreviated Journal (down) Hydrobiologia
Volume 802 Issue 1 Pages 85-95
Keywords Context dependency; Ecosystem function; Food webs; Leaf litter; Phytotelmata; Rainforest
Abstract Decomposition experiments that control leaf litter species across environments help to disentangle the roles of litter traits and consumer diversity, but once we account for leaf litter effects, they tell us little about the variance in decomposition explained by shifts in environmental conditions versus food-web structure. We evaluated how habitat, food-web structure, leaf litter species, and the interactions between these factors affect litter mass loss in a neotropical ecosystem. We used water-filled bromeliads to conduct a reciprocal transplant experiment of two litter species between an open and a forested habitat in French Guiana, and coarse- and fine-mesh enclosures embedded within bromeliads to exclude invertebrates or allow them to colonize leaf litter disks. Soft Melastomataceae leaves decomposed faster in their home habitat, whereas tough Eperua leaves decomposed equally in both habitats. Bacterial densities did not differ significantly between the two habitats. Significant shifts in the identity and biomass of invertebrate detritivores across habitats did not generate differences in leaf litter decomposition, which was essentially microbial. Despite the obvious effects of habitats on food-web structure, ecosystem processes are not necessarily affected. Our results pose the question of when does environmental determinism matter for ecosystem functions, and when does it not. © 2017, Springer International Publishing Switzerland.
Address IRD – UMR AMAP, Campus agronomique, BP 316, Kourou Cedex, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 18 December 2017 Approved no
Call Number EcoFoG @ webmaster @ Serial 775
Permanent link to this record