toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Ntawuhiganayo, E.B.; Uwizeye, F.K.; Zibera, E.; Dusenge, M.E.; Ziegler, C.; Ntirugulirwa, B.; Nsabimana, D.; Wallin, G.; Uddling, J. pdf  url
doi  openurl
  Title Traits controlling shade tolerance in tropical montane trees Type Journal Article
  Year 2020 Publication Tree physiology Abbreviated Journal Tree Physiol.  
  Volume 40 Issue 2 Pages 183-197  
  Keywords biomass allocation; leaf temperature; plant traits; Rwanda; shade intolerance; shade tolerance; tropical montane forest; article; biomass allocation; breathing; canopy; carbon balance; compensation; photosynthesis; plant leaf; plant stem; rain forest; Rwanda; shade tolerance; species difference; sweating  
  Abstract Tropical canopies are complex, with multiple canopy layers and pronounced gap dynamics contributing to their high species diversity and productivity. An important reason for this complexity is the large variation in shade tolerance among different tree species. At present, we lack a clear understanding of which plant traits control this variation, e.g., regarding the relative contributions of whole-plant versus leaf traits or structural versus physiological traits. We investigated a broad range of traits in six tropical montane rainforest tree species with different degrees of shade tolerance, grown under three different radiation regimes (under the open sky or beneath sparse or dense canopies). The two distinct shade-tolerant species had higher fractional biomass in leaves and branches while shade-intolerant species invested more into stems, and these differences were greater under low radiation. Leaf respiration and photosynthetic light compensation point did not vary with species shade tolerance, regardless of radiation regime. Leaf temperatures in open plots were markedly higher in shade-tolerant species due to their low transpiration rates and large leaf sizes. Our results suggest that interspecific variation in shade tolerance of tropical montane trees is controlled by species differences in whole-plant biomass allocation strategy rather than by difference in physiological leaf traits determining leaf carbon balance at low radiation. © The Author(s) 2019. Published by Oxford University Press.  
  Address (up) Rwanda Agriculture and Animal Resources Development, PO Box 5016Kigali, Rwanda  
  Corporate Author Thesis  
  Publisher NLM (Medline) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 17584469 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 16 March 2020 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 922  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: