PT Journal AU Lebrini, M Mbomekallé, I Dolbecq, A Marrot, J Berthet, P Ntienoue, J Sécheresse, F Vigneron, J Etcheberry, A TI Manganese(III)-containing wells-dawson sandwich-type polyoxometalates: Comparison with their manganese(II) counterparts SO Inorganic Chemistry JI Inorg. Chem. PY 2011 BP 6437 EP 6448 VL 50 IS 14 AB We present the synthesis and structural characterization, assessed by various techniques (FTIR, TGA, UV-vis, elemental analysis, single-crystal X-ray diffraction for three compounds, magnetic susceptibility, and electrochemistry) of five manganese-containing Wells-Dawson sandwich-type (WDST) complexes. The dimanganese(II)-containing complex, [Na2(H2O) 2MnII2(As2W15O 56)2]18- (1), was obtained by reaction of MnCl2 with 1 equiv of [As2W15O 56]12- in acetate medium (pH 4.7). Oxidation of 1 by Na2S2O8 in aqueous solution led to the dimanganese(III) complex [Na2(H2O)2Mn III2(As2W15O56) 2]16- (2), while its trimanganese(II) homologue, [Na(H2O)2MnII(H2O)Mn II2(As2W15O56) 2]17- (3), was obtained by addition of ca. 1 equiv of MnCl2 to a solution of 1 in 1 M NaCl. The trimanganese(III) and tetramanganese(III) counterparts, [MnIII(H2O)Mn III2(As2W15O56) 2]15- (4) and [MnIII2(H 2O)2MnIII2(As2W 15O56)2]12- (6), are, respectively, obtained by oxidation of aqueous solutions of 3 and [MnII2(H2O)2MnII2(As 2W15O56)2]16- (5) by Na2S2O8. Single-crystal X-ray analyses were carried out on 2, 3, and 4. BVS calculations and XPS confirmed that the oxidation state of Mn centers is +II for complexes 1, 3, and 5 and +III for 2, 4, and 6. A complete comparative electrochemical study was carried out on the six compounds cited above, and it was possible to observe the distinct redox steps MnIV/III and MnIII/II. Magnetization measurements, as a function of temperature, confirm the presence of antiferromagnetic interactions between the Mn ions in these compounds in all cases with the exception of compound 2. © 2011 American Chemical Society. ER