toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author (up) Perrot, T.; Guillaume, S.; Nadine, A.; Jacques, B.; Philippe, G.; Stéphane, D.; Rodnay, S.; Mélanie, M.-R.; Eric, G. doi  openurl
  Title A reverse chemical ecology approach to explore wood natural durability Type Journal Article
  Year 2020 Publication Microbial Biotechnology Abbreviated Journal Microb. Biotechnol.  
  Volume 13 Issue 5 Pages 1673-1677  
  Keywords glutathione transferase; Article; biodegradation; data base; detoxification; ecology; enzyme activity; enzyme metabolism; forest; molecular dynamics; physical parameters; species identification; thermal analysis; Trametes versicolor; wood; wood durability  
  Abstract The natural durability of wood species, defined as their inherent resistance to wood-destroying agents, is a complex phenomenon depending on many biotic and abiotic factors. Besides the presence of recalcitrant polymers, the presence of compounds with antimicrobial properties is known to be important to explain wood durability. Based on the advancement in our understanding of fungal detoxification systems, a reverse chemical ecology approach was proposed to explore wood natural durability using fungal glutathione transferases. A set of six glutathione transferases from the white-rot Trametes versicolor were used as targets to test wood extracts from seventeen French Guiana neotropical species. Fluorescent thermal shift assays quantified interactions between fungal glutathione transferases and these extracts. From these data, a model combining this approach and wood density significantly predicts the wood natural durability of the species tested previously using long-term soil bed tests. Overall, our findings confirm that detoxification systems could be used to explore the chemical environment encountered by wood-decaying fungi and also wood natural durability. © 2020 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.  
  Address Université de Lorraine, INRAE, LERMAB, Nancy, France  
  Corporate Author Thesis  
  Publisher John Wiley and Sons Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 17517907 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 955  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: