PT Journal AU Jaouen, G Almeras, T Coutand, C Fournier, M TI How to determine sapling buckling risk with only a few measurements SO American Journal of Botany JI Am. J. Bot. PY 2007 BP 1583 EP 1593 VL 94 IS 10 DE biomechanics; critical buckling height; French Guiana; risk factor; sapling; stem form; tropical rain forest; trunk volume AB Tree buckling risk (actual height/critical buckling height) is an important biomechanical trait of plant growth strategies, and one that contributes to species coexistence. To estimate the diversity of this trait among wide samples, a method that minimizes damage to the plants is necessary. On the basis of the rarely used, complete version of Greenhill's model (1881, Proceedings of the Cambridge Philosophical Society 4(2): 65-73), we precisely measured all the necessary parameters on a sample of 236 saplings of 16 species. Then, using sensitivity (variance) analysis, regressions between successive models for risk factors and species ranks and the use of these models on samples of self- and nonself-supporting saplings, we tested different degrees of simplification up to the most simple and widely used formula that assumes that the tree is a cylindrical homogeneous pole. The size factor had the greatest effect on buckling risk, followed by the form factor and the modulus of elasticity of the wood. Therefore, estimates of buckling risk must consider not only the wood properties but especially the form factor. Finally, we proposed a simple but accurate method of assessing tree buckling risk that is applicable to a wide range of samples and that requires mostly nondestructive measurements. ER