toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Baraloto, C.; Bonal, D.; Goldberg, D.E. openurl 
  Title Differential seedling growth response to soil resource availability among nine neotropical tree species Type Journal Article
  Year 2006 Publication Journal of Tropical Ecology Abbreviated Journal (down) J. Trop. Ecol.  
  Volume 22 Issue Pages 487-497  
  Keywords biomass allocation; Dicorynia; drought stress; Eperua; French Guiana; Goupia; Jacaranda; plasticity; Qualea; Recordorylon; relative growth rate; Sextonia; soil phosphorus; specific leaf area; Virola  
  Abstract Although the potential contribution to tropical tree species coexistence of niche differentiation along light gradients has received much attention, the degree to which species perform differentially along soil resource gradients remains unclear. To examine differential growth response to soil resources, we grew seedlings of nine tropical tree species at 6.0% of full sun for 12 mo in a factorial design of two soil types (clay and white sand), two phosphate fertilization treatments (control and addition of 100 mg P kg(-1)) and two watering treatments (field capacity and water limitation to one-third field capacity). Species differed markedly in biomass growth rate, but this hierarchy was almost completely conserved across all eight treatments. All species grew more slowly in sand than clay soils. and no species grew faster with phosphate additions. Only Eperua grandiflora and E. falcata showed significant growth increases in the absence of water limitation. Faster-growing species were characterized by high specific leaf area, high leaf allocation and high net assimilation rate but not lower root allocation. Slower-growing species exhibited greater plasticity in net assimilation rate. suggesting that tolerance of edaphic stress in these species is related more to stomatal control than to whole-plant carbon allocation. Although relative growth rate for biomass was correlated with both its physiological and morphological components. interspecific differences were best explained by differences in net assimilation rate across six of the eight treatments. A suite of traits including high assimilation and high specific leaf area maintains rapid growth rate of faster-growing species across a wide gradient of soil resources, but the lack of plasticity they exhibit may compromise their survival in the poorest soil environments.  
  Address Univ Michigan, Dept Ecol & Evolutionary Biol, Ann Arbor, MI 48109 USA, Email: baraloto.c@kourou.cirad.fr  
  Corporate Author Thesis  
  Publisher CAMBRIDGE UNIV PRESS Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0266-4674 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000239975200001 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 178  
Permanent link to this record
 

 
Author Epron, D.; Bosc, A.; Bonal, D.; Freycon, V. openurl 
  Title Spatial variation of soil respiration across a topographic gradient in a tropical rain forest in French Guiana Type Journal Article
  Year 2006 Publication Journal of Tropical Ecology Abbreviated Journal (down) J. Trop. Ecol.  
  Volume 22 Issue Pages 565-574  
  Keywords acrisol; carbon balance; carbon flux; gleysol; root biomass  
  Abstract The objective of this study was to analyse the factors explaining spatial variation in soil respiration over topographic transects in a tropical rain forest of French Guiana. The soil of 30 plots along six transects was characterized. The appearance of the 'dry to the touch' character at a depth of less than 1.2 m was used to discriminate soils exhibiting vertical drainage from soils exhibiting superficial lateral drainage and along with colour and texture, to define five classes from well-drained to strongly hydromorphic soils. Spatial variation in soil respiration was closely related to topographic position and soil type. Increasing soil water content and bulk density and decreasing root biomass and soil carbon content explained most of the decrease in soil respiration from the plateaux (vertically drained hypoferralic acrisol) to the bottomlands (haplic gleysol). These results will help to stratify further field experiments and to identify the underlying determinants of spatial variation in soil respiration to develop mechanistic models of soil respiration.  
  Address Univ Nancy 1, UMR 1137, INRA, UHP Ecol & Ecophysiol Forestieres,Fac Sci, F-54506 Vandoeuvre Les Nancy, France, Email: Daniel.Epron@scbiol.uhp-nancy.fr  
  Corporate Author Thesis  
  Publisher CAMBRIDGE UNIV PRESS Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0266-4674 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000239975200008 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 179  
Permanent link to this record
 

 
Author Bereau, M.; Bonal, D.; Louisanna, E.; Garbaye, J. openurl 
  Title Do mycorrhizas improve tropical tree seedling performance under water stress and low light conditions? A case study with Dicorynia guianensis (Caesalpiniaceae) Type Journal Article
  Year 2005 Publication Journal of Tropical Ecology Abbreviated Journal (down) J. Trop. Ecol.  
  Volume 21 Issue Pages 375-381  
  Keywords French Guiana; leaf gas exchange; mycorrhizal symbiosis; tropical forest; water limitation  
  Abstract We tested the response of seedlings of Diconyina guianensis, a major timber tree species of French Guiana, to mycorrhizal symbiosis and water limitation in a semi-con trolled experiment under natural light conditions. Under well-watered conditions, mycorrhizal colonization resulted in an increase of net photosynthesis, growth and phosphorus uptake. When submitted to water stress, no growth reduction of mycorrhizal seedlings was observed. Mycorrhizal seedlings were more sensitive to drought than non-mycorrhizal ones in terms of carbon assimilation, but not with regard to stomatal closure. In contrast to previous studies on temperate tree seedlings, this result precludes a mycorrhizal effect on the hydraulic properties of this species. Furthermore, our results suggest that below a specific threshold of soil moisture, carbon assimilation of D. guianensis seedlings was decreased by the mycorrhizal symbiosis. This is probably related to the competition between the plant and its host fungus for carbon allocation under low light intensity, even though it did not seem to have a significant effect on mortality in our experiment.  
  Address UMR Ecofog, Kourou 97387, French Guiana, Email: bercau.m@kourou.cirad.fr  
  Corporate Author Thesis  
  Publisher CAMBRIDGE UNIV PRESS Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0266-4674 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000231009300003 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 232  
Permanent link to this record
 

 
Author Koponen, P.; Nygren, P.; Domenach, A.M.; Le Roux, C.; Saur, E.; Roggy, J.C. openurl 
  Title Nodulation and dinitrogen fixation of legume trees in a tropical freshwater swamp forest in French Guiana Type Journal Article
  Year 2003 Publication Journal of Tropical Ecology Abbreviated Journal (down) J. Trop. Ecol.  
  Volume 19 Issue Pages 655-666  
  Keywords acetylene reduction assay; Bradyrhizobium; flooding; microtopography; N-15 natural abundance method; 16S rDNA sequencing  
  Abstract Nodulated legume trees comprised 43% of the stand basal area in the low, most frequently flooded microsites, and 23% in higher, drier microsites in a tropical freshwater swamp forest in French Guiana. Dinitrogen fixation in Pterocarpus officinalis, Hydrochorea corymbosa and Inga pilosula was confirmed by acetylene reduction assay (ARA), presence of leghaemoglobin in nodules and the N-15 natural abundance method. The results for Zygia cataractae were inconclusive but suggested N-2 fixation in drier microsites. Nodulated Inga disticha had a N-15-to-N-14 ratio similar to non-N-2-fixing trees, but ARA indicated nitrogenase activity and leghaemoglobin was present in nodules. All bacterial strains were identified as Bradyrhizobium spp. according to the partial 16S rDNA sequences, and they were infective in vitro in the model species Macroptilium atropurpuretan. About 35-50% of N in the leaves of P. officinalis, H. corymbosa and I. pilosula was fixed from the atmosphere. Dinitrogen fixation was estimated to contribute at least 8-13% and 1728% to whole-canopy N in high and low microsites, respectively. Symbiotic N, fixation appears to provide both a competitive advantage to legume trees under N-limited, flooded conditions and an important N input to neotropical freshwater swamp forests.  
  Address Univ Helsinki, Dept Forest Ecol, FIN-00014 Helsinki, Finland  
  Corporate Author Thesis  
  Publisher CAMBRIDGE UNIV PRESS Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0266-4674 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000186710800005 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 242  
Permanent link to this record
 

 
Author Fonty, E.; Molino, J.F.; Prevost, M.F.; Sabatier, D. openurl 
  Title A new case of neotropical monodominant forest: Spirotropis longifolia (Leguminosae-Papilionoideae) in French Guiana Type Journal Article
  Year 2011 Publication Journal of Tropical Ecology Abbreviated Journal (down) J. Trop. Ecol.  
  Volume 27 Issue 6 Pages 641-644  
  Keywords French Guiana; layering; monodominance; sprouting; supporting strategy; suppressive strategy; tropical rain forests  
  Abstract  
  Address [Fonty, E] ONF, Direct Reg Guyane, F-97300 Cayenne, France, Email: emile.fonty@free.fr  
  Corporate Author Thesis  
  Publisher Cambridge Univ Press Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0266-4674 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000296208500009 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 371  
Permanent link to this record
 

 
Author Zalamea, P.-C.; Sarmiento, C.; Stevenson, P.R.; Rodríguez, M.; Nicolini, E.; Heuret, P. url  openurl
  Title Effect of rainfall seasonality on the growth of Cecropia sciadophylla: Intra-annual variation in leaf production and node length Type Journal Article
  Year 2013 Publication Journal of Tropical Ecology Abbreviated Journal (down) J. Trop. Ecol.  
  Volume 29 Issue 4 Pages 361-365  
  Keywords leaf phenology; Neotropics; pioneer plants; plant growth; plant morphology; rainfall seasonality; Urticaceae  
  Abstract Patterns of leaf production and leaf fall directly influence leaf area index and forest productivity. Here, we focused on Cecropia sciadophylla individuals inhabiting the extremes of the gradient in seasonality in rainfall at which C. sciadophylla occurs. In Colombia and French Guiana we compared the intra-annual variation in leaf production as well as the intra-annual fluctuation in internode length on a total of 69 saplings ranging in size from 1 to 2 m. The mean rate of leaf production was ~2 leaves mo -1 in both populations, and the rate of leaf production was constant throughout the year. Our results showed monthly variation in internode length and the number of live leaves per sapling in the seasonal habitat and variation only in internode length in the everwet habitat. Because the rate of leaf production is constant at both localities, the difference in number of live leaves per sapling at the seasonal site must reflect seasonal variation in leaf life span. We show that in Cecropia, internode length can serve as an indicator of precipitation seasonality. Finally an open question is whether leaf production in other pioneer species is also independent of climatic seasonal cues. This information could allow us to link growth and climate of secondary forest species and better understand how past and future climate can affect plant growth trajectories. © Cambridge University Press 2013.  
  Address INRA, UMR ECOFOG, Kourou F-97310, French Guiana  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 14 July 2013; Source: Scopus Approved no  
  Call Number EcoFoG @ webmaster @ Serial 496  
Permanent link to this record
 

 
Author Almeras, T.; Fournier, M. openurl 
  Title Biomechanical design and long-term stability of trees: Morphological and wood traits involved in the balance between weight increase and the gravitropic reaction Type Journal Article
  Year 2009 Publication Journal of Theoretical Biology Abbreviated Journal (down) J. Theor. Biol.  
  Volume 256 Issue 3 Pages 370-381  
  Keywords Mechanical design; Gravitropism; Bending stresses; Allometry; Reaction wood  
  Abstract Studies on tree biomechanical design usually focus on stem stiffness, resistance to breakage or uprooting, and elastic stability. Here we consider another biomechanical constraint related to the interaction between growth and gravity. Because stems are slender structures and are never perfectly symmetric, the increase in tree mass always causes bending movements. Given the current mechanical design of trees, integration of these movements over time would ultimately lead to a weeping habit unless some gravitropic correction occurs. This correction is achieved by asymmetric internal forces induced during the maturation of new wood. The long-term stability of a growing stem therefore depends on how the gravitropic correction that is generated by diameter growth balances the disturbance due to increasing self weight. General mechanical formulations based on beam theory are proposed to model these phenomena. The rates of disturbance and correction associated with a growth increment are deduced and expressed as a function of elementary traits of stem morphology, cross-section anatomy and wood properties. Evaluation of these traits using previously published data shows that the balance between the correction and the disturbance strongly depends on the efficiency of the gravitropic correction, which depends on the asymmetry of wood maturation strain, eccentric growth, and gradients in wood stiffness. By combining disturbance and correction rates, the gravitropic performance indicates the dynamics of stem bending during growth. It depends on stem biomechanical traits and dimensions. By analyzing dimensional effects, we show that the necessity for gravitropic correction might constrain stem allometric growth in the long-term. This constraint is compared to the requirement for elastic stability, showing that gravitropic performance limits the increase in height of tilted stem and branches. The performance of this function may thus limit the slenderness and lean of stems, and therefore the ability of the tree to capture light in a heterogeneous environment. (c) 2008 Elsevier Ltd. All rights reserved.  
  Address [Almeras, T.; Fournier, M.] INRA, UMR Ecol Forets Guyane, F-97310 Kourou, France, Email: t_almeras@hotmail.com  
  Corporate Author Thesis  
  Publisher ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-5193 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000263077100008 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 123  
Permanent link to this record
 

 
Author Conte, D.E.; Aboulaich, A.; Robert, F.; Olivier-Fourcade, J.; Jumas, J.C.; Jordy, C.; Willmann, P. openurl 
  Title Sn-x[BPO4](1-x) composites as negative electrodes for lithium ion cells: Comparison with amorphous SnB0.6P0.4O2.9 and effect of composition Type Journal Article
  Year 2010 Publication Journal of Solid State Chemistry Abbreviated Journal (down) J. Solid State Chem.  
  Volume 183 Issue 1 Pages 65-75  
  Keywords Sn-based composites; Lithium-ion batteries; Negative electrodes; Mossbauer spectroscopy; LixSn alloys  
  Abstract A comparative study of two Sn-based composite materials as negative electrode for Li-ion accumulators is presented. The former SnB0.6P0.4O2.9 obtained by in-situ dispersion of SnO in an oxide matrix is shown to be an amorphous tin composite oxide (ATCO). The latter Sn-0.72[BPO4](0.28) obtained by ex-situ dispersion of Sri in a borophosphate matrix consists of Sri particles embedded in a crystalline BPO4 matrix. The electrochemical responses of ATCO and Sn-0.72.[BPO4](0.28) composite in galvanostatic mode show reversible capacities of about 450 and 530 mAhg(-1), respectively, with different irreversible capacities (60% and 29%). Analysis of these composite materials by Sn-119 Mossbauer spectroscopy in transmission (TMS) and emission (CEMS) modes confirms that ATCO is an amorphous Sn-II composite oxide and shows that in the case of Sn-0.72[BPO4](0.28), the Surface of the tin clusters is mainly formed by Sn-II in an amorphous interface whereas the bulk of the clusters is mainly formed by Sn-0. The determination of the recoilless free fractions f (Lamb-Mossbauer factors) leads to the effective fraction of both Sn-0 and Sn-II species in such composites. The influence of chemical composition and especially of the surface-to-bulk tin species ratio oil the electrochemical behaviour has been analysed for several Sn-x[BPO4](1-x) composite materials (0.17 < x < 0.91). The cell using the compound Sn-0.72[BPO4](0.28) as active material exhibits interesting electrochemical performances (reversible capacity of 500 mAh g(-1) at C/5 rate). (C) 2009 Elsevier Inc. All rights reserved.  
  Address [Conte, Donato Ercole; Aboulaich, Abdelmaula; Robert, Florent; Olivier-Fourcade, Josette; Jumas, Jean-Claude] Univ Montpellier 2, CNRS, UMR 5253,Inst Charles Gerhardt, Equipe Agregats Interfaces & Mat Energie, F-34095 Montpellier, France, Email: iguanasornione@libero.it  
  Corporate Author Thesis  
  Publisher ACADEMIC PRESS INC ELSEVIER SCIENCE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000273834600010 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 83  
Permanent link to this record
 

 
Author Fromin, N.; Porte, B.; Lensi, R.; Hamelin, J.; Domenach, A.-M.; Buatois, B.; Roggy, J.-C. url  openurl
  Title Spatial variability of the functional stability of microbial respiration process: A microcosm study using tropical forest soil Type Journal Article
  Year 2012 Publication Journal of Soils and Sediments Abbreviated Journal (down) J. Soils Sed.  
  Volume 12 Issue 7 Pages 1030-1039  
  Keywords Disturbance; Diversity-stability relationship; Microbial diversity; Substrate-induced respiration  
  Abstract Purpose: Understanding the ability of ecosystem processes to resist to and to recover from disturbances is critical to sustainable land use. However, the spatial variability of the stability has rarely been addressed. Here, we investigated the functional stability of a soil microbial process for 24 soils collected from adjacent locations from a 0. 3 ha tropical rainforest plot in Paracou, French Guiana. Materials and methods: The 24 locations were characterized regarding soil chemical and biological (microbial diversity) parameters and forest structure. The corresponding soils were submitted to an experimental transient heat disturbance during a microcosm experiment. The response of the respiration process was followed using substrate-induced respiration (SIR). Results and discussion: The response of soil SIR to heat disturbance varied widely between samples. The variability of the SIR response increased just after the disturbance, and a global rather homogeneous decrease in SIR rates was observed 15 and 30 days after. The stability of SIR in response to heat disturbance could not be related to either the genetic or the metabolic diversity of the microbial community. The initial level of SIR before the disturbance was the soil variable that best correlated with the impact of the disturbance: the soil locations with the highest initial SIR rates were the most affected 15 and 30 days after the heat disturbance. Conclusions: Such a heterogeneous response suggests that the response of soil processes to a disturbance will be difficult to assess from only local-scale analyses and highlights the need for spatial explicitness in understanding biogeochemical processes. © 2012 Springer-Verlag.  
  Address UMR EcoFoG, BP 709, 97387 Kourou, French Guiana  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 14390108 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 30 July 2012; Source: Scopus; doi: 10.1007/s11368-012-0528-7; Language of Original Document: English; Correspondence Address: Fromin, N.; CEFE, CNRS UMR 5175, 1919 Route de Mende, 34293 Montpellier cedex 5, France; email: nathalie.fromin@cefe.cnrs.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 415  
Permanent link to this record
 

 
Author Touchard, A.; Dauvois, M.; Arguel, M.-J.; Petitclerc, F.; Leblanc, M.; Dejean, A.; Orivel, J.; Nicholson, G.M.; Escoubas, P. url  openurl
  Title Elucidation of the unexplored biodiversity of ant venom peptidomes via MALDI-TOF mass spectrometry and its application for chemotaxonomy Type Journal Article
  Year 2014 Publication Journal of Proteomics Abbreviated Journal (down) J. Proteomics  
  Volume 105 Issue Pages 217-231  
  Keywords Ant venom; Chemotaxonomy; Maldi-Tof Ms; Peptide; Peptidome; Ponerinae; ant venom; cytochrome c oxidase; ant; article; biodiversity; chemotaxonomy; correlational study; DNA sequence; French Guiana; Hymenoptera; matrix assisted laser desorption ionization time of flight mass spectrometry; mitochondrial gene; nonhuman; Odontomachus biumbonatus; Odontomachus haematodus; Odontomachus hastatus; Odontomachus mayi; Odontomachus scalptus; Pachcondyla apicalis; Pachcondyla arhuaca; Pachcondyla commutata; Pachcondyla constricta; Pachcondyla crassinola; Pachcondyla goeldii; Pachcondyla inversa; Pachcondyla marginata; Pachcondyla procidua; Pachcondyla stigma; Pachcondyla verenae; Pachcondyla villosa; peptidomics; phylogeny; priority journal; Animalia; Formicidae; Hymenoptera; Odontomachus; Pachycondyla; Pachycondyla apicalis; Pachycondyla stigma; Ponerinae  
  Abstract The rise of integrative taxonomy, a multi-criteria approach used in characterizing species, fosters the development of new tools facilitating species delimitation. Mass spectrometric (MS) analysis of venom peptides from venomous animals has previously been demonstrated to be a valid method for identifying species. Here we aimed to develop a rapid chemotaxonomic tool for identifying ants based on venom peptide mass fingerprinting. The study focused on the biodiversity of ponerine ants (Hymenoptera: Formicidae: Ponerinae) in French Guiana. Initial experiments optimized the use of automated matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to determine variations in the mass profiles of ant venoms using several MALDI matrices and additives. Data were then analyzed via a hierarchical cluster analysis to classify the venoms of 17 ant species. In addition, phylogenetic relationships were assessed and were highly correlated with methods using DNA sequencing of the mitochondrial gene cytochrome c oxidase subunit 1. By combining a molecular genetics approach with this chemotaxonomic approach, we were able to improve the accuracy of the taxonomic findings to reveal cryptic ant species within species complexes. This chemotaxonomic tool can therefore contribute to more rapid species identification and more accurate taxonomies. Biological significance: This is the first extensive study concerning the peptide analysis of the venom of both Pachycondyla and Odontomachus ants. We studied the venoms of 17 ant species from French Guiana that permitted us to fine-tune the venom analysis of ponerine ants via MALDI-TOF mass spectrometry. We explored the peptidomes of crude ant venom and demonstrated that venom peptides can be used in the identification of ant species. In addition, the application of this novel chemotaxonomic method combined with a parallel genetic approach using COI sequencing permitted us to reveal the presence of cryptic ants within both the Pachycondyla apicalis and Pachycondyla stigma species complexes. This adds a new dimension to the search for means of exploiting the enormous biodiversity of venomous ants as a source for novel therapeutic drugs or biopesticides. This article is part of a Special Issue entitled: Proteomics of non-model organisms. © 2014 Elsevier B.V.  
  Address Neurotoxin Research Group, School of Medical and Molecular Biosciences, University of Technology, Sydney, NSW, Australia  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 18767737 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Cited By (since 1996):1; Export Date: 30 July 2014; Correspondence Address: Touchard, A.; UMR-EcoFoG, Campus Agronomique, BP 316, 97379 Kourou Cedex, France; email: axel.touchard@ecofog.gf; Chemicals/CAS: cytochrome c oxidase, 72841-18-0, 9001-16-5 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 555  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: