TY - JOUR AU - Solander, K.C. AU - Newman, B.D. AU - Carioca De Araujo, A. AU - Barnard, H.R. AU - Berry, Z.C. AU - Bonal, D. AU - Bretfeld, M. AU - Burban, B. AU - Candido, L.A. AU - Célleri, R. AU - Chambers, J.Q. AU - Christoffersen, B.O. AU - Detto, M. AU - Dorigo, W.A. AU - Ewers, B.E. AU - Ferreira, S.J.F. AU - Knohl, A. AU - Leung, L.R. AU - McDowell, N.G. AU - Miller, G.R. AU - Monteiro, M.T.F. AU - Moore, G.W. AU - Negron-Juarez, R. AU - Saleska, S.R. AU - Stiegler, C. AU - Tomasella, J. AU - Xu, C. PY - 2020// TI - The pantropical response of soil moisture to El Niño T2 - Hydrol. Earth Syst. Sci. JO - Hydrology and Earth System Sciences SP - 2303 EP - 2322 VL - 24 IS - 5 PB - Copernicus GmbH KW - Cluster analysis KW - Oceanography KW - Soil moisture KW - Surface waters KW - Tropics KW - Climate anomalies KW - Clustered datum KW - Hydrologic changes KW - Land data assimilation systems KW - Sea surface temperature anomalies KW - Situ soil moistures KW - Tropical hydrologies KW - Tropical Pacific ocean KW - Soil surveys N2 - The 2015–2016 El Niño event ranks as one of the most severe on record in terms of the magnitude and extent of sea surface temperature (SST) anomalies generated in the tropical Pacific Ocean. Corresponding global impacts on the climate were expected to rival, or even surpass, those of the 1997–1998 severe El Niño event, which had SST anomalies that were similar in size. However, the 2015–2016 event failed to meet expectations for hydrologic change in many areas, including those expected to receive well above normal precipitation. To better understand how climate anomalies during an El Niño event impact soil moisture, we investigate changes in soil moisture in the humid tropics (between ±25∘) during the three most recent super El Niño events of 1982–1983, 1997–1998 and 2015–2016, using data from the Global Land Data Assimilation System (GLDAS). First, we use in situ soil moisture observations obtained from 16 sites across five continents to validate and bias-correct estimates from GLDAS (r2=0.54). Next, we apply a k-means cluster analysis to the soil moisture estimates during the El Niño mature phase, resulting in four groups of clustered data. The strongest and most consistent decreases in soil moisture occur in the Amazon basin and maritime southeastern Asia, while the most consistent increases occur over eastern Africa. In addition, we compare changes in soil moisture to both precipitation and evapotranspiration, which showed a lack of agreement in the direction of change between these variables and soil moisture most prominently in the southern Amazon basin, the Sahel and mainland southeastern Asia. Our results can be used to improve estimates of spatiotemporal differences in El Niño impacts on soil moisture in tropical hydrology and ecosystem models at multiple scales. SN - 10275606 (Issn) UR - https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084915035&doi=10.5194%2fhess-24-2303-2020&partnerID=40&md5=853d023e00785518b74e066e8efa5a7c L1 - http://php.ecofog.gf/refbase/files/solander/2020/934_Solander_etal2020.pdf UR - http://dx.doi.org/10.5194/hess-24-2303-2020 N1 - Export Date: 29 May 2020; Correspondence Address: Solander, K.C.; Earth and Environmental Sciences, Los Alamos National LaboratoryUnited States; email: ksolander@lanl.gov ID - Solander_etal2020 ER -