toggle visibility Search & Display Options

Select All    Deselect All
 | 
Citations
 | 
   print
Aimene, Y. E., & Nairn, J. A. (2015). Simulation of transverse wood compression using a large-deformation, hyperelastic–plastic material model. Wood Science and Technology, 49(1), 21–39.
toggle visibility
Allié, E., Pélissier, R., Engel, J., Petronelli, P., Freycon, V., Deblauwe, V., et al. (2015). Pervasive local-scale tree-soil habitat association in a tropical forest community. PLoS ONE, 10(11), e0141488.
toggle visibility
Alméras, T., & Clair, B. (2016). Critical review on the mechanisms of maturation stress generation in trees. J R Soc Interface, 13(122).
toggle visibility
Alméras, T., Ghislain, B., Clair, B., Secerovic, A., Pilate, G., & Fournier, M. (2018). Quantifying the motor power of trees. Trees, 32(3), 689–702.
toggle visibility
Alméras, T., Gronvold, A., van der Lee, A., Clair, B., & Montero, C. (2017). Contribution of cellulose to the moisture-dependent elastic behaviour of wood. Composites Science and Technology, 138, 151–160.
toggle visibility
Almeras, T. (2008). Mechanical analysis of the strains generated by water tension in plant stems. Part II: strains in wood and bark and apparent compliance. Tree Physiol., 28(10), 1513–1523.
toggle visibility
Almeras, T., Derycke, M., Jaouen, G., Beauchene, J., & Fournier, M. (2009). Functional diversity in gravitropic reaction among tropical seedlings in relation to ecological and developmental traits. J. Exp. Bot., 60(15), 4397–4410.
toggle visibility
Almeras, T., & Fournier, M. (2009). Biomechanical design and long-term stability of trees: Morphological and wood traits involved in the balance between weight increase and the gravitropic reaction. J. Theor. Biol., 256(3), 370–381.
toggle visibility
Almeras, T., & Gril, J. (2007). Mechanical analysis of the strains generated by water tension in plant stems. Part 1: stress transmission from the water to the cell walls. Tree Physiol., 27(11), 1505–1516.
toggle visibility
Almeras, T., Gril, J., & Yamamoto, H. (2005). Modelling anisotropic maturation strains in wood in relation to fibre boundary conditions, microstructure and maturation kinetics. Holzforschung, 59(3), 347–353.
toggle visibility
Select All    Deselect All
 | 
Citations
 | 
   print