PT Journal AU Stahl, C Fontaine, S Klumpp, K Picon-Cochard, C Grise, M Dezecache, C Ponchant, L Freycon, V Blanc, L Bonal, D Burban, B Soussana, J Blanfort, V TI Continuous soil carbon storage of old permanent pastures in Amazonia SO Global Change Biology JI Glob Change Biol PY 2017 BP 3382 EP 3392 VL 23 IS 8 DI 10.1111/gcb.13573 DE carbon storage; CN coupling; deep soil; mixed-grass pasture; native forest AB Amazonian forests continuously accumulate carbon (C) in biomass and in soil, representing a carbon sink of 0.42–0.65 GtC yr−1. In recent decades, more than 15% of Amazonian forests have been converted into pastures, resulting in net C emissions (~200 tC ha−1) due to biomass burning and litter mineralization in the first years after deforestation. However, little is known about the capacity of tropical pastures to restore a C sink. Our study shows in French Amazonia that the C storage observed in native forest can be partly restored in old (≥24 year) tropical pastures managed with a low stocking rate (±1 LSU ha−1) and without the use of fire since their establishment. A unique combination of a large chronosequence study and eddy covariance measurements showed that pastures stored between −1.27 ± 0.37 and −5.31 ± 2.08 tC ha−1 yr−1 while the nearby native forest stored −3.31 ± 0.44 tC ha−1 yr−1. This carbon is mainly sequestered in the humus of deep soil layers (20–100 cm), whereas no C storage was observed in the 0- to 20-cm layer. C storage in C4 tropical pasture is associated with the installation and development of C3 species, which increase either the input of N to the ecosystem or the C:N ratio of soil organic matter. Efforts to curb deforestation remain an obvious priority to preserve forest C stocks and biodiversity. However, our results show that if sustainable management is applied in tropical pastures coming from deforestation (avoiding fires and overgrazing, using a grazing rotation plan and a mixture of C3 and C4 species), they can ensure a continuous C storage, thereby adding to the current C sink of Amazonian forests. ER