|   | 
Details
   web
Records
Author Cereghino, R.; Leroy, C.; Dejean, A.; Corbara, B.
Title Ants mediate the structure of phytotelm communities in an ant-garden bromeliad Type Journal Article
Year 2010 Publication Ecology Abbreviated Journal Ecology
Volume 91 Issue 5 Pages (down) 1549-1556
Keywords Aechmea mertensii; ant-gardens; biodiversity; bromeliads; Camponotus femoratus; Crematogaster levior; macroinvertebrates; mutualism; Pachycondyla goeldii; phytotelmata; secondary forest; Sinnamary; French Guiana; species interactions
Abstract The main theories explaining the biological diversity of rain forests often confer a limited understanding of the contribution of interspecific interactions to the observed patterns. We show how two-species mutualisms can affect much larger segments of the invertebrate community in tropical rain forests. Aechmea mertensii (Bromeliaceae) is both a phytotelm (plant-held water) and an ant-garden epiphyte. We studied the influence of its. associated ant species (Pachycondyla goeldii and Camponotus femoratus) on the physical characteristics of the plants, and, subsequently, on the diversity of the invertebrate communities that inhabit their tanks. As dispersal agents for the bromeliads, P. goeldii and C. femoratus influence the shape and size of the bromeliad by determining the location of the seedling, from exposed to partially shaded areas. By coexisting on a local scale, the two ant species generate a gradient of habitat conditions in terms of available resources (space and food) for aquatic invertebrates, the diversity of the invertebrate communities increasing with greater volumes of water and fine detritus. Two-species mutualisms are widespread in nature, but their influence on the diversity of entire communities remains largely unexplored. Because macroinvertebrates constitute an important part of animal production in all ecosystem types, further investigations should address the functional implications of such indirect effects.
Address [Cereghino, Regis] Univ Toulouse, UPS, INPT, Lab Ecol Fonct,EcoLab, F-31062 Toulouse, France, Email: cereghin@cict.fr
Corporate Author Thesis
Publisher ECOLOGICAL SOC AMER Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0012-9658 ISBN Medium
Area Expedition Conference
Notes ISI:000277867600030 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 59
Permanent link to this record
 

 
Author Cochard, H.; Coste, S.; Chanson, B.; Guehl, J.M.; Nicolini, E.
Title Hydraulic architecture correlates with bud organogenesis and primary shoot growth in beech (Fagus sylvatica) Type Journal Article
Year 2005 Publication Tree Physiology Abbreviated Journal Tree Physiol.
Volume 25 Issue 12 Pages (down) 1545-1552
Keywords development; hydraulic conductance; leaf primordia; meristem; xylem
Abstract In beech (Fagus sylvatica L.), the number of leaf primordia preformed in the buds determines the length and the type (long versus short) of annual growth units, and thus, branch growth and architecture. We analyzed the correlation between the number of leaf primordia and the hydraulic conductance of the vascular system connected to the buds. Terminal buds of short growth units and axillary buds of long growth units on lower branches of mature trees were examined. Buds with less than four and more than five leaf primordia formed short and long growth units, respectively. Irrespective of the type of growth unit the bud was formed on, the occurrence of a large number of leaf primordia was associated with high xylem hydraulic conductance. Xylem conductance was correlated to the area of the outermost annual ring. These results suggest that organogenesis and primary growth in buds correlates with secondary growth of the growth units and thus with their hydraulic architecture. Possible causal relationships between the variables are discussed.
Address INRA UBP, UMR PIAF, F-63039 Clermont Ferrand, France, Email: cochard@clermont.inra.fr
Corporate Author Thesis
Publisher HERON PUBLISHING Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0829-318X ISBN Medium
Area Expedition Conference
Notes ISI:000234019900008 Approved no
Call Number EcoFoG @ webmaster @ Serial 281
Permanent link to this record
 

 
Author Denis, T.; Hérault, B.; Brunaux, O.; Guitet, S.; Richard-Hansen, C.
Title Weak environmental controls on the composition and diversity of medium and large-sized vertebrate assemblages in neotropical rain forests of the Guiana Shield Type Journal Article
Year 2018 Publication Diversity and Distributions Abbreviated Journal Diversity Distrib.
Volume 24 Issue 11 Pages (down) 1545-1559
Keywords biodiversity; birds; functional traits; mammals; refugia hypothesis; spatial patterns; Aves; Mammalia; Vertebrata
Abstract Aim: Despite their often high-trophic position and their contribution to many ecosystem functions, little is known about the factors affecting assemblage structure of medium- and large-sized neotropical vertebrates. We examined the relative roles played by the physical and biological environment, and by purely spatial processes, in shaping the composition and diversities of these vertebrate assemblages. Then, based on the theory that the Guianan forest cover shrank to isolated pockets during the late Pleistocene–Holocene, we tested if the past forest refugia may have shaped current vertebrate assemblages. Location: French Guiana, Guiana Shield, South America. Methods: Abundances of 19 medium- and large-sized vertebrates were estimated at 21 locations in undisturbed Guianan rain forests. Using taxonomic, functional and phylogenetic metrics, we partitioned the effects of a range of physical and biological environmental conditions and purely spatial predictors in shaping both assemblage composition and (alpha and beta) diversities. Results: We identified a significant, but weak relationship between taxonomic, functional and phylogenetic assemblage composition and environmental conditions. Assemblage diversity patterns were mainly explained by spatial predictors irrespective of the metrics. Current assemblage diversities are correlated with Pleistocene–Holocene forest history, with the highest alpha diversities outside of putative forest refugia, and the highest beta diversities inside these areas. Main conclusions: Current vertebrate assemblage composition is not strongly marked by common environmental factors. Our main conclusion is that assemblage composition results from individual species responses to the environment. Our findings also suggest that dispersal-related processes or more probably historical processes shape (alpha and beta) diversity patterns. In fact, forest fragmentation during Pleistocene–Holocene climate changes could have led to isolated vertebrate assemblages evolving into unique species assemblages creating the current high beta diversity inside refugia, whereas the lower habitat stability outside of refugia could have led to mixed assemblages in areas recolonized by forest vertebrates (current high alpha diversity outside of refugia).
Address IRD, UMR AMAP (Cirad, CNRS, INRA, Université de Montpellier), Montpellier, France
Corporate Author Thesis
Publisher Blackwell Publishing Ltd Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 13669516 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 833
Permanent link to this record
 

 
Author Chartier, M.; Gibernau, M.; Renner, S.S.
Title The evolution of pollinator-plant interaction types in the araceae Type Journal Article
Year 2014 Publication Evolution Abbreviated Journal Evolution
Volume 68 Issue 5 Pages (down) 1533-1543
Keywords Ancestral state reconstruction; Inflorescence traits; Phylogeny; Pollination syndromes; Trap flowers
Abstract Most plant-pollinator interactions are mutualistic, involving rewards provided by flowers or inflorescences to pollinators. Antagonistic plant-pollinator interactions, in which flowers offer no rewards, are rare and concentrated in a few families including Araceae. In the latter, they involve trapping of pollinators, which are released loaded with pollen but unrewarded. To understand the evolution of such systems, we compiled data on the pollinators and types of interactions, and coded 21 characters, including interaction type, pollinator order, and 19 floral traits. A phylogenetic framework comes from a matrix of plastid and new nuclear DNA sequences for 135 species from 119 genera (5342 nucleotides). The ancestral pollination interaction in Araceae was reconstructed as probably rewarding albeit with low confidence because information is available for only 56 of the 120-130 genera. Bayesian stochastic trait mapping showed that spadix zonation, presence of an appendix, and flower sexuality were correlated with pollination interaction type. In the Araceae, having unisexual flowers appears to have provided the morphological precondition for the evolution of traps. Compared with the frequency of shifts between deceptive and rewarding pollination systems in orchids, our results indicate less lability in the Araceae, probably because of morphologically and sexually more specialized inflorescences. © 2013 The Society for the Study of Evolution.
Address Department of Biology, University of Munich, Munich, 80638, Germany
Corporate Author Thesis
Publisher Society for the Study of Evolution Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 15585646 (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 30 May 2014; Source: Scopus; Coden: Evola; Language of Original Document: English Approved no
Call Number EcoFoG @ webmaster @ Serial 544
Permanent link to this record
 

 
Author Schmitt, S.; Hérault, B.; Ducouret, É.; Baranger, A.; Tysklind, N.; Heuertz, M.; Marcon, É.; Cazal, S.O.; Derroire, G.
Title Topography consistently drives intra- and inter-specific leaf trait variation within tree species complexes in a Neotropical forest Type Journal Article
Year 2020 Publication Oikos Abbreviated Journal Oikos
Volume 129 Issue 10 Pages (down) 1521-1530
Keywords intraspecific variability; leaf traits; Paracou; species complex; syngameon; tropical forests; Bayesian analysis; coexistence; divergence; genetic variation; hierarchical system; leaf area; local adaptation; niche overlap; species diversity; topography; tropical forest; Guyana Shield
Abstract Tropical forests shelter the highest species diversity worldwide, although genus diversity is lower than expected. In the species-rich genera, species complexes are composed of closely-related species that share large amounts of genetic variation. Despite the key role of species complexes in diversification, evolution and functioning of ecological communities, little is known on why species complexes arise and how they are maintained in Neotropical forests. Examining how individual phenotypes vary along environmental gradients, within and among closely-related species within species complexes, can reveal processes allowing species coexistence within species complexes. We examined leaf functional trait variation with topography in a hyperdiverse tropical forest of the Guiana Shield. We collected leaf functional traits from 766 trees belonging to five species in two species complexes in permanent plots encompassing a diversity of topographic positions. We tested the role of topography on leaf functional trait variation with a hierarchical Bayesian model, controlling for individual tree diameter effect. We show that, mirroring what has been previously observed among species and communities, individual leaf traits covary from acquisitive to conservative strategy within species. Moreover, decreasing wetness from bottomlands to plateaus was associated with a shift of leaf traits from an acquisitive to a conservative strategy both across and within closely-related species. Our results suggest that intraspecific trait variability widens species’ niches and converges at species’ margins where niches overlap, potentially implying local neutral processes. Intraspecific trait variability favors local adaptation and divergence of closely-related species within species complexes. It is potentially maintained through interspecific sharing of genetic variation through hybridization. © 2020 Nordic Society Oikos. Published by John Wiley & Sons Ltd
Address INRAE, UMR EcoFoG (Agroparistech, CNRS, Cirad, Université des Antilles, Univ. de la Guyane), Kourou, French Guiana
Corporate Author Thesis
Publisher Blackwell Publishing Ltd Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 00301299 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 950
Permanent link to this record
 

 
Author Quesada, C.A.; Lloyd, J.; Schwarz, M.; Patino, S.; Baker, T.R.; Czimczik, C.; Fyllas, N.M.; Martinelli, L.; Nardoto, G.B.; Schmerler, J.; Santos, A.J.B.; Hodnett, M.G.; Herrera, R.; Luizao, F.J.; Arneth, A.; Lloyd, G.; Dezzeo, N.; Hilke, I.; Kuhlmann, I.; Raessler, M.; Brand, W.A.; Geilmann, H.; Moraes, J.O.; Carvalho, F.P.; Araujo, R.N.; Chaves, J.E.; Cruz, O.F.; Pimentel, T.P.; Paiva, R.
Title Variations in chemical and physical properties of Amazon forest soils in relation to their genesis Type Journal Article
Year 2010 Publication Biogeosciences Abbreviated Journal Biogeosciences
Volume 7 Issue 5 Pages (down) 1515-1541
Keywords
Abstract Soil samples were collected in six South American countries in a total of 71 different 1 ha forest plots across the Amazon Basin as part of the RAINFOR project. They were analysed for total and exchangeable cations, C, N, pH with various P fractions also determined. Physical properties were also examined and an index of soil physical quality proposed. A diverse range of soils was found. For the western areas near the Andean cordillera and the southern and northern fringes, soils tend to be distributed among the lower pedogenetic levels, while the central and eastern areas of Amazonia have more intensely weathered soils. This gives rise to a large variation of soil chemical and physical properties across the Basin, with soil properties varying predictably along a gradient of pedogenic development. Nutrient pools generally increased slightly in concentration from the youngest to the intermediate aged soils after which a gradual decline was observed with the lowest values found in the most weathered soils. Soil physical properties were strongly correlated with soil fertility, with favourable physical properties occurring in highly weathered and nutrient depleted soils and with the least weathered, more fertile soils having higher incidence of limiting physical properties. Soil phosphorus concentrations varied markedly in accordance with weathering extent and appear to exert an important influence on the nitrogen cycle of Amazon forest soils.
Address [Quesada, C. A.; Lloyd, J.; Baker, T. R.; Fyllas, N. M.] Univ Leeds, Sch Geog, Earth & Biosphere Inst, Leeds LS2 9JT, W Yorkshire, England, Email: betoquesada@yahoo.com.br
Corporate Author Thesis
Publisher COPERNICUS GESELLSCHAFT MBH Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1726-4170 ISBN Medium
Area Expedition Conference
Notes ISI:000278184500011 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 58
Permanent link to this record
 

 
Author Almeras, T.
Title Mechanical analysis of the strains generated by water tension in plant stems. Part II: strains in wood and bark and apparent compliance Type Journal Article
Year 2008 Publication Tree Physiology Abbreviated Journal Tree Physiol.
Volume 28 Issue 10 Pages (down) 1513-1523
Keywords biomechanics; calibration; diurnal strains; mechanical model; multilayer cylinder; water potential
Abstract Tree steins shrink in diameter during the day and swell during the night in response to changes in water tension in the xylem. Stein shrinkage can easily be measured in a nondestructive way, to derive continuous information about tree water status. The relationship between the strain and the change in water tension can be evaluated by empirical calibrations, or can be related to the structure of the plant. A mechanical analysis was performed to make this relationship explicit. The stem is modeled as a cylinder made of multiple layers of tissues, including heartwood, sapwood, and inner and outer bark. The effect of changes in water tension on the apparent strain at the surface of a tissue is quantified as a function of parameters defining stem anatomy and the mechanical properties of the tissues. Various possible applications in the context of tree physiology are suggested.
Address INRA UMR Ecofog, Kourou 97379, French Guiana, Email: t_almeras@hotmail.com
Corporate Author Thesis
Publisher HERON PUBLISHING Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0829-318X ISBN Medium
Area Expedition Conference
Notes ISI:000260027200009 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 129
Permanent link to this record
 

 
Author Almeras, T.; Gril, J.
Title Mechanical analysis of the strains generated by water tension in plant stems. Part 1: stress transmission from the water to the cell walls Type Journal Article
Year 2007 Publication Tree Physiology Abbreviated Journal Tree Physiol.
Volume 27 Issue 11 Pages (down) 1505-1516
Keywords biomechanics; cell mechanics; diurnal strains; mechanical model; multilayer cylinder; stress transtnissionjactor
Abstract Plant tissues shrink and swell in response to changes in water pressure. These strains can be easily measured, e.g., at the surface of tree stems, to obtain indirect information about plant water status and other physiological parameters. We developed a mechanical model to clarify how water pressure is transmitted to cell walls and causes shrinkage of plant tissues, particularly in the case of thick-walled cells such as wood fibers. Our analysis shows that the stress inside the fiber cell walls is lower than the water tension. The difference is accounted for by a stress transmission factor that depends on two main effects. The first effect is the dilution of the stress through the cell wall, because water acts at the lumen border and is transmitted to the cuter border of the cell, which has a larger circumference. The second effect is the partial conversion of radial stress into tangential stress. Both effects are quantified as functions of parameters of the cell wall structure and its mechanical properties.
Address INRA, UMR Ecofog, F-97379 Kourou, French Guiana, France, Email: t_almeras@hotmail.com
Corporate Author Thesis
Publisher HERON PUBLISHING Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0829-318X ISBN Medium
Area Expedition Conference
Notes ISI:000250847000001 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 152
Permanent link to this record
 

 
Author Basset, Y.; Cizek, L.; Cuénoud, P.; Didham, R.K.; Guilhaumon, F.; Missa, O.; Novotny, V.; Ødegaard, F.; Roslin, T.; Schmidl, J.; Tishechkin, A.K.; Winchester, N.N.; Roubik, D.W.; Aberlenc, H.-P.; Bail, J.; Barrios, H.; Bridle, J.R.; Castaño-Meneses, G.; Corbara, B.; Curletti, G.; Da Rocha, W.D.; De Bakker, D.; Delabie, J.H.C.; Dejean, A.; Fagan, L.L.; Floren, A.; Kitching, R.L.; Medianero, E.; Miller, S.E.; De Oliveira, E.G.; Orivel, J.; Pollet, M.; Rapp, M.; Ribeiro, S.P.; Roisin, Y.; Schmidt, J.B.; Sørensen, L.; Leponce, M.
Title Arthropod diversity in a tropical forest Type Journal Article
Year 2012 Publication Science Abbreviated Journal
Volume 338 Issue 6113 Pages (down) 1481-1484
Keywords
Abstract Most eukaryotic organisms are arthropods. Yet, their diversity in rich terrestrial ecosystems is still unknown. Here we produce tangible estimates of the total species richness of arthropods in a tropical rainforest. Using a comprehensive range of structured protocols, we sampled the phylogenetic breadth of arthropod taxa from the soil to the forest canopy in the San Lorenzo forest, Panama. We collected 6144 arthropod species from 0.48 hectare and extrapolated total species richness to larger areas on the basis of competing models. The whole 6000-hectare forest reserve most likely sustains 25,000 arthropod species. Notably, just 1 hectare of rainforest yields >60% of the arthropod biodiversity held in the wider landscape. Models based on plant diversity fitted the accumulated species richness of both herbivore and nonherbivore taxa exceptionally well. This lends credence to global estimates of arthropod biodiversity developed from plant models.
Address Natural History Museum of Denmark, 2100 Copenhagen, Denmark
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 27 December 2012; Source: Scopus Approved no
Call Number EcoFoG @ webmaster @ Serial 451
Permanent link to this record
 

 
Author Baraloto, Christophier ; Vleminckx, Jason ; Engel, Julien ; Petronelli, Pascal ; Davila, Nallarett ; Rios, Marcos ; Valderrama Sandoval, Elvis Harry ; Mesones, Italo ; Guevara ANdino, Juan Ernesto ; Fortunel, Claire ; Allie, Elodie ; Paine, C.E. Timothy ; Dourdan, Aurélie ; Goret, Jean-Yves ; Valverde-Barrantes, Oscar J. ; Draper, Freddie ; Fine, Paul V. A.
Title Biogeographic history and habitat specialization shape floristic and phylogenetic composition across Amazonian forests Type Journal Article
Year 2021 Publication Ecological Monographs Abbreviated Journal
Volume 91 Issue 4 Pages (down) e01473
Keywords
Abstract A major challenge remains to understand the relative contributions of history, dispersal, and environmental filtering to the assembly of hyperdiverse communities across spatial scales. Here, we examine the extent to which biogeographical history and habitat specialization have generated turnover among and within lineages of Amazonian trees across broad geographic and environmental gradients. We replicated standardized tree inventories in 102 0.1-ha plots located in two distant regions—the western Amazon and the eastern Guiana shield. Within each region, we used a nested design to replicate plots on contrasted habitats: white-sand, terra firme, and seasonally flooded forests. Our plot network encompassed 26,386 trees that together represented 2,745 distinct taxa, which we standardized across all plots and regions. We combined taxonomic and phylogenetic data with detailed soil measurements and climatic data to: (1) test whether patterns of taxonomic and phylogenetic composition are consistent with recent or historical processes, (2) disentangle the relative effects of habitat, environment, and geographic distance on taxonomic and phylogenetic turnover among plots, and (3) contrast the proportion of habitat specialists among species from each region. We found substantial species turnover between Peru and French Guiana, with only 8.8% of species shared across regions; genus composition remained differentiated across habitats and regions, whereas turnover at higher taxonomic levels (family, order) was much lower. Species turnover across plots was explained primarily by regions, but also substantially by habitat differences and to a lesser extent by spatial distance within regions. Conversely, the composition of higher taxonomic levels was better explained by habitats (especially comparing white-sand forests to other habitats) than spatial distance. White-sand forests harbored most of the habitat specialists in both regions, with stronger habitat specialization in Peru than in French Guiana. Our results suggest that recent diversification events have resulted in extremely high turnover in species and genus composition with relatively little change in the composition of higher lineages. Our results also emphasize the contributions of rare habitats, such as white-sand forests, to the extraordinary diversity of the Amazon and underline their importance as conservation priorities.
Address
Corporate Author Thesis
Publisher Ecological Society of America Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 1027
Permanent link to this record