|   | 
Details
   web
Records
Author Lamarre, G.P.A.; Decaëns, T.; Rougerie, R.; Barbut, J.; Dewaard, J.R.; Hebert, P.D.N.; Herbin, D.; Laguerre, M.; Thiaucourt, P.; Bonifacio Martins, M.
Title An integrative taxonomy approach unveils unknown and threatened moth species in Amazonian rainforest fragments Type Journal Article
Year 2016 Publication Insect Conservation and Diversity Abbreviated Journal Insect Conserv Divers
Volume 9 Issue 5 Pages 475-479
Keywords Amazonian forest; Belém center of endemism; centinelan extinction; conservation; DNA barcoding; Lepidoptera; species discovery
Abstract This study focuses on the importance in hyperdiverse regions, such as the Amazonian forest, of accelerating and optimising the census of invertebrate communities.
We carried out low-intensity sampling of tropical moth (Lepidoptera) assemblages in disturbed forest fragments in Brazil.
We combined DNA barcoding and taxonomists’ expertise to produce fast and accurate surveys of local diversity, including the recognition and census of undescribed and endemic species.
Integrating expert knowledge of species distributions, we show that despite limited sampling effort, our approach revealed an unexpectedly high number of new and endemic species in severely threatened tropical forest fragments.
These results highlight the risk of silent centinelan extinctions and emphasise the urgent need for accelerated invertebrate surveys in high-endemism and human-impacted tropical forests.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1752-4598 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 730
Permanent link to this record
 

 
Author Marino, N.A.C.; Céréghino, R.; Gilbert, B.; Petermann, J.S.; Srivastava, D.S.; de Omena, P.M.; Bautista, F.O.; Guzman, L.M.; Romero, G.Q.; Trzcinski, M.K.; Barberis, I.M.; Corbara, B.; Debastiani, V.J.; Dézerald, O.; Kratina, P.; Leroy, C.; MacDonald, A.A.M.; Montero, G.; Pillar, V.D.; Richardson, B.A.; Richardson, M.J.; Talaga, S.; Gonçalves, A.Z.; Piccoli, G.C.O.; Jocqué, M.; Farjalla, V.F.
Title Species niches, not traits, determine abundance and occupancy patterns: A multi-site synthesis Type Journal Article
Year 2020 Publication Global Ecology and Biogeography Abbreviated Journal Global Ecol. Biogeogr.
Volume 29 Issue 2 Pages 295-308
Keywords abundance; environmental niche; functional distinctiveness; functional traits; metacommunity; niche breadth; niche position; occupancy; abundance; biodiversity; functional group; geographical distribution; invertebrate; Neotropical Region; niche breadth; Invertebrata
Abstract Aim: Locally abundant species are usually widespread, and this pattern has been related to properties of the niches and traits of species. However, such explanations fail to account for the potential of traits to determine species niches and often overlook statistical artefacts. Here, we examine how trait distinctiveness determines the abilities of species to exploit either common habitats (niche position) or a range of habitats (niche breadth) and how niche position and breadth, in turn, affect abundance and occupancy. We also examine how statistical artefacts moderate these relationships. Location: Sixteen sites in the Neotropics. Time period: 1993–2014. Major taxa studied: Aquatic invertebrates from tank bromeliads. Methods: We measured the environmental niche position and breadth of each species and calculated its trait distinctiveness as the average trait difference from all other species at each site. Then, we used a combination of structural equation models and a meta-analytical approach to test trait–niche relationships and a null model to control for statistical artefacts. Results: The trait distinctiveness of each species was unrelated to its niche properties, abundance and occupancy. In contrast, niche position was the main predictor of abundance and occupancy; species that used the most common environmental conditions found across bromeliads were locally abundant and widespread. Contributions of niche breadth to such patterns were attributable to statistical artefacts, indicating that effects of niche breadth might have been overestimated in previous studies. Main conclusions: Our study reveals the generality of niche position in explaining one of the most common ecological patterns. The robustness of this result is underscored by the geographical extent of our study and our control of statistical artefacts. We call for a similar examination across other systems, which is an essential task to understand the drivers of commonness across the tree of life. © 2019 John Wiley & Sons Ltd
Address Aquatic and Terrestrial Ecology, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
Corporate Author Thesis
Publisher Blackwell Publishing Ltd Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1466822x (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 991
Permanent link to this record
 

 
Author Bastin, J.-F.; Rutishauser, E.; Kellner, J.R.; Saatchi, S.; Pélissier, R.; Hérault, B.; Slik, F.; Bogaert, J.; De Cannière, C.; Marshall, A.R.; Poulsen, J.; Alvarez-Loyayza, P.; Andrade, A.; Angbonga-Basia, A.; Araujo-Murakami, A.; Arroyo, L.; Ayyappan, N.; de Azevedo, C.P.; Banki, O.; Barbier, N.; Barroso, J.G.; Beeckman, H.; Bitariho, R.; Boeckx, P.; Boehning-Gaese, K.; Brandão, H.; Brearley, F.Q.; Breuer Ndoundou Hockemba, M.; Brienen, R.; Camargo, J.L.C.; Campos-Arceiz, A.; Cassart, B.; Chave, J.; Chazdon, R.; Chuyong, G.; Clark, D.B.; Clark, C.J.; Condit, R.; Honorio Coronado, E.N.; Davidar, P.; de Haulleville, T.; Descroix, L.; Doucet, J.-L.; Dourdain, A.; Droissart, V.; Duncan, T.; Silva Espejo, J.; Espinosa, S.; Farwig, N.; Fayolle, A.; Feldpausch, T.R.; Ferraz, A.; Fletcher, C.; Gajapersad, K.; Gillet, J.-F.; Amaral, I.L. do; Gonmadje, C.; Grogan, J.; Harris, D.; Herzog, S.K.; Homeier, J.; Hubau, W.; Hubbell, S.P.; Hufkens, K.; Hurtado, J.; Kamdem, N.G.; Kearsley, E.; Kenfack, D.; Kessler, M.; Labrière, N.; Laumonier, Y.; Laurance, S.; Laurance, W.F.; Lewis, S.L.; Libalah, M.B.; Ligot, G.; Lloyd, J.; Lovejoy, T.E.; Malhi, Y.; Marimon, B.S.; Marimon Junior, B.H.; Martin, E.H.; Matius, P.; Meyer, V.; Mendoza Bautista, C.; Monteagudo-Mendoza, A.; Mtui, A.; Neill, D.; Parada Gutierrez, G.A.; Pardo, G.; Parren, M.; Parthasarathy, N.; Phillips, O.L.; Pitman, N.C.A.; Ploton, P.; Ponette, Q.; Ramesh, B.R.; Razafimahaimodison, J.-C.; Réjou-Méchain, M.; Rolim, S.G.; Saltos, H.R.; Rossi, L.M.B.; Spironello, W.R.; Rovero, F.; Saner, P.; Sasaki, D.; Schulze, M.; Silveira, M.; Singh, J.; Sist, P.; Sonke, B.; Soto, J.D.; de Souza, C.R.; Stropp, J.; Sullivan, M.J.P.; Swanepoel, B.; Steege, H. ter; Terborgh, J.; Texier, N.; Toma, T.; Valencia, R.; Valenzuela, L.; Ferreira, L.V.; Valverde, F.C.; Van Andel, T.R.; Vasque, R.; Verbeeck, H.; Vivek, P.; Vleminckx, J.; Vos, V.A.; Wagner, F.H.; Warsudi, P.P.; Wortel, V.; Zagt, R.J.; Zebaze, D.
Title Pan-tropical prediction of forest structure from the largest trees Type Journal Article
Year 2018 Publication Global Ecology and Biogeography Abbreviated Journal Global Ecol Biogeogr
Volume 27 Issue 11 Pages 1366-1383
Keywords carbon; climate change; forest structure; large trees; pan-tropical; Redd+; tropical forest ecology
Abstract Abstract Aim Large tropical trees form the interface between ground and airborne observations, offering a unique opportunity to capture forest properties remotely and to investigate their variations on broad scales. However, despite rapid development of metrics to characterize the forest canopy from remotely sensed data, a gap remains between aerial and field inventories. To close this gap, we propose a new pan-tropical model to predict plot-level forest structure properties and biomass from only the largest trees. Location Pan-tropical. Time period Early 21st century. Major taxa studied Woody plants. Methods Using a dataset of 867 plots distributed among 118 sites across the tropics, we tested the prediction of the quadratic mean diameter, basal area, Lorey's height, community wood density and aboveground biomass (AGB) from the ith largest trees. Results Measuring the largest trees in tropical forests enables unbiased predictions of plot- and site-level forest structure. The 20 largest trees per hectare predicted quadratic mean diameter, basal area, Lorey's height, community wood density and AGB with 12, 16, 4, 4 and 17.7% of relative error, respectively. Most of the remaining error in biomass prediction is driven by differences in the proportion of total biomass held in medium-sized trees (50?70 cm diameter at breast height), which shows some continental dependency, with American tropical forests presenting the highest proportion of total biomass in these intermediate-diameter classes relative to other continents. Main conclusions Our approach provides new information on tropical forest structure and can be used to generate accurate field estimates of tropical forest carbon stocks to support the calibration and validation of current and forthcoming space missions. It will reduce the cost of field inventories and contribute to scientific understanding of tropical forest ecosystems and response to climate change.
Address
Corporate Author Thesis
Publisher John Wiley & Sons, Ltd (10.1111) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1466-822x ISBN Medium
Area Expedition Conference
Notes doi: 10.1111/geb.12803 Approved no
Call Number EcoFoG @ webmaster @ Serial 845
Permanent link to this record
 

 
Author Fontaine, S.; Stahl, C.; Klumpp, K.; Picon-Cochard, C.; Grise, M.M.; Dezécache, C.; Ponchant, L.; Freycon, V.; Blanc, L.; Bonal, D.; Burban, B.; Soussana, J.-F.; Blanfort, V.; Alvarez, G.
Title Response to Editor to the comment by Schipper and Smith to our paper entitled 'Continuous soil carbon storage of old permanent pastures in Amazonia' Type Journal Article
Year 2018 Publication Global Change Biology Abbreviated Journal Global Change Biology
Volume 24 Issue 3 Pages e732-e733
Keywords chronosequence study; continuous C accumulation; deep soil C; eddy covariance; grassland
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 28 February 2018 Approved no
Call Number EcoFoG @ webmaster @ Fontaine_etal2018 Serial 796
Permanent link to this record
 

 
Author Stahl, C.; Fontaine, S.; Klumpp, K.; Picon-Cochard, C.; Grise, M.M.; Dezecache, C.; Ponchant, L.; Freycon, V.; Blanc, L.; Bonal, D.; Burban, B.; Soussana, J.-F.; Blanfort, V.
Title Continuous soil carbon storage of old permanent pastures in Amazonia Type Journal Article
Year 2017 Publication Global Change Biology Abbreviated Journal Glob Change Biol
Volume 23 Issue 8 Pages 3382-3392
Keywords carbon storage; CN coupling; deep soil; mixed-grass pasture; native forest
Abstract Amazonian forests continuously accumulate carbon (C) in biomass and in soil, representing a carbon sink of 0.42–0.65 GtC yr−1. In recent decades, more than 15% of Amazonian forests have been converted into pastures, resulting in net C emissions (~200 tC ha−1) due to biomass burning and litter mineralization in the first years after deforestation. However, little is known about the capacity of tropical pastures to restore a C sink. Our study shows in French Amazonia that the C storage observed in native forest can be partly restored in old (≥24 year) tropical pastures managed with a low stocking rate (±1 LSU ha−1) and without the use of fire since their establishment. A unique combination of a large chronosequence study and eddy covariance measurements showed that pastures stored between −1.27 ± 0.37 and −5.31 ± 2.08 tC ha−1 yr−1 while the nearby native forest stored −3.31 ± 0.44 tC ha−1 yr−1. This carbon is mainly sequestered in the humus of deep soil layers (20–100 cm), whereas no C storage was observed in the 0- to 20-cm layer. C storage in C4 tropical pasture is associated with the installation and development of C3 species, which increase either the input of N to the ecosystem or the C:N ratio of soil organic matter. Efforts to curb deforestation remain an obvious priority to preserve forest C stocks and biodiversity. However, our results show that if sustainable management is applied in tropical pastures coming from deforestation (avoiding fires and overgrazing, using a grazing rotation plan and a mixture of C3 and C4 species), they can ensure a continuous C storage, thereby adding to the current C sink of Amazonian forests.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1365-2486 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 783
Permanent link to this record
 

 
Author Dezerald, O.; Leroy, C.; Corbara, B.; Dejean, A.; Talaga, S.; Céréghino, R.
Title Environmental drivers of invertebrate population dynamics in Neotropical tank bromeliads Type Journal Article
Year 2017 Publication Freshwater Biology Abbreviated Journal Freshw Biol
Volume 62 Issue 2 Pages 229-242
Keywords food webs; freshwater invertebrates; growth rate; life history; rainforest
Abstract Tank bromeliads form a conspicuous, yet neglected freshwater habitat in Neotropical forests. Recent studies driven by interests in medical entomology, fundamental aspects of bromeliad ecology and experimental research on food webs have, however, prompted increasing interest in bromeliad aquatic ecosystems. As yet, there is nothing in the literature about the life histories and environmental drivers of invertebrate population dynamics in tank bromeliads.

Based on fortnightly samples taken over one year, size frequency plots and individual dry masses allowed us to establish the life cycles and growth rates of the dominant aquatic invertebrates in a common bromeliad species of French Guiana. Linear mixed-effect models and Mantel tests were used to predict changes in density, biomass, and growth rates in relation to temperature, rainfall, humidity and detrital resources.

Annual variations in invertebrate densities and biomasses could be described according to three types of distribution: unimodal, bimodal or almost constant. Despite seasonal variations, precipitation, temperature, relative humidity and detritus concentration accounted significantly for changes in density and biomass, but we found no significant responses in growth rates of most invertebrate species. Species rather displayed non-seasonal life cycles with overlapping cohorts throughout the year. There was also a trend for delayed abundance peaks among congeneric species sharing similar functional traits, suggesting temporal partitioning of available resources.

Beyond novel knowledge, quantitative information on life histories is important to predict food-web dynamics under the influence of external forcing and self-organisation. Our results suggest that changes in species distribution that will affect population dynamics through biotic interactions in space and/or time could have greater effects on food webs and ecosystem functioning than changes in environmental factors per se.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1365-2427 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 716
Permanent link to this record
 

 
Author Guzman, Laura Melissa ; Trzcinski, M. Kurtis ; Barberis, Ignacio M. ; Cereghino, Régis ; Srivastava, Diane S. ; Gilbert Benjamin ; Pillar, Valerio D. ; de Omena, Paula M. ; MacDonald, A. Andrew M. ; Corbara, Bruno ; Leroy, Celine ; Bautista, Fabiola Ospina ; Romero, Gustavo Q. ; Kratina, Pavel ; Debastiani, Vanderlei J. ; Gonialves, Ana Z. ; Marino, Nicholas A.C. ; Farjalla, Vinicius F. ; Richardson, Barbara A. ; Richardson, Michael J. ; Dézerald, Olivier ; Piccoli, Gustavo, C. O. ; Jocqué, Merlijn ; Montero, Guillermo
Title Climate influences the response of community functional traits to local conditions in bromeliad invertebrate communities Type Journal Article
Year 2021 Publication Ecography Abbreviated Journal
Volume 44 Issue 3 Pages 440-452
Keywords
Abstract Functional traits determine an organism's performance in a given environment and as such determine which organisms will be found where. Species respond to local conditions, but also to larger scale gradients, such as climate. Trait ecology links these responses of species to community composition and species distributions. Yet, we often do not know which environmental gradients are most important in determining community trait composition at either local or biogeographical scales, or their interaction. Here we quantify the relative contribution of local and climatic conditions to the structure and composition of functional traits found within bromeliad invertebrate communities. We conclude that climate explains more variation in invertebrate trait composition within bromeliads than does local conditions. Importantly, climate mediated the response of traits to local conditions; for example, invertebrates with benthic life-history traits increased with bromeliad water volume only under certain precipitation regimes. Our ability to detect this and other patterns hinged on the compilation of multiple fine-grained datasets, allowing us to contrast the effect of climate versus local conditions. We suggest that, in addition to sampling communities at local scales, we need to aggregate studies that span large ranges in climate variation in order to fully understand trait filtering at local, regional and global scales.
Address
Corporate Author Thesis
Publisher Nordic Society OIKOS Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 1013
Permanent link to this record
 

 
Author Verryckt, L.T.; Ellsworth, D.S.; Vicca, S.; Van Langenhove, L.; Peñuelas, J.; Ciais, P.; Posada, J.M.; Stahl, C.; Coste, S.; Courtois, E.A.; Obersteiner, M.; Chave, J.; Janssens, I.A.
Title Can light-saturated photosynthesis in lowland tropical forests be estimated by one light level? Type Journal Article
Year 2020 Publication Biotropica Abbreviated Journal Biotropica
Volume 52 Issue 6 Pages 1183-1193
Keywords canopy architecture; interspecific variation; light intensity; lowland environment; parameter estimation; photon flux density; photosynthesis; saturation; tropical forest; French Guiana
Abstract Leaf-level net photosynthesis (An) estimates and associated photosynthetic parameters are crucial for accurately parameterizing photosynthesis models. For tropical forests, such data are poorly available and collected at variable light conditions. To avoid over- or underestimation of modeled photosynthesis, it is critical to know at which photosynthetic photon flux density (PPFD) photosynthesis becomes light-saturated. We studied the dependence of An on PPFD in two tropical forests in French Guiana. We estimated the light saturation range, including the lowest PPFD level at which Asat (An at light saturation) is reached, as well as the PPFD range at which Asat remained unaltered. The light saturation range was derived from photosynthetic light-response curves, and within-canopy and interspecific differences were studied. We observed wide light saturation ranges of An. Light saturation ranges differed among canopy heights, but a PPFD level of 1,000 µmol m−2 s−1 was common across all heights, except for pioneer trees species that did not reach light saturation below 2,000 µmol m−2 s−1. A light intensity of 1,000 µmol m−2 s−1 sufficed for measuring Asat of climax species at our study sites, independent of the species or the canopy height. Because of the wide light saturation ranges, results from studies measuring Asat at higher PPFD levels (for upper canopy leaves up to 1,600 µmol m−2 s−1) are comparable with studies measuring at 1,000 µmol m−2 s−1. © 2020 The Association for Tropical Biology and Conservation
Address UMR 5174, Laboratoire Evolution et Diversité Biologique, CNRS, Université Paul Sabatier, Toulouse, France
Corporate Author Thesis
Publisher Blackwell Publishing Ltd Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 00063606 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 948
Permanent link to this record
 

 
Author Verryckt, L.T.; Van Langenhove, L.; Ciais, P.; Courtois, E.A.; Vicca, S.; Peñuelas, J.; Stahl, C.; Coste, S.; Ellsworth, D.S.; Posada, J.M.; Obersteiner, M.; Chave, J.; Janssens, I.A.
Title Coping with branch excision when measuring leaf net photosynthetic rates in a lowland tropical forest Type Journal Article
Year 2020 Publication Biotropica Abbreviated Journal Biotropica
Volume 52 Issue 4 Pages 608-615
Keywords branch cutting; canopy physiology; French Guiana; gas exchange; photosynthesis; rainforest; stomatal conductance; ecological modeling; environmental conditions; forest canopy; leaf; measurement method; photosynthesis; tree; tropical forest; Gruidae
Abstract Measuring leaf gas exchange from canopy leaves is fundamental for our understanding of photosynthesis and for a realistic representation of carbon uptake in vegetation models. Since canopy leaves are often difficult to reach, especially in tropical forests with emergent trees up to 60 m at remote places, canopy access techniques such as canopy cranes or towers have facilitated photosynthetic measurements. These structures are expensive and therefore not very common. As an alternative, branches are often cut to enable leaf gas exchange measurements. The effect of branch excision on leaf gas exchange rates should be minimized and quantified to evaluate possible bias. We compared light-saturated leaf net photosynthetic rates measured on excised and intact branches. We selected branches positioned at three canopy positions, estimated relative to the top of the canopy: upper sunlit foliage, middle canopy foliage, and lower canopy foliage. We studied the variation of the effects of branch excision and transport among branches at these different heights in the canopy. After excision and transport, light-saturated leaf net photosynthetic rates were close to zero for most leaves due to stomatal closure. However, when the branch had acclimated to its new environmental conditions—which took on average 20 min—light-saturated leaf net photosynthetic rates did not significantly differ between the excised and intact branches. We therefore conclude that branch excision does not affect the measurement of light-saturated leaf net photosynthesis, provided that the branch is recut under water and is allowed sufficient time to acclimate to its new environmental conditions. © 2020 The Association for Tropical Biology and Conservation
Address UMR 5174 Laboratoire Evolution et Diversité Biologique, Université Paul Sabatier, CNRS, Toulouse, France
Corporate Author Thesis
Publisher Blackwell Publishing Ltd Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 00063606 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 960
Permanent link to this record
 

 
Author Schimann, H.; Vleminckx, J.; Baraloto, C.; Engel, J.; Jaouen, G.; Louisanna, E.; Manzi, S.; Sagne, A.; Roy, M.
Title Tree communities and soil properties influence fungal community assembly in neotropical forests Type Journal Article
Year 2020 Publication Biotropica Abbreviated Journal Biotropica
Volume 52 Issue 3 Pages 444-456
Keywords communities; composition; diversity; habitat; lowland neotropical rain forest; macrofungi; soil properties; trees; ectomycorrhiza; fungus; heterogeneity; Neotropical Region; physicochemical property; rainforest; species inventory; species richness; tree; tropical forest; French Guiana; Agaricales; Aphyllophorales; Basidiomycota
Abstract The influence exerted by tree communities, topography, and soil chemistry on the assembly of macrofungal communities remains poorly understood, especially in highly diverse tropical forests. Here, we used a large dataset that combines inventories of macrofungal Basidiomycetes fruiting bodies, tree species composition, and measurements for 16 soil physicochemical parameters, collected in 34 plots located in four sites of lowland rain forests in French Guiana. Plots were established on three different topographical conditions: hilltop, slope, and seasonally flooded soils. We found hyperdiverse Basidiomycetes communities, mainly comprising members of Agaricales and Polyporales. Phosphorus, clay contents, and base saturation in soils strongly varied across plots and shaped the richness and composition of tree communities. The latter composition explained 23% of the variation in the composition of macrofungal communities, probably through high heterogeneity of the litter chemistry and selective effects of biotic interactions. The high local heterogeneity of habitats influenced the distribution of both macrofungi and trees, as a result of diversed local soil hydromorphic conditions associated with contrasting soil chemistry. This first regional study across habitats of French Guiana forests revealed new niches for macrofungi, such as ectomycorrhizal ones, and illustrates how macrofungi inventories are still paramount to can be to understand the processes at work in the tropics. Abstract in Spanish is available with online material. © 2020 The Association for Tropical Biology and Conservation
Address Laboratoire Évolution et Diversité Biologique, CNRS, UMR 5174 UPS CNRS ENFA IRD, Université Toulouse 3 Paul Sabatier, Toulouse, France
Corporate Author Thesis
Publisher Blackwell Publishing Ltd Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 00063606 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 968
Permanent link to this record