|   | 
Details
   web
Records
Author (up) Baraloto, C.; Paine, C.E.T.; Poorter, L.; Beauchene, J.; Bonal, D.; Domenach, A.M.; Herault, B.; Patino, S.; Roggy, J.C.; Chave, J.
Title Decoupled leaf and stem economics in rain forest trees Type Journal Article
Year 2010 Publication Ecology Letters Abbreviated Journal Ecol. Lett.
Volume 13 Issue 11 Pages 1338-1347
Keywords Functional diversity; leaf economics; multiple factor analysis; plant strategies; plant traits; tropical forest; wood density
Abstract P>Cross-species analyses of plant functional traits have shed light on factors contributing to differences in performance and distribution, but to date most studies have focused on either leaves or stems. We extend these tissue-specific analyses of functional strategy towards a whole-plant approach by integrating data on functional traits for 13 448 leaves and wood tissues from 4672 trees representing 668 species of Neotropical trees. Strong correlations amongst traits previously defined as the leaf economics spectrum reflect a tradeoff between investments in productive leaves with rapid turnover vs. costly physical leaf structure with a long revenue stream. A second axis of variation, the 'stem economics spectrum', defines a similar tradeoff at the stem level: dense wood vs. high wood water content and thick bark. Most importantly, these two axes are orthogonal, suggesting that tradeoffs operate independently at the leaf and at the stem levels. By simplifying the multivariate ecological strategies of tropical trees into positions along these two spectra, our results provide a basis to improve global vegetation models predicting responses of tropical forests to global change.
Address [Baraloto, Christopher; Bonal, Damien; Patino, Sandra; Roggy, Jean-Christophe] INRA, UMR Ecol Forets Guyane, Kourou 97387, French Guiana, Email: chris.baraloto@ecofog.gf
Corporate Author Thesis
Publisher WILEY-BLACKWELL PUBLISHING, INC Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1461-023X ISBN Medium
Area Expedition Conference
Notes ISI:000283157500002 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 26
Permanent link to this record
 

 
Author (up) Baraloto, C.; Rabaud, S.; Molto, Q.; Blanc, L.; Fortunel, C.; Herault, B.; Davila, N.; Mesones, I.; Rios, M.; Valderrama, E.; Fine, P.V.A.
Title Disentangling stand and environmental correlates of aboveground biomass in Amazonian forests Type Journal Article
Year 2011 Publication Global Change Biology Abbreviated Journal Glob. Change Biol.
Volume 17 Issue 8 Pages 2677-2688
Keywords carbon stocks; climate; flooded forest; forest structure; French Guiana; Peru; REDD; soil properties; tropical rainforest; white-sand forest; wood specific gravity
Abstract Tropical forests contain an important proportion of the carbon stored in terrestrial vegetation, but estimated aboveground biomass (AGB) in tropical forests varies two-fold, with little consensus on the relative importance of climate, soil and forest structure in explaining spatial patterns. Here, we present analyses from a plot network designed to examine differences among contrasting forest habitats (terra firme, seasonally flooded, and white-sand forests) that span the gradient of climate and soil conditions of the Amazon basin. We installed 0.5-ha plots in 74 sites representing the three lowland forest habitats in both Loreto, Peru and French Guiana, and we integrated data describing climate, soil physical and chemical characteristics and stand variables, including local measures of wood specific gravity (WSG). We use a hierarchical model to separate the contributions of stand variables from climate and soil variables in explaining spatial variation in AGB. AGB differed among both habitats and regions, varying from 78 Mg ha(-1) in white-sand forest in Peru to 605 Mg ha(-1) in terra firme clay forest of French Guiana. Stand variables including tree size and basal area, and to a lesser extent WSG, were strong predictors of spatial variation in AGB. In contrast, soil and climate variables explained little overall variation in AGB, though they did co-vary to a limited extent with stand parameters that explained AGB. Our results suggest that positive feedbacks in forest structure and turnover control AGB in Amazonian forests, with richer soils (Peruvian terra firme and all seasonally flooded habitats) supporting smaller trees with lower wood density and moderate soils (French Guianan terra firme) supporting many larger trees with high wood density. The weak direct relationships we observed between soil and climate variables and AGB suggest that the most appropriate approaches to landscape scale modeling of AGB in the Amazon would be based on remote sensing methods to map stand structure.
Address [Baraloto, Christopher; Rabaud, Suzanne; Fortunel, Claire; Rios, Marcos; Valderrama, Elvis] INRA, UMR Ecol Forets Guyane, Kourou 97387, French Guiana, Email: chris.baraloto@ecofog.gf
Corporate Author Thesis
Publisher Wiley-Blackwell Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1354-1013 ISBN Medium
Area Expedition Conference
Notes ISI:000292308300013 Approved no
Call Number EcoFoG @ webmaster @ Serial 325
Permanent link to this record
 

 
Author (up) Baraloto, Christophier ; Vleminckx, Jason ; Engel, Julien ; Petronelli, Pascal ; Davila, Nallarett ; Rios, Marcos ; Valderrama Sandoval, Elvis Harry ; Mesones, Italo ; Guevara ANdino, Juan Ernesto ; Fortunel, Claire ; Allie, Elodie ; Paine, C.E. Timothy ; Dourdan, Aurélie ; Goret, Jean-Yves ; Valverde-Barrantes, Oscar J. ; Draper, Freddie ; Fine, Paul V. A.
Title Biogeographic history and habitat specialization shape floristic and phylogenetic composition across Amazonian forests Type Journal Article
Year 2021 Publication Ecological Monographs Abbreviated Journal
Volume 91 Issue 4 Pages e01473
Keywords
Abstract A major challenge remains to understand the relative contributions of history, dispersal, and environmental filtering to the assembly of hyperdiverse communities across spatial scales. Here, we examine the extent to which biogeographical history and habitat specialization have generated turnover among and within lineages of Amazonian trees across broad geographic and environmental gradients. We replicated standardized tree inventories in 102 0.1-ha plots located in two distant regions—the western Amazon and the eastern Guiana shield. Within each region, we used a nested design to replicate plots on contrasted habitats: white-sand, terra firme, and seasonally flooded forests. Our plot network encompassed 26,386 trees that together represented 2,745 distinct taxa, which we standardized across all plots and regions. We combined taxonomic and phylogenetic data with detailed soil measurements and climatic data to: (1) test whether patterns of taxonomic and phylogenetic composition are consistent with recent or historical processes, (2) disentangle the relative effects of habitat, environment, and geographic distance on taxonomic and phylogenetic turnover among plots, and (3) contrast the proportion of habitat specialists among species from each region. We found substantial species turnover between Peru and French Guiana, with only 8.8% of species shared across regions; genus composition remained differentiated across habitats and regions, whereas turnover at higher taxonomic levels (family, order) was much lower. Species turnover across plots was explained primarily by regions, but also substantially by habitat differences and to a lesser extent by spatial distance within regions. Conversely, the composition of higher taxonomic levels was better explained by habitats (especially comparing white-sand forests to other habitats) than spatial distance. White-sand forests harbored most of the habitat specialists in both regions, with stronger habitat specialization in Peru than in French Guiana. Our results suggest that recent diversification events have resulted in extremely high turnover in species and genus composition with relatively little change in the composition of higher lineages. Our results also emphasize the contributions of rare habitats, such as white-sand forests, to the extraordinary diversity of the Amazon and underline their importance as conservation priorities.
Address
Corporate Author Thesis
Publisher Ecological Society of America Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 1027
Permanent link to this record
 

 
Author (up) Barantal, S.; Roy, J.; Fromin, N.; Schimann, H.; Hattenschwiler, S.
Title Long-term presence of tree species but not chemical diversity affect litter mixture effects on decomposition in a neotropical rainforest Type Journal Article
Year 2011 Publication Oecologia Abbreviated Journal Oecologia
Volume 167 Issue 1 Pages 241-252
Keywords Amazonian rainforest; Chemical diversity; Decomposition; Functional diversity indices; Litter traits
Abstract Plant litter diversity effects on decomposition rates are frequently reported, but with a strong bias towards temperate ecosystems. Altered decomposition and nutrient recycling with changing litter diversity may be particularly important in tree species-rich tropical rainforests on nutrient-poor soils. Using 28 different mixtures of leaf litter from 16 Amazonian rainforest tree species, we tested the hypothesis that litter mixture effects on decomposition increase with increasing functional litter diversity. Litter mixtures and all single litter species were exposed in the field for 9 months using custom-made microcosms with soil fauna access. In order to test the hypothesis that the long-term presence of tree species contributing to the litter mixtures increases mixture effects on decomposition, microcosms were installed in a plantation at sites including the respective tree species composition and in a nearby natural forest where these tree species are absent. We found that mixture decomposition deviated from predictions based on single species, with predominantly synergistic effects. Functional litter diversity, defined as either richness, evenness, or divergence based on a wide range of chemical traits, did not explain the observed litter mixture effects. However, synergistic effects in litter mixtures increased with the long-term presence of tree species contributing to these mixtures as the home field advantage hypothesis assumes. Our data suggest that complementarity effects on mixed litter decomposition may emerge through long-term interactions between aboveground and belowground biota.
Address [Barantal, S; Roy, J; Fromin, N; Hattenschwiler, S] CEFE CNRS, UMR 5175, F-34293 Montpellier 5, France, Email: sandra.barantal@cefe.cnrs.fr
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0029-8549 ISBN Medium
Area Expedition Conference
Notes WOS:000293914000024 Approved no
Call Number EcoFoG @ webmaster @ Serial 336
Permanent link to this record
 

 
Author (up) Barantal, S.; Schimann, H.; Fromin, N.; Hattenschwiler, S.
Title Nutrient and Carbon Limitation on Decomposition in an Amazonian Moist Forest Type Journal Article
Year 2012 Publication Ecosystems Abbreviated Journal Ecosystems
Volume 15 Issue 7 Pages 1039-1052
Keywords energy limitation; labile carbon; litter quality; nitrogen; phosphorus; priming effect; soil fauna; tropical forest
Abstract Tropical forests determine global biogeochemical cycles to a large extent, but control factors for key ecosystem processes such as decomposition remain poorly understood. With a full-factorial C (cellulose), N (urea), and P (phosphate) fertilization experiment, we tested the relative importance of C and nutrient limitation on litter decomposition in a mature lowland moist forest of French Guiana. Despite the previously demonstrated litter C quality control over decomposition and the very low soil P content (0. 1 mg g -1 of soil) at our study site, fertilization with C or P alone did not increase the decomposition of a wide range of litter types (N:P ratios between 20 and 80). Nitrogen fertilization alone also had no effect on decomposition. However, the combined fertilization with N and P resulted in up to 33. 5% more initial litter mass lost, with an increasing effect with wider litter N:P ratios. Soil fauna strongly stimulated litter mass loss and enhanced nutrient fertilization effects. Moreover, nutrient effects on decomposition increased with additional C fertilization in the presence of fauna. Our results suggest that increased N availability is required for a positive P effect on decomposition in the studied P-poor tropical forest. Further stimulation of decomposition by C amendment through priming indicates energy limitation of decomposers that is co-determined by nutrient availability. The demonstrated intricate control of the key resources C, N, and P on decomposition calls for an intensified research effort on multiple resource limitation on key processes in tropical forests and how they change under multiple human impacts. © 2012 Springer Science+Business Media, LLC.
Address UMR Ecologie des Forêts de Guyane (ECOFOG), INRA, Kourou, French Guiana
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 14329840 (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 2 November 2012; Source: Scopus; Coden: Ecosf; doi: 10.1007/s10021-012-9564-9; Language of Original Document: English; Correspondence Address: Schimann, H.; UMR Ecologie des Forêts de Guyane (ECOFOG), INRA, Kourou, French Guiana; email: heidy.schimann@ecofog.gf Approved no
Call Number EcoFoG @ webmaster @ Serial 442
Permanent link to this record
 

 
Author (up) Barantal, S.; Schimann, H.; Fromin, N.; Hättenschwiler, S.
Title C, N and P fertilization in an Amazonian rainforest supports stoichiometric dissimilarity as a driver of litter diversity effects on decomposition Type Journal Article
Year 2014 Publication Proceedings. Biological sciences / The Royal Society Abbreviated Journal Proceedings. Biological sciences / The Royal Society
Volume 281 Issue 1796 Pages 20141682
Keywords litter diversity; neotropical forest; nutrient addition; soil fauna; stoichiometry; trait dissimilarity
Abstract Plant leaf litter generally decomposes faster as a group of different species than when individual species decompose alone, but underlying mechanisms of these diversity effects remain poorly understood. Because resource C : N : P stoichiometry (i.e. the ratios of these key elements) exhibits strong control on consumers, we supposed that stoichiometric dissimilarity of litter mixtures (i.e. the divergence in C : N : P ratios among species) improves resource complementarity to decomposers leading to faster mixture decomposition. We tested this hypothesis with: (i) a wide range of leaf litter mixtures of neotropical tree species varying in C : N : P dissimilarity, and (ii) a nutrient addition experiment (C, N and P) to create stoichiometric similarity. Litter mixtures decomposed in the field using two different types of litterbags allowing or preventing access to soil fauna. Litter mixture mass loss was higher than expected from species decomposing singly, especially in presence of soil fauna. With fauna, synergistic litter mixture effects increased with increasing stoichiometric dissimilarity of litter mixtures and this positive relationship disappeared with fertilizer addition. Our results indicate that litter stoichiometric dissimilarity drives mixture effects via the nutritional requirements of soil fauna. Incorporating ecological stoichiometry in biodiversity research allows refinement of the underlying mechanisms of how changing biodiversity affects ecosystem functioning. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Address Centre d'Ecologie Fonctionnelle et Evolutive (CEFE UMR 5175, CNRS-Université de Montpellier-Université Paul-Valéry Montpellier-EPHE), 1919 Route de MENDE, 34293 Montpellier Cedex 5, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 24 July 2015 Approved no
Call Number EcoFoG @ webmaster @ Serial 613
Permanent link to this record
 

 
Author (up) Barassé, V.; Touchard, A.; Téné, N.; Tindo, M.; Kenne, M.; Klopp, C.; Dejean, A.; Bonnafé, E.; Treilhou, M.
Title The peptide venom composition of the fierce stinging ant tetraponera aethiops (formicidae: Pseudomyrmecinae) Type Journal Article
Year 2019 Publication Toxins Abbreviated Journal Toxins
Volume 11 Issue 12 Pages 732
Keywords Defensive venom; Dimeric peptides; Peptidome; Tetraponera aethiops
Abstract In the mutualisms involving certain pseudomyrmicine ants and different myrmecophytes (i.e., plants sheltering colonies of specialized “plant-ant” species in hollow structures), the ant venom contributes to the host plant biotic defenses by inducing the rapid paralysis of defoliating insects and causing intense pain to browsing mammals. Using integrated transcriptomic and proteomic approaches, we identified the venom peptidome of the plant-ant Tetraponera aethiops (Pseudomyrmecinae). The transcriptomic analysis of its venom glands revealed that 40% of the expressed contigs encoded only seven peptide precursors related to the ant venom peptides from the A-superfamily. Among the 12 peptide masses detected by liquid chromatography-mass spectrometry (LC-MS), nine mature peptide sequences were characterized and confirmed through proteomic analysis. These venom peptides, called pseudomyrmecitoxins (PSDTX), share amino acid sequence identities with myrmeciitoxins known for their dual offensive and defensive functions on both insects and mammals. Furthermore, we demonstrated through reduction/alkylation of the crude venom that four PSDTXs were homo- and heterodimeric. Thus, we provide the first insights into the defensive venom composition of the ant genus Tetraponera indicative of a streamlined peptidome.
Address CNRS, UMR EcoFoG, AgroParisTech, Cirad, INRA, Université des Antilles, Université de Guyane, Kourou, 97310, France
Corporate Author Thesis
Publisher Mdpi Ag Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 20726651 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 902
Permanent link to this record
 

 
Author (up) Bardet, S.; Beauchene, J.; Thibaut, B.
Title Influence of basic density and temperature on mechanical properties perpendicular to grain of ten wood tropical species Type Journal Article
Year 2003 Publication Annals of Forest Science Abbreviated Journal Ann. For. Sci.
Volume 60 Issue 1 Pages 49-59
Keywords green wood; tropical wood; transverse mechanical properties; basic density; softening temperature
Abstract The influence of temperature on transverse mechanical properties of 10 tropical species in green condition was studied in radial compression (0 to 99 degreesC), transverse shear with longitudinal-radial shearing plane and rupture of the longitudinal-tangential plane (20 to 80 degreesC). Basic density ranged from 0.21 to 0.91 g cm(-3). Load-displacement curves were characterised by initial rigidity, yield stress, yield strain and strain energy at 20% strain level. The relation between each criterion and basic density was expressed by a power law. The dependency on temperature evidenced a sharp glassy transition, except for the fracture energy only slightly influenced by temperature. An empirical model allowed evaluating a transition temperature between 51 and 69 degreesC, depending on the species and the criterion, which was attributed to lignin. Detailed analysis of the apparent modulus in radial compression suggested that complex relaxation phenomena occur around 10 degreesC and that the rubbery state is not fully reached at 80 degreesC.
Address Univ Montpellier 2, Lab Mecan & Genie Civil, Equipe Bois, F-34095 Montpellier 5, France
Corporate Author Thesis
Publisher E D P SCIENCES Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1286-4560 ISBN Medium
Area Expedition Conference
Notes ISI:000181322100006 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 275
Permanent link to this record
 

 
Author (up) Barr, Cheryl B. ; Cerdan, Axel ; Clavier, Simon ; Murienne, Jérôme
Title Amazonopsis cerdani (Coleoptera: Elmidae: Elminae), a New Species of RiffleBeetle from French Guiana with Habitat Observations Type Journal Article
Year 2021 Publication The Coleopterists Bulletin Abbreviated Journal
Volume 75 Issue 2 Pages 427-439
Keywords
Abstract A third species of Amazonopsis , Amazonopsis cerdani Barr and Cerdan, new species (Coleoptera: Elmidae), is herein described from French Guiana. One female paratype of Amazonopsis theranyi Barr from Peru is tentatively reassigned to A. cerdani as a non-paratype. Photographic images of the male and female habitus, and the male genitalia, are provided, as is a distribution map and a key to the species. Amazonopsis cerdani differs from A. theranyi from Peru and Amazonopsis camachoi Barr from Venezuela by the presence of prominent spines on protarsomeres 1–4 of males, among other characters. The habitat of this species is small, shallow, lowland streams with sandy-silty substrates and low flow. Specimens were collected from unconsolidated leaf litter in depositional areas, and from stick and leaf packs lodged in the current. Genetic analysis conducted on three specimens from two localities, a male and two females, showed that they are conspecific.
Address
Corporate Author Thesis
Publisher BioOne Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 1035
Permanent link to this record
 

 
Author (up) Barraza, F.; Schreck, E.; Lévêque, T.; Uzu, G.; Lopez, F.; Ruales, J.; Prunier, J.; Marquet, A.; Maurice, L.
Title Cadmium bioaccumulation and gastric bioaccessibility in cacao: A field study in areas impacted by oil activities in Ecuador Type Journal Article
Year 2017 Publication Environmental Pollution Abbreviated Journal
Volume 229 Issue Pages 950-963
Keywords Cacao; Cadmium; Ecuador; Health risk assessment; Uptake and bioaccumulation
Abstract Cacao from South America is especially used to produce premium quality chocolate. Although the European Food Safety Authority has not established a limit for cadmium (Cd) in chocolate raw material, recent studies demonstrate that Cd concentrations in cacao beans can reach levels higher than the legal limits for dark chocolate (0.8 mg kg−1, effective January 1st, 2019). Despite the fact that the presence of Cd in agricultural soils is related to contamination by fertilizers, other potential sources must be considered in Ecuador. This field study was conducted to investigate Cd content in soils and cacao cultivated on Ecuadorian farms in areas impacted by oil activities. Soils, cacao leaves, and pod husks were collected from 31 farms in the northern Amazon and Pacific coastal regions exposed to oil production and refining and compared to two control areas. Human gastric bioaccessibility was determined in raw cacao beans and cacao liquor samples in order to assess potential health risks involved. Our results show that topsoils (0–20 cm) have higher Cd concentrations than deeper layers, exceeding the Ecuadorian legislation limit in 39% of the sampling sites. Cacao leaves accumulate more Cd than pod husks or beans but, nevertheless, 50% of the sampled beans have Cd contents above 0.8 mg kg−1. Root-to-cacao transfer seems to be the main pathway of Cd uptake, which is not only regulated by physico-chemical soil properties but also agricultural practices. Additionally, natural Cd enrichment by volcanic inputs must not be neglected. Finally, Cd in cacao trees cannot be considered as a tracer of oil activities. Assuming that total Cd content and its bioaccessible fraction (up to 90%) in cacao beans and liquor is directly linked to those in chocolate, the health risk associated with Cd exposure varies from low to moderate.
Address Laboratoire des Sciences du Bois, UMR EcoFoG, ZI Pariacabo, Kourou, French Guiana
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Cited By :1; Export Date: 4 June 2018 Approved no
Call Number EcoFoG @ webmaster @ Serial 806
Permanent link to this record