toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Aili, S.R.; Touchard, A.; Hayward, R.; Robinson, S.D.; Pineda, S.S.; Lalagüe, H.; Mrinalini; Vetter, I.; Undheim, E.A.B.; Kini, R.M.; Escoubas, P.; Padula, M.P.; Myers, G.S.A.; Nicholson, G.M. doi  openurl
  Title An integrated proteomic and transcriptomic analysis reveals the venom complexity of the bullet ant Paraponera clavata Type Journal Article
  Year 2020 Publication Toxins Abbreviated Journal (up) Toxins  
  Volume 12 Issue 5 Pages  
  Keywords DRG neurons; Hyaluronidase; Neurotoxins; Paraponeritoxin; Phospholipases; Rp-Hplc; alpha latrotoxin; ant venom; arginine kinase; cathepsin; contig; defensin 2; hyaluronidase; icarapin; metalloproteinase; neurotoxin; novel toxin like protein; phospholipase; phospholipase A2; poneratoxin; proteome; serine proteinase; transcriptome; unclassified drug; amino acid sequence; ant; Article; liquid chromatography-mass spectrometry; neurotoxicity; nonhuman; Paraponera clavata; protein expression; proteomics; sequence database; tandem mass spectrometry; transcriptomics; venom gland  
  Abstract A critical hurdle in ant venom proteomic investigations is the lack of databases to comprehensively and specifically identify the sequence and function of venom proteins and peptides. To resolve this, we used venom gland transcriptomics to generate a sequence database that was used to assign the tandem mass spectrometry (MS) fragmentation spectra of venom peptides and proteins to specific transcripts. This was performed alongside a shotgun liquid chromatography-mass spectrometry (LC-MS/MS) analysis of the venom to confirm that these assigned transcripts were expressed as proteins. Through the combined transcriptomic and proteomic investigation of Paraponera clavata venom, we identified four times the number of proteins previously identified using 2D-PAGE alone. In addition to this, by mining the transcriptomic data, we identified several novel peptide sequences for future pharmacological investigations, some of which conform with inhibitor cysteine knot motifs. These types of peptides have the potential to be developed into pharmaceutical or bioinsecticide peptides. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.  
  Address Faculty of Science, University of Nice, Nice, 06000, France  
  Corporate Author Thesis  
  Publisher Mdpi Ag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20726651 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 972  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: