|   | 
Details
   web
Records
Author Barantal, S.; Schimann, H.; Fromin, N.; Hättenschwiler, S.
Title C, N and P fertilization in an Amazonian rainforest supports stoichiometric dissimilarity as a driver of litter diversity effects on decomposition Type Journal Article
Year 2014 Publication Proceedings. Biological sciences / The Royal Society Abbreviated Journal Proceedings. Biological sciences / The Royal Society
Volume 281 Issue 1796 Pages 20141682
Keywords litter diversity; neotropical forest; nutrient addition; soil fauna; stoichiometry; trait dissimilarity
Abstract Plant leaf litter generally decomposes faster as a group of different species than when individual species decompose alone, but underlying mechanisms of these diversity effects remain poorly understood. Because resource C : N : P stoichiometry (i.e. the ratios of these key elements) exhibits strong control on consumers, we supposed that stoichiometric dissimilarity of litter mixtures (i.e. the divergence in C : N : P ratios among species) improves resource complementarity to decomposers leading to faster mixture decomposition. We tested this hypothesis with: (i) a wide range of leaf litter mixtures of neotropical tree species varying in C : N : P dissimilarity, and (ii) a nutrient addition experiment (C, N and P) to create stoichiometric similarity. Litter mixtures decomposed in the field using two different types of litterbags allowing or preventing access to soil fauna. Litter mixture mass loss was higher than expected from species decomposing singly, especially in presence of soil fauna. With fauna, synergistic litter mixture effects increased with increasing stoichiometric dissimilarity of litter mixtures and this positive relationship disappeared with fertilizer addition. Our results indicate that litter stoichiometric dissimilarity drives mixture effects via the nutritional requirements of soil fauna. Incorporating ecological stoichiometry in biodiversity research allows refinement of the underlying mechanisms of how changing biodiversity affects ecosystem functioning. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Address Centre d'Ecologie Fonctionnelle et Evolutive (CEFE UMR 5175, CNRS-Université de Montpellier-Université Paul-Valéry Montpellier-EPHE), 1919 Route de MENDE, 34293 Montpellier Cedex 5, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Export Date: 24 July 2015 Approved no
Call Number EcoFoG @ webmaster @ Serial 613
Permanent link to this record
 

 
Author Dezerald, O.; Céréghino, R.; Corbara, B.; Dejean, A.; Leroy, C.
Title Temperature: Diet Interactions Affect Survival through Foraging Behavior in a Bromeliad-Dwelling Predator Type Journal Article
Year 2015 Publication Biotropica Abbreviated Journal Biotropica
Volume 47 Issue 5 Pages 569-578
Keywords Toxorhynchites haemorrhoidalis; Biocontrol agent; Development; French Guiana; Selective feeding behavior; Tank bromeliad
Abstract Temperature, food quantity and quality play important roles in insect growth and survival, influencing population dynamics as well as interactions with other community members. However, the interaction between temperature and diet and its ecological consequences have been poorly documented. Toxorhynchites are well-known biocontrol agents for container-inhabiting mosquito larvae. We found that Toxorhynchites haemorrhoidalis larvae (Diptera: Culicidae) inhabiting water-filled rosettes of tank bromeliads catch and eat prey of both aquatic (mosquito larvae) and terrestrial origin (ants), using distinct predatory methods. They carried out frontal attacks on ants, but ambushed mosquito larvae. In choice tests, T. haemorrhoidalis favored terrestrial prey. Temperature had a significant effect on predator development and survival through its interaction with diet, but did not alter the preference for ants. T. haemorrhoidalis larvae emerged quickly when fed only mosquito larvae, whereas all individuals died before pupation when fed only ants. We conclude that behavioral factors (i.e., attraction to ants that disturb the surface of the water) overtake physiological factors (i.e., the adverse outcome of elevated temperature and an ant-based diet) in determining a predator's response to temperature:diet interactions. Finally, because T. haemorrhoidalis larvae preferentially feed on terrestrial insects in tank bromeliads, mosquito larvae may indirectly benefit from predation release. © 2015 Association for Tropical Biology and Conservation Inc.
Address UMR AMAP (botAnique et Modelisation de l'Architecture des Plantes et des vegetations), IRD, Boulevard de la Lironde, TA A-51/PS2, Montpellier Cedex 5, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Export Date: 17 September 2015 Approved no
Call Number EcoFoG @ webmaster @ Serial 624
Permanent link to this record
 

 
Author Molina, L.; Broquet, G.; Imbach, P.; Chevallier, F.; Poulter, B.; Bonal, D.; Burban, B.; Ramonet, M.; Gatti, L.V.; Wofsy, S.C.; Munger, J.W.; Dlugokencky, E.; Ciais, P.
Title On the ability of a global atmospheric inversion to constrain variations of CO2 fluxes over Amazonia Type Journal Article
Year 2015 Publication Atmospheric Chemistry and Physics Abbreviated Journal Atmospheric Chemistry and Physics
Volume 15 Issue 14 Pages 8423-8438
Keywords
Abstract The exchanges of carbon, water and energy between the atmosphere and the Amazon basin have global implications for the current and future climate. Here, the global atmospheric inversion system of the Monitoring of Atmospheric Composition and Climate (MACC) service is used to study the seasonal and interannual variations of biogenic CO<inf>2</inf> fluxes in Amazonia during the period 2002-2010. The system assimilated surface measurements of atmospheric CO<inf>2</inf> mole fractions made at more than 100 sites over the globe into an atmospheric transport model. The present study adds measurements from four surface stations located in tropical South America, a region poorly covered by CO<inf>2</inf> observations. The estimates of net ecosystem exchange (NEE) optimized by the inversion are compared to an independent estimate of NEE upscaled from eddy-covariance flux measurements in Amazonia. They are also qualitatively evaluated against reports on the seasonal and interannual variations of the land sink in South America from the scientific literature. We attempt at assessing the impact on NEE of the strong droughts in 2005 and 2010 (due to severe and longer-than-usual dry seasons) and the extreme rainfall conditions registered in 2009. The spatial variations of the seasonal and interannual variability of optimized NEE are also investigated. While the inversion supports the assumption of strong spatial heterogeneity of these variations, the results reveal critical limitations of the coarse-resolution transport model, the surface observation network in South America during the recent years and the present knowledge of modelling uncertainties in South America that prevent our inversion from capturing the seasonal patterns of fluxes across Amazonia. However, some patterns from the inversion seem consistent with the anomaly of moisture conditions in 2009. © Author(s) 2015.
Address NOAA, Earth System Research Laboratory, Global Monitoring Division, Boulder, CO, United States
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Export Date: 27 August 2015 Approved no
Call Number EcoFoG @ webmaster @ Serial 615
Permanent link to this record
 

 
Author Dezerald, O.; Céréghino, R.; Corbara, B.; Dejean, A.; Leroy, C.
Title Functional trait responses of aquatic macroinvertebrates to simulated drought in a Neotropical bromeliad ecosystem Type Journal Article
Year 2015 Publication Freshwater Biology Abbreviated Journal Freshwater Biology
Volume 60 Issue 9 Pages 1917-1929
Keywords Food webs; Precipitations; Rainforests; Resistance/resilience; Tipping point
Abstract The duration of the dry seasons in south-eastern Amazonia is expected to increase. Little is known of how freshwater assemblages respond to drought in the humid rainforests and of the extent to which they resist the absence of rainfall before the collapse of the system. We manipulated rainshelters over tank-forming bromeliads (i.e. the interlocking leaf axils of these plants form wells that collect rainwater) to simulate an exceptionally long dry period (49 days, compared with a 10-year mean ± SD annual maximum number of 17 ± 5.3 days without rainfall at the study site) and then a rewetting period. By sampling weekly over 3 months, we followed the dynamics of the representation of abundance-weighted traits in invertebrate assemblages in these treatment plants and in a control group. The functional structure of assemblages was drought resistant until the water volume in the bromeliad pools dropped by 90%, when there was a sudden shift in the functional trait structure due to the loss of most populations except the drought-resistant culicids. Traits related to life history, body size and preferred food showed significant responses to drought. There was a convergence in the functional traits of species surviving in dry plants, strengthening the idea that environmental filtering, rather than stochasticity, determines the functional trajectory of aquatic assemblages during drought. At the end of the dry period, samples of the detritus potentially containing drought-resistant eggs/cysts (and eventually live larvae) were taken from the dry plants and rewetted in the laboratory, allowing us to distinguish resistant species from those requiring recolonisation via subsequent oviposition by adults from elsewhere. Patches of water-filled bromeliads persisting in the area provided the most important pool of colonists, and communities returned to the pre-disturbance state within 1-2 weeks of rewetting. Our results suggest that the functional trait structure of invertebrate assemblages in bromeliads could remain stable under scenarios of precipitation change that would triple the duration of current dry periods at a local scale. Future experiments should evaluate how environmental factors might alter the tipping point between resistance to drought and a collapse in ecosystem processes. © 2015 John Wiley & Sons Ltd.
Address IRD, UMR AMAP (botAnique et Modélisation de l'Architecture des Plantes et des vegetations), Boulevard de la Lironde, TA A-51/PS2, Montpellier Cedex 5, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Export Date: 27 August 2015 Approved no
Call Number EcoFoG @ webmaster @ Serial 616
Permanent link to this record
 

 
Author Aimene, Y.E.; Nairn, J.A.
Title Simulation of transverse wood compression using a large-deformation, hyperelastic–plastic material model Type Journal Article
Year 2015 Publication Wood Science and Technology Abbreviated Journal Wood Science and Technology
Volume 49 Issue 1 Pages 21-39
Keywords
Abstract Transverse compression of wood is a process that induces large deformations. The process is dominated by elastic and plastic cell wall buckling. This work reports a numerical study of the transverse compression and densification of wood using a large-deformation, elastic–plastic constitutive law. The model is isotropic, formulated within the framework of hyperelasticity, and implemented in explicit material point method (MPM) software. The model was first validated for modeling of cellular materials by compression of an isotropic cellular model specimen. Next, it was used to model compression of wood by first validating use of isotropic, transverse plane properties for tangential compression of hardwood, and then by investigating both tangential and radial compression of softwood. Importantly, the discretization of wood specimens used MPM methods to reproduce accurately the complex morphology of wood anatomy for different species. The simulations have reproduced observations of stress–strain response during wood compression including details of inhomogeneous deformation caused by variations in wood anatomy. © 2014, Springer-Verlag Berlin Heidelberg.
Address Wood Science and Engineering Department, Oregon State University, Corvallis, OR, United States
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Export Date: 27 August 2015 Approved no
Call Number EcoFoG @ webmaster @ Serial 617
Permanent link to this record
 

 
Author Moore, A.L.; McCarthy, M.A.; Parris, K.M.; Moore, J.L.
Title The optimal number of surveys when detectability varies Type Journal Article
Year 2014 Publication PLoS ONE Abbreviated Journal PLoS ONE
Volume 9 Issue 12 Pages e115345
Keywords
Abstract The survey of plant and animal populations is central to undertaking field ecology. However, detection is imperfect, so the absence of a species cannot be determined with certainty. Methods developed to account for imperfect detectability during surveys do not yet account for stochastic variation in detectability over time or space. When each survey entails a fixed cost that is not spent searching (e.g., time required to travel to the site), stochastic detection rates result in a trade-off between the number of surveys and the length of each survey when surveying a single site. We present a model that addresses this trade-off and use it to determine the number of surveys that: 1) maximizes the expected probability of detection over the entire survey period; and 2) is most likely to achieve a minimally-acceptable probability of detection. We illustrate the applicability of our approach using three practical examples (minimum survey effort protocols, number of frog surveys per season, and number of quadrats per site to detect a plant species) and test our model's predictions using data from experimental plant surveys. We find that when maximizing the expected probability of detection, the optimal survey design is most sensitive to the coefficient of variation in the rate of detection and the ratio of the search budget to the travel cost. When maximizing the likelihood of achieving a particular probability of detection, the optimal survey design is most sensitive to the required probability of detection, the expected number of detections if the budget were spent only on searching, and the expected number of detections that are missed due to travel costs. We find that accounting for stochasticity in detection rates is likely to be particularly important for designing surveys when detection rates are low. Our model provides a framework to do this. © 2014 Moore et al.
Address School of Biological Sciences, Monash University, Melbourne, VIC, Australia
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Export Date: 8 September 2015 Approved no
Call Number EcoFoG @ webmaster @ Serial 618
Permanent link to this record
 

 
Author Baraloto, C.; Alverga, P.; Quispe, S.B.; Barnes, G.; Chura, N.B.; da Silva, I.B.; Castro, W.; da Souza, H.; de Souza Moll, I.E.; Del Alcazar Chilo, J.; Linares, H.D.; Quispe, J.G.; Kenji, D.; Marsik, M.; Medeiros, H.; Murphy, S.; Rockwell, C.; Selaya, G.; Shenkin, A.; Silveira, M.; Southworth, J.; Vasquez Colomo, G.H.; Perz, S.
Title Effects of road infrastructure on forest value across a tri-national Amazonian frontier Type Journal Article
Year 2015 Publication Biological Conservation Abbreviated Journal Biological Conservation
Volume 191 Issue Pages 674-681
Keywords Açai; Biodiversity; Brazil nut; Carbon stocks; Connectivity; Infrastructure; Livelihood; Ntfp; Redd; Road impact; Rubber; Timber; Tropical rainforest
Abstract Road construction demonstrably accelerates deforestation rates in tropical forests, but its consequences for forest degradation remain less clear. We estimated a series of forest value metrics including components of biodiversity, carbon stocks, and timber and non-timber forest product resources, along the recently paved Inter-Oceanic Highway (IOH) integrating Brazil and Peru along the Bolivian border. We installed 69 vegetation plots in intact terra firme forests representative of local community holdings near and far from the IOH, and we characterized 15 components of forest value for each plot.We observed strong geographic gradients in forest value components across the region, with increases from west to east in aboveground biomass and in the abundance of timber and non-timber forest product trees and regeneration. Plots in communities in Pando, Bolivia, where the IOH remains in part unpaved, had the highest aboveground biomass, standing timber volumes and Brazil nut tree density. In contrast, communities in Madre de Dios, Peru, where settlements and unpaved portions of the IOH have existed for decades, and in Acre, Brazil, where paving of the IOH has been underway for more than a decade, were more degraded. Seven of the fifteen forest value components we measured increased with increasing distance from the IOH, although the magnitude of these effects was weak. Landscape scale remote sensing analyses showed much stronger effects of road proximity on deforestation. We suggest that remote sensing techniques including canopy spectral signatures might be calibrated to characterize multiple components of forest value, so that we can estimate landscape scale impacts of infrastructure developments on both deforestation and forest degradation in tropical regions. © 2015 Elsevier B.V.
Address International Center for Tropical Botany, Department of Earth and Environment, Florida International University, Miami, FL, United States
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Export Date: 8 September 2015 Approved no
Call Number EcoFoG @ webmaster @ Serial 619
Permanent link to this record
 

 
Author Guitet, S.; Pélissier, R.; Brunaux, O.; Jaouen, G.; Sabatier, D.
Title Geomorphological landscape features explain floristic patterns in French Guiana rainforest Type Journal Article
Year 2015 Publication Biodiversity and Conservation Abbreviated Journal Biodiversity and Conservation
Volume 24 Issue 5 Pages 1215-1237
Keywords Geodiversity; Geomorphology; Landscapes; Species distribution; Tree community
Abstract Geomorphic landscape features have been suggested as indicators of forest diversity. However, their explanatory power has not yet been explicitly tested at a regional scale in tropical rainforest. We used forest inventories conducted according to a stratified sampling design (3,132 plots in 111 transects at 33 sites) and holistic multi-scale geomorphological mapping derived from a Shuttle Radar Topography Mission digital elevation model to describe and explain spatial patterns in floristic composition across French Guiana (80,000 km2). We measured and identified 123,906 trees with DBH ≥20 cm and used constrained and unconstrained ordinations to analyze variations in the abundance of 221 taxa and 51 families. Variance partitioning and variograms were used to detect spatial patterns in species composition, compare the explanatory power of spatial and environmental factors, and select the variables that best explain forest composition. Strong floristic patterns corresponded to a major latitudinal gradient and significant sub-regional floristic structure. Geomorphological landscapes shaped by historic climate fluctuations and major geological events successfully captured these patterns and explained the variation in abundance of 80 taxa, corresponding to 65 % of the inventoried trees. Our findings suggest that long-term forest dynamics are under substantial “geomorphographic control”. A geomorphological perspective on landscapes that incorporates current and past environmental filters and historical biogeographical processes could thus be used more systematically in tropical regions for regional planning and forest conservation. © 2014, Springer Science+Business Media Dordrecht.
Address UMR EcoFoG, AgroParisTech, Campus agronomique, Guyane Française, BP 316, Kourou, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Export Date: 8 September 2015 Approved no
Call Number EcoFoG @ webmaster @ Serial 620
Permanent link to this record
 

 
Author Lambs, L.; Bompy, F.; Imbert, D.; Corenblit, D.; Dulormne, M.
Title Seawater and freshwater circulations through coastal forested wetlands on a Caribbean Island Type Journal Article
Year 2015 Publication Water Abbreviated Journal Water
Volume 7 Issue 8 Pages 4108-4128
Keywords 18O/2H stable isotope; Hydrology; Mangrove; Salinity; Swamp forest; Water level
Abstract Structure and composition of coastal forested wetlands are mainly controlled by local topography and soil salinity. Hydrology plays a major role in relation with tides, seaward, and freshwater inputs, landward. We report here the results of a two-year study undertaken in a coastal plain of the Guadeloupe archipelago (FWI). As elsewhere in the Caribbean islands, the study area is characterized by a micro-tidal regime and a highly seasonal climate. This work aimed at understanding groundwater dynamics and origin (seawater/freshwater) both at ecosystems and stand levels. These hydrological processes were assessed through 18O/16O and 2H/1H isotopic analyses, and from monthly monitoring of water level and soil salinity at five study sites located in mangrove (3) and swamp forest (2). Our results highlight the importance of freshwater budget imbalance during low rainfall periods. Sustained and/or delayed dry seasons cause soil salinity to rise at the mangrove/swamp forest ecotone. As current models on climate change project decreasing rainfall amounts over the inner Caribbean region, one may expect for this area an inland progression of the mangrove forest to the expense of the nearby swamp forest. © 2015 by the authors.
Address Geolab, UMR 6042, CNRS-Université Blaise Pascal, 4 rue Ledru, Clermont-Ferrand Cedex, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Export Date: 8 September 2015 Approved no
Call Number EcoFoG @ webmaster @ Serial 621
Permanent link to this record
 

 
Author Rivalland, C.; Madhkour, S.; Salvin, P.; Robert, F.
Title Electrochemical and microbial monitoring of multi-generational electroactive biofilms formed from mangrove sediment Type Journal Article
Year 2015 Publication Bioelectrochemistry Abbreviated Journal Bioelectrochemistry
Volume 106 Issue Pages 125-132
Keywords Dissimilarity; High-throughput sequencing; Mes; Microbial diversity; Syntrophism
Abstract Electroactive biofilms were formed from French Guiana mangrove sediments for the analysis of bacterial communities' composition. The electrochemical monitoring of three biofilm generations revealed that the bacterial selection occurring at the anode, supposedly leading microbial electrochemical systems (MESs) to be more efficient, was not the only parameter to be taken into account so as to get the best electrical performance (maximum current density). Indeed, first biofilm generations produced a stable current density reaching about 18A/m2 while second and third generations produced current densities of about 10A/m2. MES bacterial consortia were characterized thanks to molecular biology techniques: DGGE and MiSeq® sequencing (Illumina®). High-throughput sequencing data statistical analysis confirmed preliminary DGGE data analysis, showing strong similarities between electroactive biofilms of second and third generations, but also revealing both selection and stabilization of the biofilms. © 2015 Elsevier B.V.
Address Laboratoire des Matériaux et Molécules en Milieu Amazonien, UAG-UMR EcoFoG, 2091 route de Baduel, Campus TrouBiran, Cayenne, Guyane Française, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Export Date: 11 September 2015 Approved no
Call Number EcoFoG @ webmaster @ Serial 622
Permanent link to this record