|   | 
Details
   web
Records
Author González, A.L.; Céréghino, R.; Dézerald, O.; Farjalla, V.F.; Leroy, C.; Richardson, B.A.; Richardson, M.J.; Romero, G.Q.; Srivastava, D.S.
Title Ecological mechanisms and phylogeny shape invertebrate stoichiometry: A test using detritus-based communities across Central and South America Type Journal Article
Year 2018 Publication Functional Ecology Abbreviated Journal Funct Ecol
Volume 32 Issue 10 Pages (down) 2448-2463
Keywords body size scaling; carnivores; detritivores; ecological stoichiometry; macroinvertebrates; nitrogen; phosphorous; phylogenetic signal
Abstract Stoichiometric differences among organisms can affect trophic interactions and rates of nutrient cycling within ecosystems. However, we still know little about either the underlying causes of these stoichiometric differences or the consistency of these differences across large geographical extents. Here, we analyse elemental (carbon, nitrogen, phosphorus) composition of 872 aquatic macroinvertebrates (71 species) inhabiting tank bromeliads (n = 140) from five distantly located sites across Central and South America to (i) test phylogenetic, trophic and body size scaling explanations for why organisms differ in elemental composition and (ii) determine whether patterns in elemental composition are universal or context dependent. Taxonomy explained most variance in elemental composition, even though phylogenetic signals were weak and limited to regional spatial extents and to the family level. The highest elemental contents and lowest carbon:nutrient ratios were found in organisms at high trophic levels and with smaller body size, regardless of geographical location. Carnivores may have higher nutrient content and lower carbon:nutrient ratios than their prey, as organisms optimize growth by choosing the most nutrient-rich resources to consume and then preferentially retain nutrients over carbon in their bodies. Smaller organisms grow proportionally faster than large organisms and so are predicted to have higher nutrient requirements to fuel RNA and protein synthesis. Geography influenced the magnitude, more than the direction, of the ecological and/or phylogenetic effects on elemental composition. Overall, our results show that both ecological (i.e. trophic group) and evolutionary drivers explain among-taxa variation in the elemental content of invertebrates, whereas intraspecific variation is mainly a function of body size. Our findings also demonstrate that restricting analyses of macroinvertebrate stoichiometry solely to either the local scale or species level affects inferences of the patterns in invertebrate elemental content and their underlying mechanisms.
Address
Corporate Author Thesis
Publisher John Wiley & Sons, Ltd (10.1111) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0269-8463 ISBN Medium
Area Expedition Conference
Notes doi: 10.1111/1365-2435.13197 Approved no
Call Number EcoFoG @ webmaster @ Serial 849
Permanent link to this record
 

 
Author Lebrini, M.; Robert, F.; Blandinieres, P.A.; Roos, C.
Title Corrosion Inhibition by Isertia coccinea Plant Extract in Hydrochloric Acid Solution Type Journal Article
Year 2011 Publication International Journal of Electrochemical Science Abbreviated Journal Int. J. Electrochem. Sci.
Volume 6 Issue 7 Pages (down) 2443-2460
Keywords Isertia coccinea; corrosion inhibitors; C38 steel; acidic media; adsorption
Abstract The effect of alkaloids extracted from Isertia coccinea plant (AEIC) on the corrosion of C38 steel in 1 M hydrochloric acid was investigated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques. Potentiodynamic polarization curves indicated that the extract behave as mixed-type inhibitor. The experimental data obtained from EIS method show a frequency distribution and therefore a modelling element with frequency dispersion behaviour, a constant phase element (CPE) has been used. The inhibition efficiencies of the extract calculated by three methods show the same tendency. Inhibition was found to increase with increasing concentration of the plant extract. The results obtained show that the extract solution of the plant could serve as an effective inhibitor for the corrosion of C38 steel in hydrochloric acid solution. The apparent activation energy of the process taking place in inhibitor presence was determined on the ground of four temperature values in the range from 25 degrees C to 55 degrees C using the data obtained by two independent methods. Theoretical fitting of different isotherms, Langmuir, Temkin and Frunkin, were tested to clarify the nature of adsorption.
Address [Lebrini, M.; Robert, F.; Blandinieres, P. A.; Roos, C.] UAG UMR ECOFOG, Lab Mat & Mol Milieu Amazonien, Cayenne 97337, French Guiana, Email: florent.robert@guyane.univ-ag.fr
Corporate Author Thesis
Publisher Electrochemical Science Group Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1452-3981 ISBN Medium
Area Expedition Conference
Notes ISI:000292331400014 Approved no
Call Number EcoFoG @ webmaster @ Serial 324
Permanent link to this record
 

 
Author Zalamea, P.C.; Munoz, F.; Stevenson, P.R.; Paine, C.E.T.; Sarmiento, C.; Sabatier, D.; Heuret, P.
Title Continental-scale patterns of Cecropia reproductive phenology: evidence from herbarium specimens Type Journal Article
Year 2011 Publication Proceedings Of The Royal Society B-Biological Sciences Abbreviated Journal Proc. R. Soc. B-Biol. Sci.
Volume 278 Issue 1717 Pages (down) 2437-2445
Keywords climate seasonality; reproductive patterns; Fourier spectral and cospectral analyses; herbarium collections; Neotropics; pioneer plants
Abstract Plant phenology is concerned with the timing of recurring biological events. Though phenology has traditionally been studied using intensive surveys of a local flora, results from such surveys are difficult to generalize to broader spatial scales. In this study, contrastingly, we assembled a continental-scale dataset of herbarium specimens for the emblematic genus of Neotropical pioneer trees, Cecropia, and applied Fourier spectral and cospectral analyses to investigate the reproductive phenology of 35 species. We detected significant annual, sub-annual and continuous patterns, and discuss the variation in patterns within and among climatic regions. Although previous studies have suggested that pioneer species generally produce flowers continually throughout the year, we found that at least one third of Cecropia species are characterized by clear annual flowering behaviour. We further investigated the relationships between phenology and climate seasonality, showing strong associations between phenology and seasonal variations in precipitation and temperature. We also verified our results against field survey data gathered from the literature. Our findings indicate that herbarium material is a reliable resource for use in the investigation of large-scale patterns in plant phenology, offering a promising complement to local intensive field studies.
Address [Zalamea, PC; Sabatier, D] IRD, UMR AMAP, F-34000 Montpellier, France, Email: camilozalamea@gmail.com
Corporate Author Thesis
Publisher Royal Soc Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0962-8452 ISBN Medium
Area Expedition Conference
Notes WOS:000292592000005 Approved no
Call Number EcoFoG @ webmaster @ Serial 328
Permanent link to this record
 

 
Author Céréghino, R.; Pillar, V.D.; Srivastava, D.S.; de Omena, P.M.; MacDonald, A.A.M.; Barberis, I.M.; Corbara, B.; Guzman, L.M.; Leroy, C.; Ospina Bautista, F.; Romero, G.Q.; Trzcinski, M.K.; Kratina, P.; Debastiani, V.J.; Gonçalves, A.Z.; Marino, N.A.C.; Farjalla, V.F.; Richardson, B.A.; Richardson, M.J.; Dézerald, O.; Gilbert, B.; Petermann, J.; Talaga, S.; Piccoli, G.C.O.; Jocqué, M.; Montero, G.
Title Constraints on the functional trait space of aquatic invertebrates in bromeliads Type Journal Article
Year 2018 Publication Functional Ecology Abbreviated Journal
Volume 32 Issue 10 Pages (down) 2435-2447
Keywords aquatic invertebrates; ecological strategies; functional diversity; functional trait space; niche hypervolume
Abstract Functional traits are commonly used in predictive models that link environmental drivers and community structure to ecosystem functioning. A prerequisite is to identify robust sets of continuous axes of trait variation, and to understand the ecological and evolutionary constraints that result in the functional trait space occupied by interacting species. Despite their diversity and role in ecosystem functioning, little is known of the constraints on the functional trait space of invertebrate biotas of entire biogeographic regions. We examined the ecological strategies and constraints underlying the realized trait space of aquatic invertebrates, using data on 12 functional traits of 852 taxa collected in tank bromeliads from Mexico to Argentina. Principal Component Analysis was used to reduce trait dimensionality to significant axes of trait variation, and the proportion of potential trait space that is actually occupied by all taxa was compared to null model expectations. Permutational Analyses of Variance were used to test whether trait combinations were clade-dependent. The major axes of trait variation represented life-history strategies optimizing resource use and antipredator adaptations. There was evidence for trophic, habitat, defence and life-history niche axes. Bromeliad invertebrates only occupied 16%–23% of the potential space within these dimensions, due to greater concentrations than predicted under uniform or normal distributions. Thus, despite high taxonomic diversity, invertebrates only utilized a small number of successful ecological strategies. Empty areas in trait space represented gaps between major phyla that arose from biological innovations, and trait combinations that are unviable in the bromeliad ecosystem. Only a few phylogenetically distant genera were neighbouring in trait space. Trait combinations aggregated taxa by family and then by order, suggesting that niche conservatism was a widespread mechanism in the diversification of ecological strategies. A plain language summary is available for this article. © 2018 The Authors. Functional Ecology © 2018 British Ecological Society
Address Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 22 October 2018 Approved no
Call Number EcoFoG @ webmaster @ Serial 829
Permanent link to this record
 

 
Author Dézerald, O.; Srivastava, D.S.; Céréghino, R.; Carrias, J.-F.; Corbara, B.; Farjalla, V.F.; Leroy, C.; Marino, N.A.C.; Piccoli, G.C.O.; Richardson, B.A.; Richardson, M.J.; Romero, G.Q.; González, A.L.
Title Functional traits and environmental conditions predict community isotopic niches and energy pathways across spatial scales Type Journal Article
Year 2018 Publication Functional Ecology Abbreviated Journal
Volume 32 Issue 10 Pages (down) 2423-2434
Keywords energy pathways; environmental heterogeneity; food webs; functional biogeography; functional diversity; isotopic niche; metacommunity; trophic structure
Abstract Despite ongoing research in food web ecology and functional biogeography, the links between food web structure, functional traits and environmental conditions across spatial scales remain poorly understood. Trophic niches, defined as the amount of energy and elemental space occupied by species and food webs, may help bridge this divide. Here, we ask how the functional traits of species, the environmental conditions of habitats and the spatial scale of analysis jointly determine the characteristics of trophic niches. We used isotopic niches as a proxy of trophic niches, and conducted analyses at spatial scales ranging from local food webs and metacommunities to geographically distant sites. We sampled aquatic macroinvertebrates from 104 tank bromeliads distributed across five sites from Central to South America and compiled the macroinvertebrates’ functional traits and stable isotope values (δ15N and δ13C). We assessed how isotopic niches within each bromeliad were influenced by the functional trait composition of their associated invertebrates and environmental conditions (i.e., habitat size, canopy cover [CC] and detrital concentration [DC]). We then evaluated whether the diet of dominant predators and, consequently, energy pathways within food webs reflected functional and environmental changes among bromeliads across sites. At last, we determined the extent to which the isotopic niches of macroinvertebrates within each bromeliad contributed to the metacommunity isotopic niches within each site and compared these metacommunity-level niches over biogeographic scales. At the bromeliad level, isotopic niches increased with the functional richness of species in the food web and the DC in the bromeliad. The diet of top predators tracked shifts in prey biomass along gradients of CC and DC. Bromeliads that grew under heterogeneous CC displayed less trophic redundancy and therefore combined to form larger metacommunity isotopic niches. At last, the size of metacommunity niches depended on within-site heterogeneity in CC. Our results suggest that the trophic niches occupied by food webs can predictably scale from local food webs to metacommunities to biogeographic regions. This scaling process is determined by both the functional traits of species and heterogeneity in environmental conditions. A plain language summary is available for this article. © 2018 The Authors. Functional Ecology © 2018 British Ecological Society
Address Luquillo LTER, Institute for Tropical Ecosystem Studies, College of Natural Sciences, University of Puerto Rico at Rio Piedras, San Juan, Puerto Rico
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 22 October 2018 Approved no
Call Number EcoFoG @ webmaster @ Serial 828
Permanent link to this record
 

 
Author Gloor, M.; Phillips, O.L.; Lloyd, J.J.; Lewis, S.L.; Malhi, Y.; Baker, T.R.; Lopez-Gonzalez, G.; Peacock, J.; Almeida, S.; de Oliveira, A.C.A.; Alvarez, E.; Amaral, I.; Arroyo, L.; Aymard, G.; Banki, O.; Blanc, L.; Bonal, D.; Brando, P.; Chao, K.J.; Chave, J.; Davila, N.; Erwin, T.; Silva, J.; Di Fiore, A.; Feldpausch, T.R.; Freitas, A.; Herrera, R.; Higuchi, N.; Honorio, E.; Jimenez, E.; Killeen, T.; Laurance, W.; Mendoza, C.; Monteagudo, A.; Andrade, A.; Neill, D.; Nepstad, D.; Vargas, P.N.; Penuela, M.C.; Cruz, A.P.; Prieto, A.; Pitman, N.; Quesada, C.; Salomao, R.; Silveira, M.; Schwarz, M.; Stropp, J.; Ramirez, F.; Ramirez, H.; Rudas, A.; ter Steege, H.; Silva, N.; Torres, A.; Terborgh, J.; Vasquez, R.; van der Heijden, G.
Title Does the disturbance hypothesis explain the biomass increase in basin-wide Amazon forest plot data? Type Journal Article
Year 2009 Publication Global Change Biology Abbreviated Journal Glob. Change Biol.
Volume 15 Issue 10 Pages (down) 2418-2430
Keywords Amazon rainforest; carbon sink; disturbance; mortality; power law
Abstract Positive aboveground biomass trends have been reported from old-growth forests across the Amazon basin and hypothesized to reflect a large-scale response to exterior forcing. The result could, however, be an artefact due to a sampling bias induced by the nature of forest growth dynamics. Here, we characterize statistically the disturbance process in Amazon old-growth forests as recorded in 135 forest plots of the RAINFOR network up to 2006, and other independent research programmes, and explore the consequences of sampling artefacts using a data-based stochastic simulator. Over the observed range of annual aboveground biomass losses, standard statistical tests show that the distribution of biomass losses through mortality follow an exponential or near-identical Weibull probability distribution and not a power law as assumed by others. The simulator was parameterized using both an exponential disturbance probability distribution as well as a mixed exponential-power law distribution to account for potential large-scale blowdown events. In both cases, sampling biases turn out to be too small to explain the gains detected by the extended RAINFOR plot network. This result lends further support to the notion that currently observed biomass gains for intact forests across the Amazon are actually occurring over large scales at the current time, presumably as a response to climate change.
Address [Gloor, M.; Phillips, O. L.; Lloyd, J. J.; Lewis, S. L.; Baker, T. R.; Lopez-Gonzalez, G.; Peacock, J.; Feldpausch, T. R.] Univ Leeds, Sch Geog, Leeds LS2 9JT, W Yorkshire, England, Email: eugloor@googlemail.com
Corporate Author Thesis
Publisher WILEY-BLACKWELL PUBLISHING, INC Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1354-1013 ISBN Medium
Area Expedition Conference
Notes ISI:000269577800006 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 196
Permanent link to this record
 

 
Author Sist, P.; Brown, N.
Title Silvicultural intensification for tropical forest conservation: a response to Fredericksen and Putz Type Journal Article
Year 2004 Publication Biodiversity and Conservation Abbreviated Journal
Volume 13 Issue 12 Pages (down) 2381-2385
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-3115 ISBN Medium
Area Expedition Conference
Notes WOS:000225691300011 Approved no
Call Number EcoFoG @ webmaster @ Serial 308
Permanent link to this record
 

 
Author Solander, K.C.; Newman, B.D.; Carioca De Araujo, A.; Barnard, H.R.; Berry, Z.C.; Bonal, D.; Bretfeld, M.; Burban, B.; Candido, L.A.; Célleri, R.; Chambers, J.Q.; Christoffersen, B.O.; Detto, M.; Dorigo, W.A.; Ewers, B.E.; Ferreira, S.J.F.; Knohl, A.; Leung, L.R.; McDowell, N.G.; Miller, G.R.; Monteiro, M.T.F.; Moore, G.W.; Negron-Juarez, R.; Saleska, S.R.; Stiegler, C.; Tomasella, J.; Xu, C.
Title The pantropical response of soil moisture to El Niño Type Journal Article
Year 2020 Publication Hydrology and Earth System Sciences Abbreviated Journal Hydrol. Earth Syst. Sci.
Volume 24 Issue 5 Pages (down) 2303-2322
Keywords Cluster analysis; Oceanography; Soil moisture; Surface waters; Tropics; Climate anomalies; Clustered datum; Hydrologic changes; Land data assimilation systems; Sea surface temperature anomalies; Situ soil moistures; Tropical hydrologies; Tropical Pacific ocean; Soil surveys
Abstract The 2015–2016 El Niño event ranks as one of the most severe on record in terms of the magnitude and extent of sea surface temperature (SST) anomalies generated in the tropical Pacific Ocean. Corresponding global impacts on the climate were expected to rival, or even surpass, those of the 1997–1998 severe El Niño event, which had SST anomalies that were similar in size. However, the 2015–2016 event failed to meet expectations for hydrologic change in many areas, including those expected to receive well above normal precipitation. To better understand how climate anomalies during an El Niño event impact soil moisture, we investigate changes in soil moisture in the humid tropics (between ±25∘) during the three most recent super El Niño events of 1982–1983, 1997–1998 and 2015–2016, using data from the Global Land Data Assimilation System (GLDAS). First, we use in situ soil moisture observations obtained from 16 sites across five continents to validate and bias-correct estimates from GLDAS (r2=0.54). Next, we apply a k-means cluster analysis to the soil moisture estimates during the El Niño mature phase, resulting in four groups of clustered data. The strongest and most consistent decreases in soil moisture occur in the Amazon basin and maritime southeastern Asia, while the most consistent increases occur over eastern Africa. In addition, we compare changes in soil moisture to both precipitation and evapotranspiration, which showed a lack of agreement in the direction of change between these variables and soil moisture most prominently in the southern Amazon basin, the Sahel and mainland southeastern Asia. Our results can be used to improve estimates of spatiotemporal differences in El Niño impacts on soil moisture in tropical hydrology and ecosystem models at multiple scales.
Address Coordination of Research and Development, National Centre for Monitoring and Early Warning of Natural Disasters, Cachoeira Paulista, Brazil
Corporate Author Thesis
Publisher Copernicus GmbH Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 10275606 (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 29 May 2020; Correspondence Address: Solander, K.C.; Earth and Environmental Sciences, Los Alamos National LaboratoryUnited States; email: ksolander@lanl.gov Approved no
Call Number EcoFoG @ webmaster @ Serial 934
Permanent link to this record
 

 
Author Maréchaux, I.; Bonal, D.; Bartlett, M.K.; Burban, B.; Coste, S.; Courtois, E.A.; Dulormne, M.; Goret, J.-Y.; Mira, E.; Mirabel, A.; Sack, L.; Stahl, C.; Chave, J.
Title Dry-season decline in tree sapflux is correlated with leaf turgor loss point in a tropical rainforest Type Journal Article
Year 2018 Publication Functional Ecology Abbreviated Journal Funct Ecol
Volume 32 Issue 10 Pages (down) 2285-2297
Keywords drought tolerance; hydraulic conductance; sap flow; sapflux density; tropical trees; turgor loss point; water potential; wilting point
Abstract Water availability is a key determinant of forest ecosystem function and tree species distributions. While droughts are increasing in frequency in many ecosystems, including in the tropics, plant responses to water supply vary with species and drought intensity and are therefore difficult to model. Based on physiological first principles, we hypothesized that trees with a lower turgor loss point (pi-tlp), that is, a more negative leaf water potential at wilting, would maintain water transport for longer into a dry season. We measured sapflux density of 22 mature trees of 10 species during a dry season in an Amazonian rainforest, quantified sapflux decline as soil water content decreased and tested its relationship to tree pi-tlp, size and leaf predawn and midday water potentials measured after the onset of the dry season. The measured trees varied strongly in the response of water use to the seasonal drought, with sapflux at the end of the dry season ranging from 37 to 117% (on average 83 +/- 5 %) of that at the beginning of the dry season. The decline of water transport as soil dried was correlated with tree pi-tlp (Spearman's rho > 0.63), but not with tree size or predawn and midday water potentials. Thus, trees with more drought-tolerant leaves better maintained water transport during the seasonal drought. Our study provides an explicit correlation between a trait, measurable at the leaf level, and whole-plant performance under drying conditions. Physiological traits such as pi-tlp can be used to assess and model higher scale processes in response to drying conditions.
Address
Corporate Author Thesis
Publisher Wiley/Blackwell (10.1111) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0269-8463 ISBN Medium
Area Expedition Conference
Notes doi: 10.1111/1365-2435.13188 Approved no
Call Number EcoFoG @ webmaster @ Serial 830
Permanent link to this record
 

 
Author Imbert, D.
Title Hurricane disturbance and forest dynamics in east Caribbean mangroves Type Journal Article
Year 2018 Publication Ecosphere Abbreviated Journal
Volume 9 Issue 7 Pages (down) e02231
Keywords Caribbean; forest recovery; high-energy storms; mangrove; resilience; resistance; Special Feature: High-Energy Storms
Abstract Despite low plant diversity and structural simplicity, mangroves offer various ecosystem services to local human communities, including sheltering coastal social-ecological systems from high-energy storm damage. The expected increasing intensity of hurricanes due to climate change raises questions concerning the capacity of mangroves to resist and recover from such disturbances. Herein, this study contributes to a better understanding of (1) the relation between storm intensity and damage to mangrove vegetation, (2) the contributions of species-specific as well as stand-specific components of mangrove vegetation to ecosystem resistance, and (3) the recovery of pre-hurricane forest structure through time. The first two issues have been addressed using a stand-level approach implemented at two east Caribbean mangrove sites in response to three storm events. The third was addressed through a 23-yr survey of forest recovery following the passage of a high-energy storm across one of the two study sites. Generally, hurricane damage was primarily controlled by wind velocity, followed by the hydro-geomorphic context of mangrove forests and species-specific composition, respectively. The relationship between damage to trees and wind velocity evidenced a sigmoidal trend, with a maximum slope at a wind velocity averaging 130 and 180 km/h for higher vs. lower canopy stands, respectively. The red mangrove, Rhizophora mangle, was significantly less resistant to hurricane damage than was the black mangrove, Avicennia germinans. Unlike the fringe and scrub stands, inner, tall-canopy stands fully recovered by the end of the study (23 yr). These stands were more resilient because of their growth performances. Finally, the time for east Caribbean mangroves to recover from high-energy storms seems to fall within the range of the average return time of such disturbances. This may prevent such ecosystems from ever reaching a steady state.
Address Laboratoire de Biologie Végétale, UMR EcoFoG, BP 592, Université des Antilles, Pointe-à-Pitre Cedex, 97159, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 17 September 2018 Approved no
Call Number EcoFoG @ webmaster @ Serial 819
Permanent link to this record