toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Ghislain, B.; Alméras, T.; Prunier, J.; Clair, B. pdf  url
doi  openurl
  Title Contributions of bark and tension wood and role of the G-layer lignification in the gravitropic movements of 21 tropical tree species Type Journal Article
  Year 2019 Publication Annals of Forest Science Abbreviated Journal Ann. Forest Sci.  
  Volume 76 Issue 4 Pages 107  
  Keywords Bark; Biomechanics; G-layer; Lignification; Tension wood; Tropical rainforest; Magnoliophyta  
  Abstract Key message: Gravitropic movements in angiosperm woody stems are achieved through the action of bark and/or wood motor, depending on the bark and wood fibre anatomy (with trellis structure or not; with G-layers or not). Bark motor is as efficient as wood motor to recover from tilting in young trees of 21 tropical species. Context: Angiosperm trees produce tension wood to control their orientation through changes in stem curvature. Tension wood is classified into 3 anatomical groups: with unlignified G-layer, with lignified G-layer and without G-layer. Aims: This study aimed at assessing whether this anatomical diversity reflects a diversity in efficiency of gravitropic movement. Methods: The study was conducted on tropical seedling from the three anatomical groups. Seedlings were staked and grown tilted. At the end of the experiment, changes in curvature when releasing the stem from the stake and when removing bark were measured. Three parameters were computed to compare the global efficiency of gravitropism (stem gravitropic efficiency) and the specific efficiency of motor mechanism based on wood (maturation strain of tension wood) and bark (standardized debarking curvature). Results: The maturation strain of tension wood was similar between species with unlignified and lignified G-layer. Species without G-layer exhibited low maturation strain and large debarking curvature, showing they rely on bark for gravitropism. Bark and wood achieved similar motor efficiency. Conclusion: Lignin does not affect the generation of tensile stress in the G-layer. Bark can be as efficient as wood as a motor of gravitropic movements. © 2019, The Author(s).  
  Address Laboratoire de Mécanique et Génie Civil (LMGC), Université de Montpellier, CNRS, Montpellier, 34095, France  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 12864560 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number EcoFoG @ webmaster @ Serial 900  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: