toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Díaz, S.; Kattge, J.; Cornelissen, J.H.C.; Wright, I.J.; Lavorel, S.; Dray, S.; Reu, B.; Kleyer, M.; Wirth, C.; Colin Prentice, I.; Garnier, E.; Bönisch, G.; Westoby, M.; Poorter, H.; Reich, P.B.; Moles, A.T.; Dickie, J.; Gillison, A.N.; Zanne, A.E.; Chave, J.; Joseph Wright, S.; Sheremet’ev, S.N.; Jactel, H.; Baraloto, C.; Cerabolini, B.; Pierce, S.; Shipley, B.; Kirkup, D.; Casanoves, F.; Joswig, J.S.; Günther, A.; Falczuk, V.; Rüger, N.; Mahecha, M.D.; Gorné, L.D. doi  openurl
  Title The global spectrum of plant form and function Type Journal Article
  Year 2016 Publication Nature Abbreviated Journal Nature  
  Volume 529 Issue 7585 Pages 167-171  
  Keywords  
  Abstract Earth is home to a remarkable diversity of plant forms and life histories, yet comparatively few essential trait combinations have proved evolutionarily viable in today’s terrestrial biosphere. By analysing worldwide variation in six major traits critical to growth, survival and reproduction within the largest sample of vascular plant species ever compiled, we found that occupancy of six-dimensional trait space is strongly concentrated, indicating coordination and trade-offs. Three-quarters of trait variation is captured in a two-dimensional global spectrum of plant form and function. One major dimension within this plane reflects the size of whole plants and their parts; the other represents the leaf economics spectrum, which balances leaf construction costs against growth potential. The global plant trait spectrum provides a backdrop for elucidating constraints on evolution, for functionally qualifying species and ecosystems, and for improving models that predict future vegetation based on continuous variation in plant form and function.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 654  
Permanent link to this record
 

 
Author ter Steege, H.; Pitman, N.C.A.; Killeen, T.J.; Laurance, W.F.; Peres, C.A.; Guevara, J.E.; Salomão, R.P.; Castilho, C.V.; Amaral, I.L.; de Almeida Matos, F.D.; de Souza Coelho, L.; Magnusson, W.E.; Phillips, O.L.; de Andrade Lima Filho, D.; de Jesus Veiga Carim, M.; Irume, M.V.; Martins, M.P.; Molino, J.-F.; Sabatier, D.; Wittmann, F.; López, D.C.; da Silva Guimarães, J.R.; Mendoza, A.M.; Vargas, P.N.; Manzatto, A.G.; Reis, N.F.C.; Terborgh, J.; Casula, K.R.; Montero, J.C.; Feldpausch, T.R.; Honorio Coronado, E.N.; Montoya, A.J.D.; Zartman, C.E.; Mostacedo, B.; Vasquez, R.; Assis, R.L.; Medeiros, M.B.; Simon, M.F.; Andrade, A.; Camargo, J.L.; Laurance, S.G.W.; Nascimento, H.E.M.; Marimon, B.S.; Marimon, B.-H.; Costa, F.; Targhetta, N.; Vieira, I.C.G.; Brienen, R.; Castellanos, H.; Duivenvoorden, J.F.; Mogollón, H.F.; Piedade, M.T.F.; Aymard C., G.A.; Comiskey, J.A.; Damasco, G.; Dávila, N.; García-Villacorta, R.; Diaz, P.R.S.; Vincentini, A.; Emilio, T.; Levis, C.; Schietti, J.; Souza, P.; Alonso, A.; Dallmeier, F.; Ferreira, L.V.; Neill, D.; Araujo-Murakami, A.; Arroyo, L.; Carvalho, F.A.; Souza, F.C.; Amaral, D.D. do; Gribel, R.; Luize, B.G.; Pansonato, M.P.; Venticinque, E.; Fine, P.; Toledo, M.; Baraloto, C.; Cerón, C.; Engel, J.; Henkel, T.W.; Jimenez, E.M.; Maas, P.; Mora, M.C.P.; Petronelli, P.; Revilla, J.D.C.; Silveira, M.; Stropp, J.; Thomas-Caesar, R.; Baker, T.R.; Daly, D.; Paredes, M.R.; da Silva, N.F.; Fuentes, A.; Jørgensen, P.M.; Schöngart, J.; Silman, M.R.; Arboleda, N.C.; Cintra, B.B.L.; Valverde, F.C.; Di Fiore, A.; Phillips, J.F.; van Andel, T.R.; von Hildebrand, P.; Barbosa, E.M.; de Matos Bonates, L.C.; de Castro, D.; de Sousa Farias, E.; Gonzales, T.; Guillaumet, J.-L.; Hoffman, B.; Malhi, Y.; de Andrade Miranda, I.P.; Prieto, A.; Rudas, A.; Ruschell, A.R.; Silva, N.; Vela, C.I.A.; Vos, V.A.; Zent, E.L.; Zent, S.; Cano, A.; Nascimento, M.T.; Oliveira, A.A.; Ramirez-Angulo, H.; Ramos, J.F.; Sierra, R.; Tirado, M.; Medina, M.N.U.; van der Heijden, G.; Torre, E.V.; Vriesendorp, C.; Wang, O.; Young, K.R.; Baider, C.; Balslev, H.; de Castro, N.; Farfan-Rios, W.; Ferreira, C.; Mendoza, C.; Mesones, I.; Torres-Lezama, A.; Giraldo, L.E.U.; Villarroel, D.; Zagt, R.; Alexiades, M.N.; Garcia-Cabrera, K.; Hernandez, L.; Huamantupa-Chuquimaco, I.; Milliken, W.; Cuenca, W.P.; Pansini, S.; Pauletto, D.; Arevalo, F.R.; Sampaio, A.F.; Valderrama Sandoval, E.H.; Gamarra, L.V. pdf  url
openurl 
  Title Estimating the global conservation status of more than 15,000 Amazonian tree species Type Journal Article
  Year 2015 Publication Science Advances Abbreviated Journal  
  Volume 1 Issue 10 Pages  
  Keywords  
  Abstract Estimates of extinction risk for Amazonian plant and animal species are rare and not often incorporated into land-use policy and conservation planning. We overlay spatial distribution models with historical and projected deforestation to show that at least 36% and up to 57% of all Amazonian tree species are likely to qualify as globally threatened under International Union for Conservation of Nature (IUCN) Red List criteria. If confirmed, these results would increase the number of threatened plant species on Earth by 22%. We show that the trends observed in Amazonia apply to trees throughout the tropics, and we predict that most of the world’s >40,000 tropical tree species now qualify as globally threatened. A gap analysis suggests that existing Amazonian protected areas and indigenous territories will protect viable populations of most threatened species if these areas suffer no further degradation, highlighting the key roles that protected areas, indigenous peoples, and improved governance can play in preventing large-scale extinctions in the tropics in this century.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 665  
Permanent link to this record
 

 
Author Rossi, V.;Dolley, T.; Cornu, G.; Guitet, S.;Herault, B. openurl 
  Title GuyaSim : un outil d’aide à la décision pour l’aménagement d’un territoire forestier, la Guyane Type Journal Article
  Year 2015 Publication Bois et Forets des Tropiques Abbreviated Journal  
  Volume 326 Issue 4 Pages 67-78  
  Keywords GIS software; scenarios; ecosystem services; simulator; biodiversity; carbon stock; biomass; logging; deforestation; land use changes; tropical forest; French Guiana  
  Abstract Planning policies for rapid development in French Guiana will require the conversion of forested areas, thus contributing to glo- bal warming. Guiana’s policy-makers will need to integrate the preservation of eco- system services into their planning deci- sions. The GuyaSim project was conduc- ted to produce more in-depth knowledge on these services (carbon sequestration, biodiversity and soil quality) and to trans- fer a software application, GuyaSim, to policy-makers to facilitate the use of this knowledge in the development of plan- ning policies. This article presents the characteristics of the application. Guya- Sim is a freeware package of the GIS type designed initially for local authority plan- ners and forestry departments in French Guiana. The application has two main functions:
information delivery and sup-
port for planning decisions. The informa- tion provided includes socio-economic development scenarios, climate scenarios and valuations of ecosystem services. The decision-support component consists of tools for building planning scenarios (land use changes) and forestry scenarios (log- ging), with information on their environ- mental impacts. The functionalities of the software are currently limited by the state of knowledge on Guiana’s ecosystems. Advances made through current research projects are expected to upgrade the application in the medium term.
 
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 666  
Permanent link to this record
 

 
Author Dezerald, O.; Leroy, C.; Corbara, B.; Dejean, A.; Talaga, S.; Céréghino, R. doi  openurl
  Title Environmental drivers of invertebrate population dynamics in Neotropical tank bromeliads Type Journal Article
  Year 2017 Publication Freshwater Biology Abbreviated Journal Freshw Biol  
  Volume 62 Issue 2 Pages 229-242  
  Keywords food webs; freshwater invertebrates; growth rate; life history; rainforest  
  Abstract Tank bromeliads form a conspicuous, yet neglected freshwater habitat in Neotropical forests. Recent studies driven by interests in medical entomology, fundamental aspects of bromeliad ecology and experimental research on food webs have, however, prompted increasing interest in bromeliad aquatic ecosystems. As yet, there is nothing in the literature about the life histories and environmental drivers of invertebrate population dynamics in tank bromeliads.

Based on fortnightly samples taken over one year, size frequency plots and individual dry masses allowed us to establish the life cycles and growth rates of the dominant aquatic invertebrates in a common bromeliad species of French Guiana. Linear mixed-effect models and Mantel tests were used to predict changes in density, biomass, and growth rates in relation to temperature, rainfall, humidity and detrital resources.

Annual variations in invertebrate densities and biomasses could be described according to three types of distribution: unimodal, bimodal or almost constant. Despite seasonal variations, precipitation, temperature, relative humidity and detritus concentration accounted significantly for changes in density and biomass, but we found no significant responses in growth rates of most invertebrate species. Species rather displayed non-seasonal life cycles with overlapping cohorts throughout the year. There was also a trend for delayed abundance peaks among congeneric species sharing similar functional traits, suggesting temporal partitioning of available resources.

Beyond novel knowledge, quantitative information on life histories is important to predict food-web dynamics under the influence of external forcing and self-organisation. Our results suggest that changes in species distribution that will affect population dynamics through biotic interactions in space and/or time could have greater effects on food webs and ecosystem functioning than changes in environmental factors per se.
 
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1365-2427 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 716  
Permanent link to this record
 

 
Author Salas-Lopez, A.; Mickal, H.; Menzel, F.; Orivel, J. doi  openurl
  Title Ant-mediated ecosystem processes are driven by trophic community structure but mainly by the environment Type Journal Article
  Year 2017 Publication Oecologia Abbreviated Journal Oecologia  
  Volume 183 Issue 1 Pages 249-261  
  Keywords  
  Abstract The diversity and functional identity of organisms are known to be relevant to the maintenance of ecosystem processes but can be variable in different environments. Particularly, it is uncertain whether ecosystem processes are driven by complementary effects or by dominant groups of species. We investigated how community structure (i.e., the diversity and relative abundance of biological entities) explains the community-level contribution of Neotropical ant communities to different ecosystem processes in different environments. Ants were attracted with food resources representing six ant-mediated ecosystem processes in four environments: ground and vegetation strata in cropland and forest habitats. The exploitation frequencies of the baits were used to calculate the taxonomic and trophic structures of ant communities and their contribution to ecosystem processes considered individually or in combination (i.e., multifunctionality). We then investigated whether community structure variables could predict ecosystem processes and whether such relationships were affected by the environment. We found that forests presented a greater biodiversity and trophic complementarity and lower dominance than croplands, but this did not affect ecosystem processes. In contrast, trophic complementarity was greater on the ground than on vegetation and was followed by greater resource exploitation levels. Although ant participation in ecosystem processes can be predicted by means of trophic-based indices, we found that variations in community structure and performance in ecosystem processes were best explained by environment. We conclude that determining the extent to which the dominance and complementarity of communities affect ecosystem processes in different environments requires a better understanding of resource availability to different species.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1432-1939 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Salas-Lopez2017 Serial 715  
Permanent link to this record
 

 
Author Lenoir, A.; Boulay, R.; Dejean, A.; Touchard, A.; Cuvillier-Hot, V. doi  openurl
  Title Phthalate pollution in an Amazonian rainforest Type Journal Article
  Year 2016 Publication Environmental Science and Pollution Research Abbreviated Journal  
  Volume 23 Issue 16 Pages 16865-16872  
  Keywords  
  Abstract Phthalates are ubiquitous contaminants and endocrine-disrupting chemicals that can become trapped in the cuticles of insects, including ants which were recognized as good bioindicators for such pollution. Because phthalates have been noted in developed countries and because they also have been found in the Arctic, a region isolated from direct anthropogenic influence, we hypothesized that they are widespread. So, we looked for their presence on the cuticle of ants gathered from isolated areas of the Amazonian rainforest and along an anthropogenic gradient of pollution (rainforest vs. road sides vs. cities in French Guiana). Phthalate pollution (mainly di(2-ethylhexyl) phthalate (DEHP)) was higher on ants gathered in cities and along road sides than on those collected in the pristine rainforest, indicating that it follows a human-mediated gradient of disturbance related to the use of plastics and many other products that contain phthalates in urban zones. Their presence varied with the ant species; the cuticle of Solenopsis saevissima traps higher amount of phthalates than that of compared species. However, the presence of phthalates in isolated areas of pristine rainforests suggests that they are associated both with atmospheric particles and in gaseous form and are transported over long distances by wind, resulting in a worldwide diffusion. These findings suggest that there is no such thing as a “pristine” zone.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1614-7499 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Lenoir2016 Serial 700  
Permanent link to this record
 

 
Author Piponiot, C.; Sist, P.; Mazzei, L.; Peña-Claros, M.; Putz, F.E.; Rutishauser, E.; Shenkin, A.; Ascarrunz, N.; de Azevedo, C.P.; Baraloto, C.; França, M.; Guedes, M.; Honorio Coronado, E.N.; d'Oliveira, M.V.N.; Ruschel, A.R.; da Silva, K.E.; Doff Sotta, E.; de Souza, C.R.; Vidal, E.; West, T.A.P.; Herault, B. pdf  url
doi  openurl
  Title Carbon recovery dynamics following disturbance by selective logging in Amazonian forests Type Journal Article
  Year 2016 Publication eLife Abbreviated Journal  
  Volume 5 Issue Pages e21394  
  Keywords  
  Abstract When 2 Mha of Amazonian forests are disturbed by selective logging each year, more than 90 Tg of carbon (C) is emitted to the atmosphere. Emissions are then counterbalanced by forest regrowth. With an original modelling approach, calibrated on a network of 133 permanent forest plots (175 ha total) across Amazonia, we link regional differences in climate, soil and initial biomass with survivors' and recruits' C fluxes to provide Amazon-wide predictions of post-logging C recovery. We show that net aboveground C recovery over 10 years is higher in the Guiana Shield and in the west (21{plus minus}3 MgC ha-1) than in the south (12{plus minus}3 MgC ha-1) where environmental stress is high (low rainfall, high seasonality). We highlight the key role of survivors in the forest regrowth and elaborate a comprehensive map of post-disturbance C recovery potential in Amazonia.  
  Address (up)  
  Corporate Author Thesis  
  Publisher eLife Sciences Publications, Ltd Place of Publication Editor Trumbore, S.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-084x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 702  
Permanent link to this record
 

 
Author Liang, J.; Crowther, T.W.; Picard, N.; Wiser, S.; Zhou, M.; Alberti, G.; Schulze, E.-D.; McGuire, A.D.; Bozzato, F.; Pretzsch, H.; de-Miguel, S.; Paquette, A.; Herault, B.; Scherer-Lorenzen, M.; Barrett, C.B.; Glick, H.B.; Hengeveld, G.M.; Nabuurs, G.-J.; Pfautsch, S.; Viana, H.; Vibrans, A.C.; Ammer, C.; Schall, P.; Verbyla, D.; Tchebakova, N.; Fischer, M.; Watson, J.V.; Chen, H.Y.H.; Lei, X.; Schelhaas, M.-J.; Lu, H.; Gianelle, D.; Parfenova, E.I.; Salas, C.; Lee, E.; Lee, B.; Kim, H.S.; Bruelheide, H.; Coomes, D.A.; Piotto, D.; Sunderland, T.; Schmid, B.; Gourlet-Fleury, S.; Sonké, B.; Tavani, R.; Zhu, J.; Brandl, S.; Vayreda, J.; Kitahara, F.; Searle, E.B.; Neldner, V.J.; Ngugi, M.R.; Baraloto, C.; Frizzera, L.; Bałazy, R.; Oleksyn, J.; Zawiła-Niedźwiecki, T.; Bouriaud, O.; Bussotti, F.; Finér, L.; Jaroszewicz, B.; Jucker, T.; Valladares, F.; Jagodzinski, A.M.; Peri, P.L.; Gonmadje, C.; Marthy, W.; O’Brien, T.; Martin, E.H.; Marshall, A.R.; Rovero, F.; Bitariho, R.; Niklaus, P.A.; Alvarez-Loayza, P.; Chamuya, N.; Valencia, R.; Mortier, F.; Wortel, V.; Engone-Obiang, N.L.; Ferreira, L.V.; Odeke, D.E.; Vasquez, R.M.; Lewis, S.L.; Reich, P.B. url  doi
openurl 
  Title Positive biodiversity-productivity relationship predominant in global forests Type Journal Article
  Year 2016 Publication Science Abbreviated Journal  
  Volume 354 Issue 6309 Pages  
  Keywords  
  Abstract The relationship between biodiversity and ecosystem productivity has been explored in detail in herbaceous vegetation, but patterns in forests are far less well understood. Liang et al. have amassed a global forest data set from >770,000 sample plots in 44 countries. A positive and consistent relationship can be discerned between tree diversity and ecosystem productivity at landscape, country, and ecoregion scales. On average, a 10% loss in biodiversity leads to a 3% loss in productivity. This means that the economic value of maintaining biodiversity for the sake of global forest productivity is more than fivefold greater than global conservation costs.Science, this issue p. 196INTRODUCTIONThe biodiversity-productivity relationship (BPR; the effect of biodiversity on ecosystem productivity) is foundational to our understanding of the global extinction crisis and its impacts on the functioning of natural ecosystems. The BPR has been a prominent research topic within ecology in recent decades, but it is only recently that we have begun to develop a global perspective.RATIONALEForests are the most important global repositories of terrestrial biodiversity, but deforestation, forest degradation, climate change, and other factors are threatening approximately one half of tree species worldwide. Although there have been substantial efforts to strengthen the preservation and sustainable use of forest biodiversity throughout the globe, the consequences of this diversity loss pose a major uncertainty for ongoing international forest management and conservation efforts. The forest BPR represents a critical missing link for accurate valuation of global biodiversity and successful integration of biological conservation and socioeconomic development. Until now, there have been limited tree-based diversity experiments, and the forest BPR has only been explored within regional-scale observational studies. Thus, the strength and spatial variability of this relationship remains unexplored at a global scale.RESULTSWe explored the effect of tree species richness on tree volume productivity at the global scale using repeated forest inventories from 777,126 permanent sample plots in 44 countries containing more than 30 million trees from 8737 species spanning most of the global terrestrial biomes. Our findings reveal a consistent positive concave-down effect of biodiversity on forest productivity across the world, showing that a continued biodiversity loss would result in an accelerating decline in forest productivity worldwide.The BPR shows considerable geospatial variation across the world. The same percentage of biodiversity loss would lead to a greater relative (that is, percentage) productivity decline in the boreal forests of North America, Northeastern Europe, Central Siberia, East Asia, and scattered regions of South-central Africa and South-central Asia. In the Amazon, West and Southeastern Africa, Southern China, Myanmar, Nepal, and the Malay Archipelago, however, the same percentage of biodiversity loss would lead to greater absolute productivity decline.CONCLUSIONOur findings highlight the negative effect of biodiversity loss on forest productivity and the potential benefits from the transition of monocultures to mixed-species stands in forestry practices. The BPR we discover across forest ecosystems worldwide corresponds well with recent theoretical advances, as well as with experimental and observational studies on forest and nonforest ecosystems. On the basis of this relationship, the ongoing species loss in forest ecosystems worldwide could substantially reduce forest productivity and thereby forest carbon absorption rate to compromise the global forest carbon sink. We further estimate that the economic value of biodiversity in maintaining commercial forest productivity alone is $166 billion to $490 billion per year. Although representing only a small percentage of the total value of biodiversity, this value is two to six times as much as it would cost to effectively implement conservation globally. These results highlight the necessity to reassess biodiversity valuation and the potential benefits of integrating and promoting biological conservation in forest resource management and forestry practices worldwide.Global effect of tree species diversity on forest productivity.Ground-sourced data from 777,126 global forest biodiversity permanent sample plots (dark blue dots, left), which cover a substantial portion of the global forest extent (white), reveal a consistent positive and concave-down biodiversity-productivity relationship across forests worldwide (red line with pink bands representing 95% confidence interval, right).The biodiversity-productivity relationship (BPR) is foundational to our understanding of the global extinction crisis and its impacts on ecosystem functioning. Understanding BPR is critical for the accurate valuation and effective conservation of biodiversity. Using ground-sourced data from 777,126 permanent plots, spanning 44 countries and most terrestrial biomes, we reveal a globally consistent positive concave-down BPR, showing that continued biodiversity loss would result in an accelerating decline in forest productivity worldwide. The value of biodiversity in maintaining commercial forest productivity alone—US$166 billion to 490 billion per year according to our estimation—is more than twice what it would cost to implement effective global conservation. This highlights the need for a worldwide reassessment of biodiversity values, forest management strategies, and conservation priorities.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 703  
Permanent link to this record
 

 
Author Lehours, A.-C.; Jeune, A.-H.L.; Aguer, J.-P.; Céréghino, R.; Corbara, B.; Kéraval, B.; Leroy, C.; Perrière, F.; Jeanthon, C.; Carrias, J.-F. doi  openurl
  Title Unexpectedly high bacteriochlorophyll a concentrations in neotropical tank bromeliads Type Journal Article
  Year 2016 Publication Environmental Microbiology Reports Abbreviated Journal Environmental Microbiology Reports  
  Volume 8 Issue 5 Pages 689-698  
  Keywords  
  Abstract The contribution of bacteriochlorophyll a (BChl a) to photosynthetically driven electron transport is generally low in aquatic and terrestrial systems. Here, we provide evidence that anoxygenic bacterial phototrophy is widespread and substantial in water retained by tank bromeliads of a primary rainforest in French Guiana. An analysis of the water extracted from 104 randomly selected tank bromeliads using infrared fluorimetry suggested the overall presence of abundant anoxygenic phototrophic bacterial populations. We found that purple bacteria dominated these populations responsible for unusually high BChl a/chlorophyll a ratios (>50%). Our data suggest that BChl a-based phototrophy in tank bromeliads can have significant effects on the ecology of tank-bromeliad ecosystems and on the carbon and energy fluxes in Neotropical forests.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1758-2229 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 709  
Permanent link to this record
 

 
Author Malé, P.-J.G.; Leroy, C.; Humblot, P.; Dejean, A.; Quilichini, A.; Orivel, J. doi  openurl
  Title Limited gene dispersal and spatial genetic structure as stabilizing factors in an ant-plant mutualism Type Journal Article
  Year 2016 Publication Journal of Evolutionary Biology Abbreviated Journal J. Evol. Biol.  
  Volume 29 Issue 12 Pages 2519-2529  
  Keywords gene flow; local adaptation; metapopulation; myrmecophyte; population genetics  
  Abstract Comparative studies of the population genetics of closely associated species are necessary to properly understand the evolution of these relationships because gene flow between populations affects the partners' evolutionary potential at the local scale. As a consequence (at least for antagonistic interactions), asymmetries in the strength of the genetic structures of the partner populations can result in one partner having a co-evolutionary advantage. Here, we assess the population genetic structure of partners engaged in a species-specific and obligatory mutualism: the Neotropical ant-plant, Hirtella physophora, and its ant associate, Allomerus decemarticulatus. Although the ant cannot complete its life cycle elsewhere than on H. physophora and the plant cannot live for long without the protection provided by A. decemarticulatus, these species also have antagonistic interactions: the ants have been shown to benefit from castrating their host plant and the plant is able to retaliate against too virulent ant colonies. We found similar short dispersal distances for both partners, resulting in the local transmission of the association and, thus, inbred populations in which too virulent castrating ants face the risk of local extinction due to the absence of H. physophora offspring. On the other hand, we show that the plant populations probably experienced greater gene flow than did the ant populations, thus enhancing the evolutionary potential of the plants. We conclude that such levels of spatial structure in the partners' populations can increase the stability of the mutualistic relationship. Indeed, the local transmission of the association enables partial alignments of the partners' interests, and population connectivity allows the plant retaliation mechanisms to be locally adapted to the castration behaviour of their symbionts.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1420-9101 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 710  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: