|   | 
Details
   web
Records
Author Barantal, S.; Schimann, H.; Fromin, N.; Hättenschwiler, S.
Title C, N and P fertilization in an Amazonian rainforest supports stoichiometric dissimilarity as a driver of litter diversity effects on decomposition Type Journal Article
Year 2014 Publication Proceedings. Biological sciences / The Royal Society Abbreviated Journal Proceedings. Biological sciences / The Royal Society
Volume 281 Issue 1796 Pages (down) 20141682
Keywords litter diversity; neotropical forest; nutrient addition; soil fauna; stoichiometry; trait dissimilarity
Abstract Plant leaf litter generally decomposes faster as a group of different species than when individual species decompose alone, but underlying mechanisms of these diversity effects remain poorly understood. Because resource C : N : P stoichiometry (i.e. the ratios of these key elements) exhibits strong control on consumers, we supposed that stoichiometric dissimilarity of litter mixtures (i.e. the divergence in C : N : P ratios among species) improves resource complementarity to decomposers leading to faster mixture decomposition. We tested this hypothesis with: (i) a wide range of leaf litter mixtures of neotropical tree species varying in C : N : P dissimilarity, and (ii) a nutrient addition experiment (C, N and P) to create stoichiometric similarity. Litter mixtures decomposed in the field using two different types of litterbags allowing or preventing access to soil fauna. Litter mixture mass loss was higher than expected from species decomposing singly, especially in presence of soil fauna. With fauna, synergistic litter mixture effects increased with increasing stoichiometric dissimilarity of litter mixtures and this positive relationship disappeared with fertilizer addition. Our results indicate that litter stoichiometric dissimilarity drives mixture effects via the nutritional requirements of soil fauna. Incorporating ecological stoichiometry in biodiversity research allows refinement of the underlying mechanisms of how changing biodiversity affects ecosystem functioning. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Address Centre d'Ecologie Fonctionnelle et Evolutive (CEFE UMR 5175, CNRS-Université de Montpellier-Université Paul-Valéry Montpellier-EPHE), 1919 Route de MENDE, 34293 Montpellier Cedex 5, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 24 July 2015 Approved no
Call Number EcoFoG @ webmaster @ Serial 613
Permanent link to this record
 

 
Author Morel-Journel, T.; Piponiot, C.; Vercken, E.; Mailleret, L.
Title Evidence for an optimal level of connectivity for establishment and colonization Type Journal Article
Year 2016 Publication Biology Letters Abbreviated Journal Biol Lett
Volume 12 Issue 11 Pages (down) 20160704
Keywords
Abstract Dispersal is usually associated with the spread of invasive species, but it also has two opposing effects, one decreasing and the other increasing the probability of establishment. Indeed, dispersal both slows population growth at the site of introduction and increases the likelihood of surrounding habitat being colonized. The connectivity of the introduction site is likely to affect dispersal, and, thus, establishment, according to the dispersal behaviour of individuals. Using individual-based models and microcosm experiments on minute wasps, we demonstrated the existence of a hump-shaped relationship between connectivity and establishment in situations in which individual dispersal resembled a diffusion process. These results suggest that there is an optimal level of connectivity for the establishment of introduced populations locally at the site of introduction, and regionally over the whole landscape.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 722
Permanent link to this record
 

 
Author Orivel, J.; Malé, P.-J.; Lauth, J.; Roux, O.; Petitclerc, F.; Dejean, A.; Leroy, C.
Title Trade-offs in an ant–plant–fungus mutualism Type Journal Article
Year 2017 Publication Proceedings of the Royal Society B: Biological Sciences Abbreviated Journal Proc Biol Sci
Volume 284 Issue 1850 Pages (down) 20161679
Keywords
Abstract Species engaged in multiple, simultaneous mutualisms are subject to trade-offs in their mutualistic investment if the traits involved in each interaction are overlapping, which can lead to conflicts and affect the longevity of these associations. We investigate this issue via a tripartite mutualism involving an ant plant, two competing ant species and a fungus the ants cultivate to build galleries under the stems of their host plant to capture insect prey. The use of the galleries represents an innovative prey capture strategy compared with the more typical strategy of foraging on leaves. However, because of a limited worker force in their colonies, the prey capture behaviour of the ants results in a trade-off between plant protection (i.e. the ants patrol the foliage and attack intruders including herbivores) and ambushing prey in the galleries, which has a cascading effect on the fitness of all of the partners. The quantification of partners' traits and effects showed that the two ant species differed in their mutualistic investment. Less investment in the galleries (i.e. in fungal cultivation) translated into more benefits for the plant in terms of less herbivory and higher growth rates and vice versa. However, the greater vegetative growth of the plants did not produce a positive fitness effect for the better mutualistic ant species in terms of colony size and production of sexuals nor was the mutualist compensated by the wider dispersal of its queens. As a consequence, although the better ant mutualist is the one that provides more benefits to its host plant, its lower host–plant exploitation does not give this ant species a competitive advantage. The local coexistence of the ant species is thus fleeting and should eventually lead to the exclusion of the less competitive species.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 745
Permanent link to this record
 

 
Author Peguero, G.; Sardans, J.; Asensio, D.; Fernández-Martínez, M.; Gargallo-Garriga, A.; Grau, O.; Llusià, J.; Margalef, O.; Márquez, L.; Ogaya, R.; Urbina, I.; Courtois, E.A.; Stahl, C.; Van Langenhove, L.; Verryckt, L.T.; Richter, A.; Janssens, I.A.; Peñuelas, J.
Title Nutrient scarcity strengthens soil fauna control over leaf litter decomposition in tropical rainforests Type Journal Article
Year 2019 Publication Proceedings. Biological sciences Abbreviated Journal Proc. Biol. Sci.
Volume 286 Issue 1910 Pages (down) 20191300
Keywords biogeochemistry; extracellular enzyme activity; litter decomposition; nutrients; soil fauna
Abstract Soil fauna is a key control of the decomposition rate of leaf litter, yet its interactions with litter quality and the soil environment remain elusive. We conducted a litter decomposition experiment across different topographic levels within the landscape replicated in two rainforest sites providing natural gradients in soil fertility to test the hypothesis that low nutrient availability in litter and soil increases the strength of fauna control over litter decomposition. We crossed these data with a large dataset of 44 variables characterizing the biotic and abiotic microenvironment of each sampling point and found that microbe-driven carbon (C) and nitrogen (N) losses from leaf litter were 10.1 and 17.9% lower, respectively, in the nutrient-poorest site, but this among-site difference was equalized when meso- and macrofauna had access to the litterbags. Further, on average, soil fauna enhanced the rate of litter decomposition by 22.6%, and this contribution consistently increased as nutrient availability in the microenvironment declined. Our results indicate that nutrient scarcity increases the importance of soil fauna on C and N cycling in tropical rainforests. Further, soil fauna is able to equalize differences in microbial decomposition potential, thus buffering to a remarkable extent nutrient shortages at an ecosystem level.
Address Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, 1090, Austria
Corporate Author Thesis
Publisher NLM (Medline) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 14712954 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 884
Permanent link to this record
 

 
Author Agrawal, Anurag A. ; Boroczky, Katalin ; Haribal, Meena ; Hastings, Amy P. ; White, Ronald, A. ; Jiang, Ren-Wang ; Duplais, Christophe
Title Cardenolides, toxicity, and the costs of sequestration in the coevolutionary interaction between monarchs and milkweeds Type Journal Article
Year 2021 Publication PNAS Abbreviated Journal
Volume 118 Issue 16 Pages (down) e2024463118
Keywords
Abstract For highly specialized insect herbivores, plant chemical defenses are often co-opted as cues for oviposition and sequestration. In such interactions, can plants evolve novel defenses, pushing herbivores to trade off benefits of specialization with costs of coping with toxins? We tested how variation in milkweed toxins (cardenolides) impacted monarch butterfly ( Danaus plexippus ) growth, sequestration, and oviposition when consuming tropical milkweed ( Asclepias curassavica ), one of two critical host plants worldwide. The most abundant leaf toxin, highly apolar and thiazolidine ring–containing voruscharin, accounted for 40% of leaf cardenolides, negatively predicted caterpillar growth, and was not sequestered. Using whole plants and purified voruscharin, we show that monarch caterpillars convert voruscharin to calotropin and calactin in vivo, imposing a burden on growth. As shown by in vitro experiments, this conversion is facilitated by temperature and alkaline pH. We next employed toxin-target site experiments with isolated cardenolides and the monarch’s neural Na + /K + -ATPase, revealing that voruscharin is highly inhibitory compared with several standards and sequestered cardenolides. The monarch’s typical >50-fold enhanced resistance to cardenolides compared with sensitive animals was absent for voruscharin, suggesting highly specific plant defense. Finally, oviposition was greatest on intermediate cardenolide plants, supporting the notion of a trade-off between benefits and costs of sequestration for this highly specialized herbivore. There is apparently ample opportunity for continued coevolution between monarchs and milkweeds, although the diffuse nature of the interaction, due to migration and interaction with multiple milkweeds, may limit the ability of monarchs to counteradapt.
Address
Corporate Author Thesis
Publisher National Academy of Sciences Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 1014
Permanent link to this record
 

 
Author ter Steege, H.; Pitman, N.C.A.; Sabatier, D.; Baraloto, C.; Salomão, R.P.; Guevara, J.E.; Phillips, O.L.; Castilho, C.V.; Magnusson, W.E.; Molino, J.-F.; Monteagudo, A.; Núñez Vargas, P.; Montero, J.C.; Feldpausch, T.R.; Coronado, E.N.H.; Killeen, T.J.; Mostacedo, B.; Vasquez, R.; Assis, R.L.; Terborgh, J.; Wittmann, F.; Andrade, A.; Laurance, W.F.; Laurance, S.G.W.; Marimon, B.S.; Marimon, B.-H.; Guimarães Vieira, I.C.; Amaral, I.L.; Brienen, R.; Castellanos, H.; Cárdenas López, D.; Duivenvoorden, J.F.; Mogollón, H.F.; Matos, F.D. de A.; Dávila, N.; García-Villacorta, R.; Stevenson Diaz, P.R.; Costa, F.; Emilio, T.; Levis, C.; Schietti, J.; Souza, P.; Alonso, A.; Dallmeier, F.; Montoya, A.J.D.; Fernandez Piedade, M.T.; Araujo-Murakami, A.; Arroyo, L.; Gribel, R.; Fine, P.V.A.; Peres, C.A.; Toledo, M.; Aymard C., G.A.; Baker, T.R.; Cerón, C.; Engel, J.; Henkel, T.W.; Maas, P.; Petronelli, P.; Stropp, J.; Zartman, C.E.; Daly, D.; Neill, D.; Silveira, M.; Paredes, M.R.; Chave, J.; Lima Filho, D. de A.; Jørgensen, P.M.; Fuentes, A.; Schöngart, J.; Cornejo Valverde, F.; Di Fiore, A.; Jimenez, E.M.; Peñuela Mora, M.C.; Phillips, J.F.; Rivas, G.; van Andel, T.R.; von Hildebrand, P.; Hoffman, B.; Zent, E.L.; Malhi, Y.; Prieto, A.; Rudas, A.; Ruschell, A.R.; Silva, N.; Vos, V.; Zent, S.; Oliveira, A.A.; Schutz, A.C.; Gonzales, T.; Trindade Nascimento, M.; Ramirez-Angulo, H.; Sierra, R.; Tirado, M.; Umaña Medina, M.N.; van der Heijden, G.; Vela, C.I.A.; Vilanova Torre, E.; Vriesendorp, C.; Wang, O.; Young, K.R.; Baider, C.; Balslev, H.; Ferreira, C.; Mesones, I.; Torres-Lezama, A.; Urrego Giraldo, L.E.; Zagt, R.; Alexiades, M.N.; Hernandez, L.; Huamantupa-Chuquimaco, I.; Milliken, W.; Palacios Cuenca, W.; Pauletto, D.; Valderrama Sandoval, E.; Valenzuela Gamarra, L.; Dexter, K.G.; Feeley, K.; Lopez-Gonzalez, G.; Silman, M.R.
Title Hyperdominance in the Amazonian Tree Flora Type Journal Article
Year 2013 Publication Science Abbreviated Journal Science
Volume 342 Issue 6156 Pages (down) 1243092
Keywords
Abstract The vast extent of the Amazon Basin has historically restricted the study of its tree communities to the local and regional scales. Here, we provide empirical data on the commonness, rarity, and richness of lowland tree species across the entire Amazon Basin and Guiana Shield (Amazonia), collected in 1170 tree plots in all major forest types. Extrapolations suggest that Amazonia harbors roughly 16,000 tree species, of which just 227 (1.4%) account for half of all trees. Most of these are habitat specialists and only dominant in one or two regions of the basin. We discuss some implications of the finding that a small group of species—less diverse than the North American tree flora—accounts for half of the world’s most diverse tree community.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 507
Permanent link to this record
 

 
Author Mouillot, D.; Bellwood, D.R.; Baraloto, C.; Chave, J.; Galzin, R.; Harmelin-Vivien, M.; Kulbicki, M.; Lavergne, S.; Lavorel, S.; Mouquet, N.; Paine, C.E.T.; Renaud, J.; Thuiller, W.
Title Rare Species Support Vulnerable Functions in High-Diversity Ecosystems Type Journal Article
Year 2013 Publication PLoS Biology Abbreviated Journal PloS Biol.
Volume 11 Issue 5 Pages (down) e1001569
Keywords
Abstract Around the world, the human-induced collapses of populations and species have triggered a sixth mass extinction crisis, with rare species often being the first to disappear. Although the role of species diversity in the maintenance of ecosystem processes has been widely investigated, the role of rare species remains controversial. A critical issue is whether common species insure against the loss of functions supported by rare species. This issue is even more critical in species-rich ecosystems where high functional redundancy among species is likely and where it is thus often assumed that ecosystem functioning is buffered against species loss. Here, using extensive datasets of species occurrences and functional traits from three highly diverse ecosystems (846 coral reef fishes, 2,979 alpine plants, and 662 tropical trees), we demonstrate that the most distinct combinations of traits are supported predominantly by rare species both in terms of local abundance and regional occupancy. Moreover, species that have low functional redundancy and are likely to support the most vulnerable functions, with no other species carrying similar combinations of traits, are rarer than expected by chance in all three ecosystems. For instance, 63% and 98% of fish species that are likely to support highly vulnerable functions in coral reef ecosystems are locally and regionally rare, respectively. For alpine plants, 32% and 89% of such species are locally and regionally rare, respectively. Remarkably, 47% of fish species and 55% of tropical tree species that are likely to support highly vulnerable functions have only one individual per sample on average. Our results emphasize the importance of rare species conservation, even in highly diverse ecosystems, which are thought to exhibit high functional redundancy. Rare species offer more than aesthetic, cultural, or taxonomic diversity value; they disproportionately increase the potential breadth of functions provided by ecosystems across spatial scales. As such, they are likely to insure against future uncertainty arising from climate change and the ever-increasing anthropogenic pressures on ecosystems. Our results call for a more detailed understanding of the role of rarity and functional vulnerability in ecosystem functioning. © 2013 Mouillot et al.
Address Biological and Environmental Sciences, University of Stirling, Stirling, United Kingdom
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 15449173 (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 12 June 2013; Source: Scopus; Art. No.: e1001569; Coden: Pblib; :doi 10.1371/journal.pbio.1001569; Language of Original Document: English; Correspondence Address: Mouillot, D.; Unité Mixte de Recherche (UMR) Centre National de la Recherche Scientifique (CNRS)-UM2, Institut français de recherche pour l'exploitation de la mer (IFREMER), Institute for Research and Development (IRD) 5119 ECOSYM, Université Montpellier 2 cc 093, Montpellier, France; email: david.mouillot@univ-montp2.fr Approved no
Call Number EcoFoG @ webmaster @ Serial 492
Permanent link to this record
 

 
Author Chanson, Anaïs ; Moreau, Corrie S. ; Duplais, Christophe
Title Assessing Biosynthetic Gene Cluster Diversity of Specialized Metabolites in the Conserved Gut Symbionts of Herbivorous Turtle Ants Type Journal Article
Year 2021 Publication Frontiers in Microbiology Abbreviated Journal
Volume 12 Issue Pages (down) 678100
Keywords insect-microbe mutualism, ants, metagemonic, biosynthetic gene cluster, gut bacteria, Cephalotes
Abstract Cephalotes are herbivorous ants (>115 species) feeding on low-nitrogen food sources, and they rely on gut symbionts to supplement their diet by recycling nitrogen food waste into amino acids. These conserved gut symbionts, which encompass five bacterial orders, have been studied previously for their primary nitrogen metabolism; however, little is known about their ability to biosynthesize specialized metabolites which can play a role in bacterial interactions between communities living in close proximity in the gut. To evaluate the biosynthetic potential of their gut symbionts, we mine 14 cultured isolate genomes and gut metagenomes across 17 Cephalotes species to explore the biodiversity of biosynthetic gene clusters (BGCs) producing specialized metabolites. The diversity of BGCs across Cephalotes phylogeny was analyzed using sequence similarity networking and BGC phylogenetic reconstruction. Our results reveal that the conserved gut symbionts involved in the nutritional symbiosis possess 80% of all the 233 BGCs retrieved in this work. Furthermore, the phylogenetic analysis of BGCs reveals different patterns of distribution, suggesting different mechanisms of conservation. A siderophore BGC shows high similarity in a single symbiont across different ant host species, whereas a BGC encoding the production of non-ribosomal peptides (NRPs) found different symbionts within a single host species. Additionally, BGCs were abundant in four of the five bacterial orders of conserved symbionts co-occurring in the hindgut. However, one major symbiont localized alone in the midgut lack BGCs. Because the spatial isolation prevents direct interaction with other symbionts, this result supports the idea that BGCs are maintained in bacteria living in close proximity but are dispensable for an alone-living symbiont. These findings together pave the way for studying the mechanisms of BGC conservation and evolution in gut bacterial genomes associated with Cephalotes. This work also provides a genetic background for further study, aiming to characterize bacterial specialized metabolites and to understand their functional role in multipartite mutualisms between conserved gut symbionts and Cephalotes turtle ants.
Address
Corporate Author Thesis
Publisher Frontiers Media Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 1049
Permanent link to this record
 

 
Author Heu, Katy ; Romoli, Ottavia ; Schonbeck, Johan Claes ; Ajenoe, Rachel ; Epelboin, Yanouk ; Kircher, Verena ; Houel, Emeline ; Estevez, Yannick ; Gendrin, Mathilde
Title The Effect of Secondary Metabolites Produced by Serratia marcescens on Aedes aegypti and Its Microbiota Type Journal Article
Year 2021 Publication Frontiers in Microbiology Abbreviated Journal
Volume 12 Issue Pages (down) 645701
Keywords
Abstract Serratia marcescens is a bacterial species widely found in the environment, which very efficiently colonizes mosquitoes. In this study, we isolated a red-pigmented S. marcescens strain from our mosquito colony (called S. marcescens VA). This red pigmentation is caused by the production of prodigiosin, a molecule with antibacterial properties. To investigate the role of prodigiosin on mosquito- S. marcescens interactions, we produced two white mutants of S. marcescens VA by random mutagenesis. Whole genome sequencing and chemical analyses suggest that one mutant has a nonsense mutation in the gene encoding prodigiosin synthase, while the other one is deficient in the production of several types of secondary metabolites including prodigiosin and serratamolide. We used our mutants to investigate how S. marcescens secondary metabolites affect the mosquito and its microbiota. Our in vitro tests indicated that S. marcescens VA inhibits the growth of several mosquito microbiota isolates using a combination of prodigiosin and other secondary metabolites, corroborating published data. This strain requires secondary metabolites other than prodigiosin for its proteolytic and hemolytic activities. In the mosquito, we observed that S. marcescens VA is highly virulent to larvae in a prodigiosin-dependent manner, while its virulence on adults is lower and largely depends on other metabolites
Address
Corporate Author Thesis
Publisher Frontiers Media Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 1024
Permanent link to this record
 

 
Author Picard, Nicolas ; Mortier, Frédéric ; Ploton, Pierre ; Liang, Jingjing ; Derroire, Géraldine ; Bastin, Jean-François ; Ayyappan, Narayanan ; Bénédet, Fabrice ; Bosela, Faustin Boyemba ; Clark, Connie J. ; Crowther, Thomas W. ; Obiang, Nestor Laurier Engone ; Forni, Eric ; Harris, David ; Ngomanda, Alfred ; Poulsen, John R. ; Sonké, Bonaventure ; Couteron, Pierre ; Gourley-Fleury, Sylvie
Title Using Model Analysis to Unveil Hidden Patterns in Tropical Forest structures Type Journal Article
Year 2021 Publication Frontiers in Ecology and Evolution Abbreviated Journal
Volume 9 Issue Pages (down) 599200
Keywords
Abstract When ordinating plots of tropical rain forests using stand-level structural attributes such as biomass, basal area and the number of trees in different size classes, two patterns often emerge: a gradient from poorly to highly stocked plots and high positive correlations between biomass, basal area and the number of large trees. These patterns are inherited from the demographics (growth, mortality and recruitment) and size allometry of trees and tend to obscure other patterns, such as site differences among plots, that would be more informative for inferring ecological processes. Using data from 133 rain forest plots at nine sites for which site differences are known, we aimed to filter out these patterns in forest structural attributes to unveil a hidden pattern. Using a null model framework, we generated the anticipated pattern inherited from individual allometric patterns. We then evaluated deviations between the data (observations) and predictions of the null model. Ordination of the deviations revealed site differences that were not evident in the ordination of observations. These sites differences could be related to different histories of large-scale forest disturbance. By filtering out patterns inherited from individuals, our model analysis provides more information on ecological processes
Address
Corporate Author Thesis
Publisher Frontiers Media Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 1029
Permanent link to this record